An Ensemble Approach to Improve the Performance of Real Time Data Stream Classification
In the era of the Internet of Things (IoT), data stream mining has gained importance to make accurate and profitable decisions. Various techniques are used to gain insight into data streams, including classification, clustering, pattern mining, etc. Data are subject to changes over time. When this h...
Saved in:
Published in | Engineering, technology & applied science research Vol. 14; no. 6; pp. 17749 - 17754 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
02.12.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | In the era of the Internet of Things (IoT), data stream mining has gained importance to make accurate and profitable decisions. Various techniques are used to gain insight into data streams, including classification, clustering, pattern mining, etc. Data are subject to changes over time. When this happens, predictive models that assume a static link between input and output variables may perform poorly or even degrade, which is called concept drift. This study proposes an ensemble architecture designed to improve performance and effectively detect concept drift in stream data classification. Using an ensemble approach, the proposed architecture incorporates three classifiers to improve accuracy and robustness against concept drift. The proposed architecture provides drift detection that ensures the model's continued performance by enabling it to be quickly modified to changing data distributions. Through comprehensive testing, the performance of the proposed algorithm was compared with existing methods, and the results demonstrate its superiority in terms of classification accuracy, precision, and recall and drift detection capabilities. |
---|---|
AbstractList | In the era of the Internet of Things (IoT), data stream mining has gained importance to make accurate and profitable decisions. Various techniques are used to gain insight into data streams, including classification, clustering, pattern mining, etc. Data are subject to changes over time. When this happens, predictive models that assume a static link between input and output variables may perform poorly or even degrade, which is called concept drift. This study proposes an ensemble architecture designed to improve performance and effectively detect concept drift in stream data classification. Using an ensemble approach, the proposed architecture incorporates three classifiers to improve accuracy and robustness against concept drift. The proposed architecture provides drift detection that ensures the model's continued performance by enabling it to be quickly modified to changing data distributions. Through comprehensive testing, the performance of the proposed algorithm was compared with existing methods, and the results demonstrate its superiority in terms of classification accuracy, precision, and recall and drift detection capabilities. |
Author | Joshi, Dhara Shukla, Madhu |
Author_xml | – sequence: 1 givenname: Dhara surname: Joshi fullname: Joshi, Dhara – sequence: 2 givenname: Madhu surname: Shukla fullname: Shukla, Madhu |
BookMark | eNotkE1Lw0AYhBepYKw9-Qf2Lqn7ld3NMdRaCwVFKx7Dm-27NJJky24Q_PfG6lxmmMMwPNdkNoQBCbnlbKkss-oeR0hxaQstL0jGTSlyy6SekUwIxXOlrLkii5Q-2SRttTIiIx_VQNdDwr7pkFanUwzgjnQMdNtP-QvpeET6gtGH2MPgkAZPXxE6um97pA8wAn0bI0JPVx2k1PrWwdiG4YZceugSLv59Tt4f1_vVU7573mxX1S53XEmZN0KUpRbgGnkQDdd-OnbgxvmDE14JowvuC-aMsI0vStEw54RBX4Atpx5Azsnd366LIaWIvj7Ftof4XXNWn7HUZyz1Lxb5A92zWBs |
Cites_doi | 10.1109/ICACI.2016.7449823 10.1142/9789813228047_0003 10.1109/GCITC60406.2023.10426312 10.1109/TNNLS.2012.2236570 10.1145/3054925 10.1007/978-3-662-44845-8_12 10.1137/1.9781611972740.46 10.48084/etasr.7206 10.1007/978-3-642-15880-3_15 10.48084/etasr.6767 10.1109/TNNLS.2013.2251352 10.1109/R10-HTC57504.2023.10461809 10.1109/TNNLS.2017.2771290 10.1109/BigData.2018.8622549 10.1007/s12530-016-9168-2 10.1109/TNNLS.2018.2844332 10.1007/978-3-642-21222-2_19 10.1145/2851613.2851655 10.1016/j.is.2023.102177 10.3233/IDA-2008-12301 10.1007/978-981-15-5113-0_53 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.48084/etasr.8563 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1792-8036 |
EndPage | 17754 |
ExternalDocumentID | 10_48084_etasr_8563 |
GroupedDBID | .4S 5VS AAYXX ADBBV AEGXH ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION EBS EDO EJD ITG ITH KWQ OK1 RNS TUS |
ID | FETCH-LOGICAL-c1433-b229962acb3d2b16f068d17cfdc2f427651f50c728bf592b0cc27ef5a89f50aa3 |
ISSN | 2241-4487 |
IngestDate | Tue Jul 01 02:27:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1433-b229962acb3d2b16f068d17cfdc2f427651f50c728bf592b0cc27ef5a89f50aa3 |
OpenAccessLink | https://www.etasr.com/index.php/ETASR/article/download/8563/4191 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_48084_etasr_8563 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-02 |
PublicationDateYYYYMMDD | 2024-12-02 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Engineering, technology & applied science research |
PublicationYear | 2024 |
References | 259115 259126 259114 259125 259113 259124 259112 259123 259111 259122 259110 259121 259132 259120 259131 259130 259119 259118 259129 259117 259128 259116 259127 |
References_xml | – ident: 259130 doi: 10.1109/ICACI.2016.7449823 – ident: 259123 doi: 10.1142/9789813228047_0003 – ident: 259131 doi: 10.1109/GCITC60406.2023.10426312 – ident: 259127 doi: 10.1109/TNNLS.2012.2236570 – ident: 259132 doi: 10.1145/3054925 – ident: 259116 – ident: 259121 doi: 10.1007/978-3-662-44845-8_12 – ident: 259126 doi: 10.1137/1.9781611972740.46 – ident: 259128 doi: 10.48084/etasr.7206 – ident: 259115 – ident: 259120 doi: 10.1007/978-3-642-15880-3_15 – ident: 259129 doi: 10.48084/etasr.6767 – ident: 259113 doi: 10.1109/TNNLS.2013.2251352 – ident: 259118 doi: 10.1109/R10-HTC57504.2023.10461809 – ident: 259114 doi: 10.1109/TNNLS.2017.2771290 – ident: 259125 doi: 10.1109/BigData.2018.8622549 – ident: 259112 doi: 10.1007/s12530-016-9168-2 – ident: 259111 doi: 10.1109/TNNLS.2018.2844332 – ident: 259124 doi: 10.1007/978-3-642-21222-2_19 – ident: 259122 doi: 10.1145/2851613.2851655 – ident: 259119 doi: 10.1016/j.is.2023.102177 – ident: 259110 doi: 10.3233/IDA-2008-12301 – ident: 259117 doi: 10.1007/978-981-15-5113-0_53 |
SSID | ssj0000686472 ssib044735913 ssib050383323 |
Score | 2.275914 |
Snippet | In the era of the Internet of Things (IoT), data stream mining has gained importance to make accurate and profitable decisions. Various techniques are used to... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 17749 |
Title | An Ensemble Approach to Improve the Performance of Real Time Data Stream Classification |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLY2uLADGoxpwIZ84DYFGsdJnGOFOqFKTDtQjVtlO7Y6QVNE0wsH_nbes_PDRT10XKIqqqOm3-fnz89-nwk5R0MYYVPo36m1EddWRFIxHZlYgsBQrITOjrstfmfXEz6-S-_6pRhXXVKrC_28sa7kPajCPcAVq2T_A9nuoXADPgO-cAWE4boVxsPq56hamjlWPw0f--IonykwTlT-CSoDnPEIFuT_mxvAu5ZuUVrO_dGYuGmox6nN1vd-hYhG3WXiHWdko2Hb4qDGOqhLMY8Xy5mvZEdf6C6bM1vdP0hfKVTOVmHigTl7w0GQi8TBP4LZnR8vjY-feQEBduA9TboAywMihdEyBu1ZBENvjHZ8m-I6FwPBEeJaLp8uRNrExDX37DejWrfXEGY5rvnUNZ5i449kl8GsAg-8uHkZteGH4ynMwaItGuUkSaOe_MAu0GwfjytsX91XfLrnX_Y_LtA4gVi5_Uz2m1kGHXrKHJAPpjoknwIsv5C_w4q25KEteWi9oA15KJCHBuShC0uRPBTJQ5E81JOHrpPniEx-jW6vrqPmlI1Ig1ZOIsVAkWRMapWUTMWZhdcs41zbUjPLWZ6lMfRlnTOhbFowNdCa5camUhRwX8rkK9mpFpX5RqgALW7S2DAmc85BeOu8zLhVMoZ5RWHLY3Le_i_TR2-mMt0Az8l2Xzslez0tv5Od-mllfoBCrNWZw_UVqZBlwg |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ensemble+Approach+to+Improve+the+Performance+of+Real+Time+Data+Stream+Classification&rft.jtitle=Engineering%2C+technology+%26+applied+science+research&rft.au=Joshi%2C+Dhara&rft.au=Shukla%2C+Madhu&rft.date=2024-12-02&rft.issn=2241-4487&rft.eissn=1792-8036&rft.volume=14&rft.issue=6&rft.spage=17749&rft.epage=17754&rft_id=info:doi/10.48084%2Fetasr.8563&rft.externalDBID=n%2Fa&rft.externalDocID=10_48084_etasr_8563 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2241-4487&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2241-4487&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2241-4487&client=summon |