The Impact of China’s National Independent Innovation Demonstration Zone Policy on Provincial-Level Innovation

Based on panel data encompassing 25 provinces over a 19-year period from 2005 to 2023 and employing the Double/Debiased Machine Learning (DML) framework, this work examines the impact of China’s National Independent Innovation Demonstration Zone (NIDZ) pilot policy on provincial-level innovation cap...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 266; pp. 731 - 738
Main Author Zhu, Meihong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Based on panel data encompassing 25 provinces over a 19-year period from 2005 to 2023 and employing the Double/Debiased Machine Learning (DML) framework, this work examines the impact of China’s National Independent Innovation Demonstration Zone (NIDZ) pilot policy on provincial-level innovation capability. In applying the DML model, this study accounts for the characteristics of panel data and eliminates the influence of confounding variables, along with individual and time fixed effects. Multiple robustness tests confirm that the NIDZ policy generates a significant short-term positive impact on provincial innovation capacity, which also exhibits strong persistence. Regional heterogeneity analysis indicates that the average policy effect is largest in the eastern region, although the inter-provincial variation in effects is also relatively greater. The policy effect in the western region is significantly positive and, comparatively, inter-provincial variation is smaller. Conversely, the short-term policy effect in the central region is not significant. An economic interpretation of the plausibility of these research findings is provided.
AbstractList Based on panel data encompassing 25 provinces over a 19-year period from 2005 to 2023 and employing the Double/Debiased Machine Learning (DML) framework, this work examines the impact of China’s National Independent Innovation Demonstration Zone (NIDZ) pilot policy on provincial-level innovation capability. In applying the DML model, this study accounts for the characteristics of panel data and eliminates the influence of confounding variables, along with individual and time fixed effects. Multiple robustness tests confirm that the NIDZ policy generates a significant short-term positive impact on provincial innovation capacity, which also exhibits strong persistence. Regional heterogeneity analysis indicates that the average policy effect is largest in the eastern region, although the inter-provincial variation in effects is also relatively greater. The policy effect in the western region is significantly positive and, comparatively, inter-provincial variation is smaller. Conversely, the short-term policy effect in the central region is not significant. An economic interpretation of the plausibility of these research findings is provided.
Author Zhu, Meihong
Author_xml – sequence: 1
  givenname: Meihong
  surname: Zhu
  fullname: Zhu, Meihong
  email: zhumh1027@126.com
  organization: Capital University of Economics and Business, 121 Zhangjialukou, Fengtai District, Beijing, 100070, China
BookMark eNp9UMtuwjAQtCoqlVK-oBf_QFI7IYlz6KGiLyTUcqCXXiyz3gijYEd2hMStv9Hf65fUQA-cOofdGa1mNZprMrDOIiG3nKWc8fJuk3beQUgzlhUpEymrswsy5KKqElawenDGr8g4hA2LyIWoeTUk3XKNdLbtFPTUNXS6Nlb9fH0H-qZ646xq6cxq7DAO20du3e54oI-4dTb0_qQ-YyS6cK2BPY1y4d3OWDCqTea4w_bMeEMuG9UGHP_tEfl4flpOX5P5-8ts-jBPgE_yLCkAVzrnqJkQumzgELjIVF0UoIWoJlhVelWCUqwSijW5KhUDoScRRV6uIB-R_PQXvAvBYyM7b7bK7yVn8tCb3Mhjb_LQm2RCxt6i6_7kwhhtZ9DLAAYtoDYeoZfamX_9vyaIfFE
Cites_doi 10.1111/ectj.12097
10.1073/pnas.1510489113
10.1093/ectj/utac018
10.1080/01621459.2017.1319839
10.3982/ECTA18515
10.3982/QE1670
10.1093/ectj/utac003
10.1093/ectj/utaf011
10.1214/18-AOS1709
10.1093/ectj/utaa001
10.1080/07350015.2021.1895815
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.08.092
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 738
ExternalDocumentID 10_1016_j_procs_2025_08_092
S1877050925024020
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
ROL
SES
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c1432-5cebd31ed088d6fc038852a955cd8874e77db6caa078a0f3a6a0c8d4444536bc3
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Wed Aug 27 16:30:30 EDT 2025
Sat Aug 30 17:14:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords National Independent Innovation Demonstration Zone
Heterogeneity
Effect
Double Machine Learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1432-5cebd31ed088d6fc038852a955cd8874e77db6caa078a0f3a6a0c8d4444536bc3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050925024020
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_procs_2025_08_092
elsevier_sciencedirect_doi_10_1016_j_procs_2025_08_092
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Athey, Imbens (bib4) 2016; 113
Chernozhukov, Chetverikov, Demirer (bib8) 2018; 21
Clarke, P. S., & Annalivia, P. (2025) “Double Machine Learning for Static Panel Models with Fixed Effects.”
Wang, Li, Chen (bib1) 2019; 10
Lechner, M. & Mareckova, J. (2022) “Modified Causal Forest.” arXiv preprint arXiv:2209.03744.
Chiang, Kato, Ma, Sasaki (bib11) 2022; 40
Farbmacher, Huber, Lafférs (bib10) 2022; 25
Bia, M., Huber, M., & Laff´ers, L. (2023) “Double Machine Learning for Sample Selection Models.” J
Athey, Tibshirani, Wager (bib6) 2019; 47
25 (3),628-648.
Su, Wang (bib3) 2024; 43
Klosin, S., &Vilgalys, M. (2023) “Estimating Continuous Treatment Effects in Panel Data Using Machine Learning with an Agricultural Application.” arXiv preprint arXiv:2207.08789. Second version; last revised 13 Sep 2023.
.
Chernozhukov, Newey, Singh (bib9) 2022; 90
1-12.
Wager, Athey (bib5) 2018; 113
Chang (bib14) 2020; 23
Ma, Fan (bib2) 2022; 39
Bodory H.,Huber M.,& Lafférs, L. (2022) “Evaluating (Weighted) Dynamic Treatment Effects by Double Machine Learning.”
Semenova, Goldman, Chernozhukov, Taddy (bib16) 2023; 14
doi
10.1016/j.procs.2025.08.092_bib7
Su (10.1016/j.procs.2025.08.092_bib3) 2024; 43
Chernozhukov (10.1016/j.procs.2025.08.092_bib9) 2022; 90
10.1016/j.procs.2025.08.092_bib17
Semenova (10.1016/j.procs.2025.08.092_bib16) 2023; 14
Chernozhukov (10.1016/j.procs.2025.08.092_bib8) 2018; 21
Chang (10.1016/j.procs.2025.08.092_bib14) 2020; 23
Ma (10.1016/j.procs.2025.08.092_bib2) 2022; 39
Farbmacher (10.1016/j.procs.2025.08.092_bib10) 2022; 25
Athey (10.1016/j.procs.2025.08.092_bib6) 2019; 47
10.1016/j.procs.2025.08.092_bib15
10.1016/j.procs.2025.08.092_bib13
Athey (10.1016/j.procs.2025.08.092_bib4) 2016; 113
10.1016/j.procs.2025.08.092_bib12
Wager (10.1016/j.procs.2025.08.092_bib5) 2018; 113
Chiang (10.1016/j.procs.2025.08.092_bib11) 2022; 40
Wang (10.1016/j.procs.2025.08.092_bib1) 2019; 10
References_xml – volume: 39
  start-page: 23
  year: 2022
  end-page: 33
  ident: bib2
  article-title: “Evaluation of Enterprise Transformation and Upgrading in National Independent Innovation Demonstration Zones Based on Research Consortia: An Empirical Analysis of 1,827 Listed Companies from 2016 to 2020.”
  publication-title: Science and Technology Progress and Policy
– volume: 10
  start-page: 22
  year: 2019
  end-page: 39
  ident: bib1
  article-title: “Effectiveness Evaluation of the Policy of “National Independent Innovation Demonstration Zone”—Empirical Evidences from Quasi-natural Experiments”
  publication-title: The Journal of Quantitative Economics
– reference: 25 (3),628-648.
– volume: 43
  start-page: 73
  year: 2024
  end-page: 81
  ident: bib3
  article-title: “The Impact of National Independent Innovation Demonstration Zones on Urban Green Technology Innovation: An empirical Study Based on the Difference-In-Differences Method."
  publication-title: Industrial Technology & Economics
– reference: Klosin, S., &Vilgalys, M. (2023) “Estimating Continuous Treatment Effects in Panel Data Using Machine Learning with an Agricultural Application.” arXiv preprint arXiv:2207.08789. Second version; last revised 13 Sep 2023.
– volume: 113
  start-page: 7353
  year: 2016
  end-page: 7360
  ident: bib4
  article-title: “Recursive Partitioning for Heterogeneous Causal Effects.”
  publication-title: Proceedings of the National Academy of Sciences
– volume: 40
  start-page: 1046
  year: 2022
  end-page: 1056
  ident: bib11
  article-title: “Multiway Cluster Robust Double/Debiased Machine Learning.”
  publication-title: Journal of Business & Economic Statistics
– reference: doi:
– volume: 14
  start-page: 471
  year: 2023
  end-page: 510
  ident: bib16
  article-title: “Inference on Heterogeneous Treatment Effects in High-Dimensional Dynamic Panels under Weak Dependence.”
  publication-title: Quantitative Economics
– reference: .
– reference: 1-12.
– reference: Clarke, P. S., & Annalivia, P. (2025) “Double Machine Learning for Static Panel Models with Fixed Effects.”
– reference: Bodory H.,Huber M.,& Lafférs, L. (2022) “Evaluating (Weighted) Dynamic Treatment Effects by Double Machine Learning.”
– reference: Bia, M., Huber, M., & Laff´ers, L. (2023) “Double Machine Learning for Sample Selection Models.” J
– volume: 47
  start-page: 1148
  year: 2019
  end-page: 1178
  ident: bib6
  article-title: “Generalized Random Forests.”
  publication-title: The Annals of Statistics
– volume: 25
  start-page: 277
  year: 2022
  end-page: 300
  ident: bib10
  article-title: “Causal Mediation Analysis with Double Machine Learning.”
  publication-title: Econometrics Journal
– volume: 113
  start-page: 1228
  year: 2018
  end-page: 1242
  ident: bib5
  article-title: “Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests.”
  publication-title: Journal of the American Statistical Association
– reference: Lechner, M. & Mareckova, J. (2022) “Modified Causal Forest.” arXiv preprint arXiv:2209.03744.
– volume: 21
  start-page: C1
  year: 2018
  end-page: C68
  ident: bib8
  article-title: “Double/Debiased Machine Learning for Treatment and Structural Parameters.”
  publication-title: The Econometrics Journal
– volume: 90
  start-page: 967
  year: 2022
  end-page: 1027
  ident: bib9
  article-title: “Automatic Debiased Machine Learning of Causal and Structural Effects.”
  publication-title: Econometrica
– volume: 23
  start-page: 177
  year: 2020
  end-page: 191
  ident: bib14
  article-title: “Double/Debiased Machine Learning for Difference-In-Differences Models.”
  publication-title: The Econometrics Journal
– volume: 43
  start-page: 73
  issue: 1
  year: 2024
  ident: 10.1016/j.procs.2025.08.092_bib3
  article-title: “The Impact of National Independent Innovation Demonstration Zones on Urban Green Technology Innovation: An empirical Study Based on the Difference-In-Differences Method."
  publication-title: Industrial Technology & Economics
– volume: 21
  start-page: C1
  issue: 1
  year: 2018
  ident: 10.1016/j.procs.2025.08.092_bib8
  article-title: “Double/Debiased Machine Learning for Treatment and Structural Parameters.”
  publication-title: The Econometrics Journal
  doi: 10.1111/ectj.12097
– ident: 10.1016/j.procs.2025.08.092_bib15
– volume: 113
  start-page: 7353
  issue: 27
  year: 2016
  ident: 10.1016/j.procs.2025.08.092_bib4
  article-title: “Recursive Partitioning for Heterogeneous Causal Effects.”
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1510489113
– ident: 10.1016/j.procs.2025.08.092_bib12
  doi: 10.1093/ectj/utac018
– volume: 113
  start-page: 1228
  issue: 523
  year: 2018
  ident: 10.1016/j.procs.2025.08.092_bib5
  article-title: “Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests.”
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2017.1319839
– ident: 10.1016/j.procs.2025.08.092_bib13
– volume: 90
  start-page: 967
  issue: 3
  year: 2022
  ident: 10.1016/j.procs.2025.08.092_bib9
  article-title: “Automatic Debiased Machine Learning of Causal and Structural Effects.”
  publication-title: Econometrica
  doi: 10.3982/ECTA18515
– volume: 10
  start-page: 22
  issue: 04
  year: 2019
  ident: 10.1016/j.procs.2025.08.092_bib1
  article-title: “Effectiveness Evaluation of the Policy of “National Independent Innovation Demonstration Zone”—Empirical Evidences from Quasi-natural Experiments”
  publication-title: The Journal of Quantitative Economics
– volume: 14
  start-page: 471
  issue: 2
  year: 2023
  ident: 10.1016/j.procs.2025.08.092_bib16
  article-title: “Inference on Heterogeneous Treatment Effects in High-Dimensional Dynamic Panels under Weak Dependence.”
  publication-title: Quantitative Economics
  doi: 10.3982/QE1670
– volume: 25
  start-page: 277
  issue: 2
  year: 2022
  ident: 10.1016/j.procs.2025.08.092_bib10
  article-title: “Causal Mediation Analysis with Double Machine Learning.”
  publication-title: Econometrics Journal
  doi: 10.1093/ectj/utac003
– ident: 10.1016/j.procs.2025.08.092_bib17
  doi: 10.1093/ectj/utaf011
– volume: 39
  start-page: 23
  issue: 14
  year: 2022
  ident: 10.1016/j.procs.2025.08.092_bib2
  article-title: “Evaluation of Enterprise Transformation and Upgrading in National Independent Innovation Demonstration Zones Based on Research Consortia: An Empirical Analysis of 1,827 Listed Companies from 2016 to 2020.”
  publication-title: Science and Technology Progress and Policy
– ident: 10.1016/j.procs.2025.08.092_bib7
– volume: 47
  start-page: 1148
  issue: 2
  year: 2019
  ident: 10.1016/j.procs.2025.08.092_bib6
  article-title: “Generalized Random Forests.”
  publication-title: The Annals of Statistics
  doi: 10.1214/18-AOS1709
– volume: 23
  start-page: 177
  issue: 2
  year: 2020
  ident: 10.1016/j.procs.2025.08.092_bib14
  article-title: “Double/Debiased Machine Learning for Difference-In-Differences Models.”
  publication-title: The Econometrics Journal
  doi: 10.1093/ectj/utaa001
– volume: 40
  start-page: 1046
  issue: 3
  year: 2022
  ident: 10.1016/j.procs.2025.08.092_bib11
  article-title: “Multiway Cluster Robust Double/Debiased Machine Learning.”
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.2021.1895815
SSID ssj0000388917
Score 2.3419628
Snippet Based on panel data encompassing 25 provinces over a 19-year period from 2005 to 2023 and employing the Double/Debiased Machine Learning (DML) framework, this...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 731
SubjectTerms Double Machine Learning
Effect
Heterogeneity
National Independent Innovation Demonstration Zone
Title The Impact of China’s National Independent Innovation Demonstration Zone Policy on Provincial-Level Innovation
URI https://dx.doi.org/10.1016/j.procs.2025.08.092
Volume 266
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihL5QNHrCbxlhxLoWopIARUVFwix3akImgrKHd-g9_jS_A4SVUkxIGc4igjWWNntnjeQ-iYWgE4YyHJeRIQphQnGc0NSbQVIpEh4wE0Cl9di96QXYz4qIY6VS8MHKssbX9h0721Lp-0Sm22ZuNx6y6MpQT0EufE4RcB5O2Uxb6Jb3S6qLMA2kniiXfhfQICFfiQP-YFfgJguyPuoTyT6HcHteR0uhtorYwWcbuY0Caq2ckWWq-YGHD5YW6jmVtt3PcNj3iaY0-K_fXx-YZL2Otn3F_Q3c7dfcWEis_sCwSIxTbAj9OJxQVSMHbDG19ugJo6uYSzRUuCO2jYPb_v9EjJpUC0i4hcvqltZmhojbMqRuQa1MIjlXAAB4gls1KaTGilXMiggpwqoQIdG-YuTkWm6S6qT9wk9hA2UZS5PMhql6oxEwex5lZb6EnNKZMxbaCTSoHprIDMSKuzZE-p13cK-k6B_zKJGkhUSk5_rHzqjPpfgvv_FTxAqzAqCimHqD5_fbdHLrSYZ0200h7cPgyafg99A4Dy0Ag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qPejFt_h2D3ozNN1kN8nBg1pLo7UIKhQvMdlsQNG22Ip482_4O_xH_hJnNokoiAehOeXBLsNkMq_MfAOw42hJOGN1KxOBbblxLKzEyVIrUFrKwKu7wqZG4bOObF25J13RrcB72QtDZZWF7s91utHWxZ1awc3a4Pa2dlH3PY_QS9CI0y8Cu6isPNUvzxi3DffDBr7kXc6bx5dHLasYLWApdBAw_FI6SZ26TvEjS2WmCBNF8DgQ1Cvve672vDSRKo7RgsZ25sQytpWfungIRybKwX0nYBK9D4-0Qdg9_Ers0FaBmfRLBFpEYYl2ZOrKyDARTjgXBjs04L9bxG9WrjkHM4V7yg5yDsxDRfcWYLYc_cAKTbAIAxQvFpoOS9bPmJnC_fH6NmQFzvY9C7_m647wvBy9yhr6gTzSXO7Ydb-nWQ5NzPDy3OQ3KIlvtamY6dvCJbgaC4eXodpDIlaApZwnGHhphbGhm_q2r4RWmppgM8f1fGcV9koGRoMcoyMqi9fuIsPviPgd0cDNgK-CLJkc_RC1CK3IXwvX_rtwG6Zal2ftqB12Ttdhmp7kWZwNqI4en_Qm-jWjZMvIEYObcQvuJ-2jC6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+China%E2%80%99s+National+Independent+Innovation+Demonstration+Zone+Policy+on+Provincial-Level+Innovation&rft.jtitle=Procedia+computer+science&rft.au=Zhu%2C+Meihong&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=266&rft.spage=731&rft.epage=738&rft_id=info:doi/10.1016%2Fj.procs.2025.08.092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_08_092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon