An Ensemble Approach to Improve the Performance of Real Time Data Stream Classification

In the era of the Internet of Things (IoT), data stream mining has gained importance to make accurate and profitable decisions. Various techniques are used to gain insight into data streams, including classification, clustering, pattern mining, etc. Data are subject to changes over time. When this h...

Full description

Saved in:
Bibliographic Details
Published inEngineering, technology & applied science research Vol. 14; no. 6; pp. 17749 - 17754
Main Authors Joshi, Dhara, Shukla, Madhu
Format Journal Article
LanguageEnglish
Published 02.12.2024
Online AccessGet full text

Cover

Loading…
Abstract In the era of the Internet of Things (IoT), data stream mining has gained importance to make accurate and profitable decisions. Various techniques are used to gain insight into data streams, including classification, clustering, pattern mining, etc. Data are subject to changes over time. When this happens, predictive models that assume a static link between input and output variables may perform poorly or even degrade, which is called concept drift. This study proposes an ensemble architecture designed to improve performance and effectively detect concept drift in stream data classification. Using an ensemble approach, the proposed architecture incorporates three classifiers to improve accuracy and robustness against concept drift. The proposed architecture provides drift detection that ensures the model's continued performance by enabling it to be quickly modified to changing data distributions. Through comprehensive testing, the performance of the proposed algorithm was compared with existing methods, and the results demonstrate its superiority in terms of classification accuracy, precision, and recall and drift detection capabilities.
AbstractList In the era of the Internet of Things (IoT), data stream mining has gained importance to make accurate and profitable decisions. Various techniques are used to gain insight into data streams, including classification, clustering, pattern mining, etc. Data are subject to changes over time. When this happens, predictive models that assume a static link between input and output variables may perform poorly or even degrade, which is called concept drift. This study proposes an ensemble architecture designed to improve performance and effectively detect concept drift in stream data classification. Using an ensemble approach, the proposed architecture incorporates three classifiers to improve accuracy and robustness against concept drift. The proposed architecture provides drift detection that ensures the model's continued performance by enabling it to be quickly modified to changing data distributions. Through comprehensive testing, the performance of the proposed algorithm was compared with existing methods, and the results demonstrate its superiority in terms of classification accuracy, precision, and recall and drift detection capabilities.
Author Joshi, Dhara
Shukla, Madhu
Author_xml – sequence: 1
  givenname: Dhara
  surname: Joshi
  fullname: Joshi, Dhara
– sequence: 2
  givenname: Madhu
  surname: Shukla
  fullname: Shukla, Madhu
BookMark eNotkE1Lw0AYhBepYKw9-Qf2Lqn7ld3NMdRaCwVFKx7Dm-27NJJky24Q_PfG6lxmmMMwPNdkNoQBCbnlbKkss-oeR0hxaQstL0jGTSlyy6SekUwIxXOlrLkii5Q-2SRttTIiIx_VQNdDwr7pkFanUwzgjnQMdNtP-QvpeET6gtGH2MPgkAZPXxE6um97pA8wAn0bI0JPVx2k1PrWwdiG4YZceugSLv59Tt4f1_vVU7573mxX1S53XEmZN0KUpRbgGnkQDdd-OnbgxvmDE14JowvuC-aMsI0vStEw54RBX4Atpx5Azsnd366LIaWIvj7Ftof4XXNWn7HUZyz1Lxb5A92zWBs
Cites_doi 10.1109/ICACI.2016.7449823
10.1142/9789813228047_0003
10.1109/GCITC60406.2023.10426312
10.1109/TNNLS.2012.2236570
10.1145/3054925
10.1007/978-3-662-44845-8_12
10.1137/1.9781611972740.46
10.48084/etasr.7206
10.1007/978-3-642-15880-3_15
10.48084/etasr.6767
10.1109/TNNLS.2013.2251352
10.1109/R10-HTC57504.2023.10461809
10.1109/TNNLS.2017.2771290
10.1109/BigData.2018.8622549
10.1007/s12530-016-9168-2
10.1109/TNNLS.2018.2844332
10.1007/978-3-642-21222-2_19
10.1145/2851613.2851655
10.1016/j.is.2023.102177
10.3233/IDA-2008-12301
10.1007/978-981-15-5113-0_53
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.48084/etasr.8563
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1792-8036
EndPage 17754
ExternalDocumentID 10_48084_etasr_8563
GroupedDBID .4S
5VS
AAYXX
ADBBV
AEGXH
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EDO
EJD
ITG
ITH
KWQ
OK1
RNS
TUS
ID FETCH-LOGICAL-c1433-b229962acb3d2b16f068d17cfdc2f427651f50c728bf592b0cc27ef5a89f50aa3
ISSN 2241-4487
IngestDate Tue Jul 01 02:27:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1433-b229962acb3d2b16f068d17cfdc2f427651f50c728bf592b0cc27ef5a89f50aa3
OpenAccessLink https://www.etasr.com/index.php/ETASR/article/download/8563/4191
PageCount 6
ParticipantIDs crossref_primary_10_48084_etasr_8563
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-02
PublicationDateYYYYMMDD 2024-12-02
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-02
  day: 02
PublicationDecade 2020
PublicationTitle Engineering, technology & applied science research
PublicationYear 2024
References 259115
259126
259114
259125
259113
259124
259112
259123
259111
259122
259110
259121
259132
259120
259131
259130
259119
259118
259129
259117
259128
259116
259127
References_xml – ident: 259130
  doi: 10.1109/ICACI.2016.7449823
– ident: 259123
  doi: 10.1142/9789813228047_0003
– ident: 259131
  doi: 10.1109/GCITC60406.2023.10426312
– ident: 259127
  doi: 10.1109/TNNLS.2012.2236570
– ident: 259132
  doi: 10.1145/3054925
– ident: 259116
– ident: 259121
  doi: 10.1007/978-3-662-44845-8_12
– ident: 259126
  doi: 10.1137/1.9781611972740.46
– ident: 259128
  doi: 10.48084/etasr.7206
– ident: 259115
– ident: 259120
  doi: 10.1007/978-3-642-15880-3_15
– ident: 259129
  doi: 10.48084/etasr.6767
– ident: 259113
  doi: 10.1109/TNNLS.2013.2251352
– ident: 259118
  doi: 10.1109/R10-HTC57504.2023.10461809
– ident: 259114
  doi: 10.1109/TNNLS.2017.2771290
– ident: 259125
  doi: 10.1109/BigData.2018.8622549
– ident: 259112
  doi: 10.1007/s12530-016-9168-2
– ident: 259111
  doi: 10.1109/TNNLS.2018.2844332
– ident: 259124
  doi: 10.1007/978-3-642-21222-2_19
– ident: 259122
  doi: 10.1145/2851613.2851655
– ident: 259119
  doi: 10.1016/j.is.2023.102177
– ident: 259110
  doi: 10.3233/IDA-2008-12301
– ident: 259117
  doi: 10.1007/978-981-15-5113-0_53
SSID ssj0000686472
ssib044735913
ssib050383323
Score 2.275914
Snippet In the era of the Internet of Things (IoT), data stream mining has gained importance to make accurate and profitable decisions. Various techniques are used to...
SourceID crossref
SourceType Index Database
StartPage 17749
Title An Ensemble Approach to Improve the Performance of Real Time Data Stream Classification
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLY2uLADGoxpwIZ84DYFGsdJnGOFOqFKTDtQjVtlO7Y6QVNE0wsH_nbes_PDRT10XKIqqqOm3-fnz89-nwk5R0MYYVPo36m1EddWRFIxHZlYgsBQrITOjrstfmfXEz6-S-_6pRhXXVKrC_28sa7kPajCPcAVq2T_A9nuoXADPgO-cAWE4boVxsPq56hamjlWPw0f--IonykwTlT-CSoDnPEIFuT_mxvAu5ZuUVrO_dGYuGmox6nN1vd-hYhG3WXiHWdko2Hb4qDGOqhLMY8Xy5mvZEdf6C6bM1vdP0hfKVTOVmHigTl7w0GQi8TBP4LZnR8vjY-feQEBduA9TboAywMihdEyBu1ZBENvjHZ8m-I6FwPBEeJaLp8uRNrExDX37DejWrfXEGY5rvnUNZ5i449kl8GsAg-8uHkZteGH4ynMwaItGuUkSaOe_MAu0GwfjytsX91XfLrnX_Y_LtA4gVi5_Uz2m1kGHXrKHJAPpjoknwIsv5C_w4q25KEteWi9oA15KJCHBuShC0uRPBTJQ5E81JOHrpPniEx-jW6vrqPmlI1Ig1ZOIsVAkWRMapWUTMWZhdcs41zbUjPLWZ6lMfRlnTOhbFowNdCa5camUhRwX8rkK9mpFpX5RqgALW7S2DAmc85BeOu8zLhVMoZ5RWHLY3Le_i_TR2-mMt0Az8l2Xzslez0tv5Od-mllfoBCrNWZw_UVqZBlwg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ensemble+Approach+to+Improve+the+Performance+of+Real+Time+Data+Stream+Classification&rft.jtitle=Engineering%2C+technology+%26+applied+science+research&rft.au=Joshi%2C+Dhara&rft.au=Shukla%2C+Madhu&rft.date=2024-12-02&rft.issn=2241-4487&rft.eissn=1792-8036&rft.volume=14&rft.issue=6&rft.spage=17749&rft.epage=17754&rft_id=info:doi/10.48084%2Fetasr.8563&rft.externalDBID=n%2Fa&rft.externalDocID=10_48084_etasr_8563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2241-4487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2241-4487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2241-4487&client=summon