The Impact of China’s National Independent Innovation Demonstration Zone Policy on Provincial-Level Innovation
Based on panel data encompassing 25 provinces over a 19-year period from 2005 to 2023 and employing the Double/Debiased Machine Learning (DML) framework, this work examines the impact of China’s National Independent Innovation Demonstration Zone (NIDZ) pilot policy on provincial-level innovation cap...
Saved in:
Published in | Procedia computer science Vol. 266; pp. 731 - 738 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Based on panel data encompassing 25 provinces over a 19-year period from 2005 to 2023 and employing the Double/Debiased Machine Learning (DML) framework, this work examines the impact of China’s National Independent Innovation Demonstration Zone (NIDZ) pilot policy on provincial-level innovation capability. In applying the DML model, this study accounts for the characteristics of panel data and eliminates the influence of confounding variables, along with individual and time fixed effects. Multiple robustness tests confirm that the NIDZ policy generates a significant short-term positive impact on provincial innovation capacity, which also exhibits strong persistence. Regional heterogeneity analysis indicates that the average policy effect is largest in the eastern region, although the inter-provincial variation in effects is also relatively greater. The policy effect in the western region is significantly positive and, comparatively, inter-provincial variation is smaller. Conversely, the short-term policy effect in the central region is not significant. An economic interpretation of the plausibility of these research findings is provided. |
---|---|
AbstractList | Based on panel data encompassing 25 provinces over a 19-year period from 2005 to 2023 and employing the Double/Debiased Machine Learning (DML) framework, this work examines the impact of China’s National Independent Innovation Demonstration Zone (NIDZ) pilot policy on provincial-level innovation capability. In applying the DML model, this study accounts for the characteristics of panel data and eliminates the influence of confounding variables, along with individual and time fixed effects. Multiple robustness tests confirm that the NIDZ policy generates a significant short-term positive impact on provincial innovation capacity, which also exhibits strong persistence. Regional heterogeneity analysis indicates that the average policy effect is largest in the eastern region, although the inter-provincial variation in effects is also relatively greater. The policy effect in the western region is significantly positive and, comparatively, inter-provincial variation is smaller. Conversely, the short-term policy effect in the central region is not significant. An economic interpretation of the plausibility of these research findings is provided. |
Author | Zhu, Meihong |
Author_xml | – sequence: 1 givenname: Meihong surname: Zhu fullname: Zhu, Meihong email: zhumh1027@126.com organization: Capital University of Economics and Business, 121 Zhangjialukou, Fengtai District, Beijing, 100070, China |
BookMark | eNp9UMtuwjAQtCoqlVK-oBf_QFI7IYlz6KGiLyTUcqCXXiyz3gijYEd2hMStv9Hf65fUQA-cOofdGa1mNZprMrDOIiG3nKWc8fJuk3beQUgzlhUpEymrswsy5KKqElawenDGr8g4hA2LyIWoeTUk3XKNdLbtFPTUNXS6Nlb9fH0H-qZ646xq6cxq7DAO20du3e54oI-4dTb0_qQ-YyS6cK2BPY1y4d3OWDCqTea4w_bMeEMuG9UGHP_tEfl4flpOX5P5-8ts-jBPgE_yLCkAVzrnqJkQumzgELjIVF0UoIWoJlhVelWCUqwSijW5KhUDoScRRV6uIB-R_PQXvAvBYyM7b7bK7yVn8tCb3Mhjb_LQm2RCxt6i6_7kwhhtZ9DLAAYtoDYeoZfamX_9vyaIfFE |
Cites_doi | 10.1111/ectj.12097 10.1073/pnas.1510489113 10.1093/ectj/utac018 10.1080/01621459.2017.1319839 10.3982/ECTA18515 10.3982/QE1670 10.1093/ectj/utac003 10.1093/ectj/utaf011 10.1214/18-AOS1709 10.1093/ectj/utaa001 10.1080/07350015.2021.1895815 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2025.08.092 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 738 |
ExternalDocumentID | 10_1016_j_procs_2025_08_092 S1877050925024020 |
GroupedDBID | --K 0R~ 1B1 457 5VS 6I. 71M AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO AAYWO ABMAC ABWVN ACGFS ACRPL ACVFH ADBBV ADCNI ADEZE ADNMO ADVLN AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E O-L O9- OK1 P2P ROL SES SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c1432-5cebd31ed088d6fc038852a955cd8874e77db6caa078a0f3a6a0c8d4444536bc3 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Wed Aug 27 16:30:30 EDT 2025 Sat Aug 30 17:14:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | National Independent Innovation Demonstration Zone Heterogeneity Effect Double Machine Learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1432-5cebd31ed088d6fc038852a955cd8874e77db6caa078a0f3a6a0c8d4444536bc3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050925024020 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2025_08_092 elsevier_sciencedirect_doi_10_1016_j_procs_2025_08_092 |
PublicationCentury | 2000 |
PublicationDate | 2025 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Athey, Imbens (bib4) 2016; 113 Chernozhukov, Chetverikov, Demirer (bib8) 2018; 21 Clarke, P. S., & Annalivia, P. (2025) “Double Machine Learning for Static Panel Models with Fixed Effects.” Wang, Li, Chen (bib1) 2019; 10 Lechner, M. & Mareckova, J. (2022) “Modified Causal Forest.” arXiv preprint arXiv:2209.03744. Chiang, Kato, Ma, Sasaki (bib11) 2022; 40 Farbmacher, Huber, Lafférs (bib10) 2022; 25 Bia, M., Huber, M., & Laff´ers, L. (2023) “Double Machine Learning for Sample Selection Models.” J Athey, Tibshirani, Wager (bib6) 2019; 47 25 (3),628-648. Su, Wang (bib3) 2024; 43 Klosin, S., &Vilgalys, M. (2023) “Estimating Continuous Treatment Effects in Panel Data Using Machine Learning with an Agricultural Application.” arXiv preprint arXiv:2207.08789. Second version; last revised 13 Sep 2023. . Chernozhukov, Newey, Singh (bib9) 2022; 90 1-12. Wager, Athey (bib5) 2018; 113 Chang (bib14) 2020; 23 Ma, Fan (bib2) 2022; 39 Bodory H.,Huber M.,& Lafférs, L. (2022) “Evaluating (Weighted) Dynamic Treatment Effects by Double Machine Learning.” Semenova, Goldman, Chernozhukov, Taddy (bib16) 2023; 14 doi 10.1016/j.procs.2025.08.092_bib7 Su (10.1016/j.procs.2025.08.092_bib3) 2024; 43 Chernozhukov (10.1016/j.procs.2025.08.092_bib9) 2022; 90 10.1016/j.procs.2025.08.092_bib17 Semenova (10.1016/j.procs.2025.08.092_bib16) 2023; 14 Chernozhukov (10.1016/j.procs.2025.08.092_bib8) 2018; 21 Chang (10.1016/j.procs.2025.08.092_bib14) 2020; 23 Ma (10.1016/j.procs.2025.08.092_bib2) 2022; 39 Farbmacher (10.1016/j.procs.2025.08.092_bib10) 2022; 25 Athey (10.1016/j.procs.2025.08.092_bib6) 2019; 47 10.1016/j.procs.2025.08.092_bib15 10.1016/j.procs.2025.08.092_bib13 Athey (10.1016/j.procs.2025.08.092_bib4) 2016; 113 10.1016/j.procs.2025.08.092_bib12 Wager (10.1016/j.procs.2025.08.092_bib5) 2018; 113 Chiang (10.1016/j.procs.2025.08.092_bib11) 2022; 40 Wang (10.1016/j.procs.2025.08.092_bib1) 2019; 10 |
References_xml | – volume: 39 start-page: 23 year: 2022 end-page: 33 ident: bib2 article-title: “Evaluation of Enterprise Transformation and Upgrading in National Independent Innovation Demonstration Zones Based on Research Consortia: An Empirical Analysis of 1,827 Listed Companies from 2016 to 2020.” publication-title: Science and Technology Progress and Policy – volume: 10 start-page: 22 year: 2019 end-page: 39 ident: bib1 article-title: “Effectiveness Evaluation of the Policy of “National Independent Innovation Demonstration Zone”—Empirical Evidences from Quasi-natural Experiments” publication-title: The Journal of Quantitative Economics – reference: 25 (3),628-648. – volume: 43 start-page: 73 year: 2024 end-page: 81 ident: bib3 article-title: “The Impact of National Independent Innovation Demonstration Zones on Urban Green Technology Innovation: An empirical Study Based on the Difference-In-Differences Method." publication-title: Industrial Technology & Economics – reference: Klosin, S., &Vilgalys, M. (2023) “Estimating Continuous Treatment Effects in Panel Data Using Machine Learning with an Agricultural Application.” arXiv preprint arXiv:2207.08789. Second version; last revised 13 Sep 2023. – volume: 113 start-page: 7353 year: 2016 end-page: 7360 ident: bib4 article-title: “Recursive Partitioning for Heterogeneous Causal Effects.” publication-title: Proceedings of the National Academy of Sciences – volume: 40 start-page: 1046 year: 2022 end-page: 1056 ident: bib11 article-title: “Multiway Cluster Robust Double/Debiased Machine Learning.” publication-title: Journal of Business & Economic Statistics – reference: doi: – volume: 14 start-page: 471 year: 2023 end-page: 510 ident: bib16 article-title: “Inference on Heterogeneous Treatment Effects in High-Dimensional Dynamic Panels under Weak Dependence.” publication-title: Quantitative Economics – reference: . – reference: 1-12. – reference: Clarke, P. S., & Annalivia, P. (2025) “Double Machine Learning for Static Panel Models with Fixed Effects.” – reference: Bodory H.,Huber M.,& Lafférs, L. (2022) “Evaluating (Weighted) Dynamic Treatment Effects by Double Machine Learning.” – reference: Bia, M., Huber, M., & Laff´ers, L. (2023) “Double Machine Learning for Sample Selection Models.” J – volume: 47 start-page: 1148 year: 2019 end-page: 1178 ident: bib6 article-title: “Generalized Random Forests.” publication-title: The Annals of Statistics – volume: 25 start-page: 277 year: 2022 end-page: 300 ident: bib10 article-title: “Causal Mediation Analysis with Double Machine Learning.” publication-title: Econometrics Journal – volume: 113 start-page: 1228 year: 2018 end-page: 1242 ident: bib5 article-title: “Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests.” publication-title: Journal of the American Statistical Association – reference: Lechner, M. & Mareckova, J. (2022) “Modified Causal Forest.” arXiv preprint arXiv:2209.03744. – volume: 21 start-page: C1 year: 2018 end-page: C68 ident: bib8 article-title: “Double/Debiased Machine Learning for Treatment and Structural Parameters.” publication-title: The Econometrics Journal – volume: 90 start-page: 967 year: 2022 end-page: 1027 ident: bib9 article-title: “Automatic Debiased Machine Learning of Causal and Structural Effects.” publication-title: Econometrica – volume: 23 start-page: 177 year: 2020 end-page: 191 ident: bib14 article-title: “Double/Debiased Machine Learning for Difference-In-Differences Models.” publication-title: The Econometrics Journal – volume: 43 start-page: 73 issue: 1 year: 2024 ident: 10.1016/j.procs.2025.08.092_bib3 article-title: “The Impact of National Independent Innovation Demonstration Zones on Urban Green Technology Innovation: An empirical Study Based on the Difference-In-Differences Method." publication-title: Industrial Technology & Economics – volume: 21 start-page: C1 issue: 1 year: 2018 ident: 10.1016/j.procs.2025.08.092_bib8 article-title: “Double/Debiased Machine Learning for Treatment and Structural Parameters.” publication-title: The Econometrics Journal doi: 10.1111/ectj.12097 – ident: 10.1016/j.procs.2025.08.092_bib15 – volume: 113 start-page: 7353 issue: 27 year: 2016 ident: 10.1016/j.procs.2025.08.092_bib4 article-title: “Recursive Partitioning for Heterogeneous Causal Effects.” publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1510489113 – ident: 10.1016/j.procs.2025.08.092_bib12 doi: 10.1093/ectj/utac018 – volume: 113 start-page: 1228 issue: 523 year: 2018 ident: 10.1016/j.procs.2025.08.092_bib5 article-title: “Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests.” publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2017.1319839 – ident: 10.1016/j.procs.2025.08.092_bib13 – volume: 90 start-page: 967 issue: 3 year: 2022 ident: 10.1016/j.procs.2025.08.092_bib9 article-title: “Automatic Debiased Machine Learning of Causal and Structural Effects.” publication-title: Econometrica doi: 10.3982/ECTA18515 – volume: 10 start-page: 22 issue: 04 year: 2019 ident: 10.1016/j.procs.2025.08.092_bib1 article-title: “Effectiveness Evaluation of the Policy of “National Independent Innovation Demonstration Zone”—Empirical Evidences from Quasi-natural Experiments” publication-title: The Journal of Quantitative Economics – volume: 14 start-page: 471 issue: 2 year: 2023 ident: 10.1016/j.procs.2025.08.092_bib16 article-title: “Inference on Heterogeneous Treatment Effects in High-Dimensional Dynamic Panels under Weak Dependence.” publication-title: Quantitative Economics doi: 10.3982/QE1670 – volume: 25 start-page: 277 issue: 2 year: 2022 ident: 10.1016/j.procs.2025.08.092_bib10 article-title: “Causal Mediation Analysis with Double Machine Learning.” publication-title: Econometrics Journal doi: 10.1093/ectj/utac003 – ident: 10.1016/j.procs.2025.08.092_bib17 doi: 10.1093/ectj/utaf011 – volume: 39 start-page: 23 issue: 14 year: 2022 ident: 10.1016/j.procs.2025.08.092_bib2 article-title: “Evaluation of Enterprise Transformation and Upgrading in National Independent Innovation Demonstration Zones Based on Research Consortia: An Empirical Analysis of 1,827 Listed Companies from 2016 to 2020.” publication-title: Science and Technology Progress and Policy – ident: 10.1016/j.procs.2025.08.092_bib7 – volume: 47 start-page: 1148 issue: 2 year: 2019 ident: 10.1016/j.procs.2025.08.092_bib6 article-title: “Generalized Random Forests.” publication-title: The Annals of Statistics doi: 10.1214/18-AOS1709 – volume: 23 start-page: 177 issue: 2 year: 2020 ident: 10.1016/j.procs.2025.08.092_bib14 article-title: “Double/Debiased Machine Learning for Difference-In-Differences Models.” publication-title: The Econometrics Journal doi: 10.1093/ectj/utaa001 – volume: 40 start-page: 1046 issue: 3 year: 2022 ident: 10.1016/j.procs.2025.08.092_bib11 article-title: “Multiway Cluster Robust Double/Debiased Machine Learning.” publication-title: Journal of Business & Economic Statistics doi: 10.1080/07350015.2021.1895815 |
SSID | ssj0000388917 |
Score | 2.3419628 |
Snippet | Based on panel data encompassing 25 provinces over a 19-year period from 2005 to 2023 and employing the Double/Debiased Machine Learning (DML) framework, this... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 731 |
SubjectTerms | Double Machine Learning Effect Heterogeneity National Independent Innovation Demonstration Zone |
Title | The Impact of China’s National Independent Innovation Demonstration Zone Policy on Provincial-Level Innovation |
URI | https://dx.doi.org/10.1016/j.procs.2025.08.092 |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihL5QNHrCbxlhxLoWopIARUVFwix3akImgrKHd-g9_jS_A4SVUkxIGc4igjWWNntnjeQ-iYWgE4YyHJeRIQphQnGc0NSbQVIpEh4wE0Cl9di96QXYz4qIY6VS8MHKssbX9h0721Lp-0Sm22ZuNx6y6MpQT0EufE4RcB5O2Uxb6Jb3S6qLMA2kniiXfhfQICFfiQP-YFfgJguyPuoTyT6HcHteR0uhtorYwWcbuY0Caq2ckWWq-YGHD5YW6jmVtt3PcNj3iaY0-K_fXx-YZL2Otn3F_Q3c7dfcWEis_sCwSIxTbAj9OJxQVSMHbDG19ugJo6uYSzRUuCO2jYPb_v9EjJpUC0i4hcvqltZmhojbMqRuQa1MIjlXAAB4gls1KaTGilXMiggpwqoQIdG-YuTkWm6S6qT9wk9hA2UZS5PMhql6oxEwex5lZb6EnNKZMxbaCTSoHprIDMSKuzZE-p13cK-k6B_zKJGkhUSk5_rHzqjPpfgvv_FTxAqzAqCimHqD5_fbdHLrSYZ0200h7cPgyafg99A4Dy0Ag |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qPejFt_h2D3ozNN1kN8nBg1pLo7UIKhQvMdlsQNG22Ip482_4O_xH_hJnNokoiAehOeXBLsNkMq_MfAOw42hJOGN1KxOBbblxLKzEyVIrUFrKwKu7wqZG4bOObF25J13RrcB72QtDZZWF7s91utHWxZ1awc3a4Pa2dlH3PY_QS9CI0y8Cu6isPNUvzxi3DffDBr7kXc6bx5dHLasYLWApdBAw_FI6SZ26TvEjS2WmCBNF8DgQ1Cvve672vDSRKo7RgsZ25sQytpWfungIRybKwX0nYBK9D4-0Qdg9_Ers0FaBmfRLBFpEYYl2ZOrKyDARTjgXBjs04L9bxG9WrjkHM4V7yg5yDsxDRfcWYLYc_cAKTbAIAxQvFpoOS9bPmJnC_fH6NmQFzvY9C7_m647wvBy9yhr6gTzSXO7Ydb-nWQ5NzPDy3OQ3KIlvtamY6dvCJbgaC4eXodpDIlaApZwnGHhphbGhm_q2r4RWmppgM8f1fGcV9koGRoMcoyMqi9fuIsPviPgd0cDNgK-CLJkc_RC1CK3IXwvX_rtwG6Zal2ftqB12Ttdhmp7kWZwNqI4en_Qm-jWjZMvIEYObcQvuJ-2jC6o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+China%E2%80%99s+National+Independent+Innovation+Demonstration+Zone+Policy+on+Provincial-Level+Innovation&rft.jtitle=Procedia+computer+science&rft.au=Zhu%2C+Meihong&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=266&rft.spage=731&rft.epage=738&rft_id=info:doi/10.1016%2Fj.procs.2025.08.092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_08_092 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |