An Improved Pre-Exploitation Detection Model for Android Malware Attacks
This paper presents an innovative approach to the early detection of Android malware, focusing on a dynamic pre-exploitation phase identification system. Traditional methods often rely on static thresholding to delineate the pre-exploitation phase of malware attacks, which can be insufficient due to...
Saved in:
Published in | Engineering, technology & applied science research Vol. 14; no. 5; pp. 16252 - 16259 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
09.10.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents an innovative approach to the early detection of Android malware, focusing on a dynamic pre-exploitation phase identification system. Traditional methods often rely on static thresholding to delineate the pre-exploitation phase of malware attacks, which can be insufficient due to the diverse behaviors exhibited by various malware families. This study introduces the Dynamic Pre-exploitation Boundary Definition and Feature Extraction (DPED-FE) system to address these limitations, which utilizes entropy for change detection, thus enabling more accurate and timely identification of potential threats before they reach the exploitation phase. A comprehensive analysis of the system's methodology is provided, including the use of vector space models with Kullback-Leibler divergence for dynamic boundary detection and advanced feature extraction techniques such as Weighted Term Frequency-Inverse Document Frequency (WF-IDF) to enhance its predictive capabilities. The experimental results demonstrate the superior performance of DPED-FE compared to traditional methods, highlighting its effectiveness in real-world scenarios. |
---|---|
AbstractList | This paper presents an innovative approach to the early detection of Android malware, focusing on a dynamic pre-exploitation phase identification system. Traditional methods often rely on static thresholding to delineate the pre-exploitation phase of malware attacks, which can be insufficient due to the diverse behaviors exhibited by various malware families. This study introduces the Dynamic Pre-exploitation Boundary Definition and Feature Extraction (DPED-FE) system to address these limitations, which utilizes entropy for change detection, thus enabling more accurate and timely identification of potential threats before they reach the exploitation phase. A comprehensive analysis of the system's methodology is provided, including the use of vector space models with Kullback-Leibler divergence for dynamic boundary detection and advanced feature extraction techniques such as Weighted Term Frequency-Inverse Document Frequency (WF-IDF) to enhance its predictive capabilities. The experimental results demonstrate the superior performance of DPED-FE compared to traditional methods, highlighting its effectiveness in real-world scenarios. |
Author | Al Besher, Hamad Saleh Bin Rohani, Mohd Fo’ad Saleh Al-rimy, Bander Ali |
Author_xml | – sequence: 1 givenname: Hamad Saleh surname: Al Besher fullname: Al Besher, Hamad Saleh – sequence: 2 givenname: Mohd Fo’ad surname: Bin Rohani fullname: Bin Rohani, Mohd Fo’ad – sequence: 3 givenname: Bander Ali surname: Saleh Al-rimy fullname: Saleh Al-rimy, Bander Ali |
BookMark | eNot0DtPwzAUBWALFYlQOvEHvKOUXOfWdsaoFFqpFQwwR37cSIE0juyIx78HCmc5ZzrDd8lmQxiIsWsolqgLjbc0mRSXSko4YxmoSuS6KOWMZUIg5IhaXbBFSq_FT6SWqETGtvXAd8cxhnfy_ClSvvkc-9BNZurCwO9oIndah-Cp522IvB58DJ3nB9N_mEi8nibj3tIVO29Nn2jx33P2cr95Xm_z_ePDbl3vcwdYQu68NxqtEF6g0K0rEFGR0aS0pMoClN62KAWsFFQgvZTW2gpLQStqkaCcs5u_XxdDSpHaZozd0cSvBorm5NCcHJpfh_IbY8tSqQ |
Cites_doi | 10.1016/j.future.2020.10.002 10.1109/NCA.2017.8171377 10.1016/j.cose.2018.05.010 10.3390/computers8040079 10.14209/jcis.2022.7 10.1109/TIFS.2015.2491300 10.36227/techrxiv.13146866.v1 10.1016/j.future.2021.10.029 10.21203/rs.3.rs-4019125/v1 10.1016/j.future.2018.07.052 10.1016/j.jnca.2018.09.013 10.3390/s24061728 10.1145/2396761.2398435 10.1016/j.jisa.2018.02.008 10.37934/araset.39.2.110131 10.1016/j.future.2019.06.005 10.1109/TIFS.2017.2787905 10.1007/978-3-319-94782-2_7 10.1016/j.cose.2017.11.019 10.1016/j.eswa.2018.02.039 10.1109/TR.2004.823851 10.1109/TETC.2017.2756908 10.1145/3180465.3180467 10.1016/j.future.2018.07.045 10.1016/j.knosys.2018.04.033 10.1109/ACCESS.2019.2931136 10.1007/s12652-017-0558-5 10.23919/ICACT.2018.8323682 10.1016/j.comnet.2017.09.003 10.1145/3538969.3544413 10.1109/ACCESS.2020.3012674 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.48084/etasr.7661 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1792-8036 |
EndPage | 16259 |
ExternalDocumentID | 10_48084_etasr_7661 |
GroupedDBID | .4S 5VS AAYXX ADBBV AEGXH ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION EBS EDO EJD ITG ITH KWQ OK1 RNS TUS |
ID | FETCH-LOGICAL-c1431-cdda84b22d2428fc04447ea8e786e9b113dbf4621571916d66bbb9432e5ef4e13 |
ISSN | 2241-4487 |
IngestDate | Tue Jul 01 02:27:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1431-cdda84b22d2428fc04447ea8e786e9b113dbf4621571916d66bbb9432e5ef4e13 |
OpenAccessLink | https://etasr.com/index.php/ETASR/article/download/7661/3966 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_48084_etasr_7661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-09 |
PublicationDateYYYYMMDD | 2024-10-09 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-09 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | Engineering, technology & applied science research |
PublicationYear | 2024 |
References | 235371 235393 235370 235392 235373 235372 235375 235374 235377 235376 235391 235390 235368 235367 235389 235369 235360 235382 235381 235362 235384 235361 235383 235364 235386 235363 235385 235366 235388 235365 235387 235380 235357 235379 235378 235359 235358 |
References_xml | – ident: 235383 doi: 10.1016/j.future.2020.10.002 – ident: 235361 doi: 10.1109/NCA.2017.8171377 – ident: 235378 doi: 10.1016/j.cose.2018.05.010 – ident: 235387 doi: 10.3390/computers8040079 – ident: 235390 doi: 10.14209/jcis.2022.7 – ident: 235379 doi: 10.1109/TIFS.2015.2491300 – ident: 235377 – ident: 235389 doi: 10.36227/techrxiv.13146866.v1 – ident: 235371 – ident: 235363 doi: 10.1016/j.future.2021.10.029 – ident: 235388 doi: 10.21203/rs.3.rs-4019125/v1 – ident: 235393 doi: 10.1016/j.future.2018.07.052 – ident: 235381 doi: 10.1016/j.jnca.2018.09.013 – ident: 235386 doi: 10.3390/s24061728 – ident: 235392 doi: 10.1145/2396761.2398435 – ident: 235368 doi: 10.1016/j.jisa.2018.02.008 – ident: 235385 doi: 10.37934/araset.39.2.110131 – ident: 235382 doi: 10.1016/j.future.2019.06.005 – ident: 235384 – ident: 235359 doi: 10.1109/TIFS.2017.2787905 – ident: 235364 doi: 10.1007/978-3-319-94782-2_7 – ident: 235362 doi: 10.1016/j.cose.2017.11.019 – ident: 235369 doi: 10.1016/j.eswa.2018.02.039 – ident: 235357 doi: 10.1109/TR.2004.823851 – ident: 235365 doi: 10.1109/TETC.2017.2756908 – ident: 235366 doi: 10.1145/3180465.3180467 – ident: 235375 doi: 10.1016/j.future.2018.07.045 – ident: 235372 – ident: 235380 doi: 10.1016/j.knosys.2018.04.033 – ident: 235374 – ident: 235391 doi: 10.1109/ACCESS.2019.2931136 – ident: 235360 doi: 10.1007/s12652-017-0558-5 – ident: 235370 – ident: 235367 doi: 10.23919/ICACT.2018.8323682 – ident: 235358 doi: 10.1016/j.comnet.2017.09.003 – ident: 235376 doi: 10.1145/3538969.3544413 – ident: 235373 doi: 10.1109/ACCESS.2020.3012674 |
SSID | ssj0000686472 ssib044735913 ssib050383323 |
Score | 2.2706137 |
Snippet | This paper presents an innovative approach to the early detection of Android malware, focusing on a dynamic pre-exploitation phase identification system.... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 16252 |
Title | An Improved Pre-Exploitation Detection Model for Android Malware Attacks |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECXcdGmHoJ9o0w9wyGYojShaIkelSGAUSIciAbIZpHhCDDhy4Soo0KG_pD-2dyQlM4GHtItgy6Yg6x6O78537xg7FCQpIkj50RmRSd3YTDWAztBqEqFEAttSoHj-tZxfyi9Xs6vJ5E9StXTb26Pm186-kv-xKp5Du1KX7D9YdrwonsDXaF88ooXx-CAbU0bPJwWAKv4h8wV1UXQbPUkPYQ44zTvzbYq-fHG9pMqK1U8q-ar7nnrs76TntwKF9Pj7MfXuQWIiaR26gaJW0JhTrlfTExiGqc_NjUE6i1vQ-PnJspt-W1-HQVJ4Y9duerYeCi60cWPChxZN61W2Wd6EUdi-CwfPLNM8hZC-4k1v3RlxhQyDwbC9QnC3lUZ_fBwkUEZ_LBPczRLnmmOsJpKdmt7rXduAVMdKEiJ682NzVJVB7v2u2Pa9TXAsTcSgyC9f-MULWvyIPRYYhNB8jPPfp4O3kjS0OfmPl3R1iiKSrcADFGnz03TD4aeHBlF__U_bm0soUcJtLp6x_RiU8Dog7DmbQPeCPU2Q8JLN644PWOP3scZHrHGPNY5Y4xFrPGKNR6y9Ypdnpxef51mcwpE1yKXzrHHOKGmFcMjmVNuQwGAFRkGlStA2zwtnW1kidaww9i9dWVprtSwEzKCVkBev2V637uAN4zk02tIEgxn1wpfSgGmVw4DfSdx4TPGWHQ4PYvE9iK0sdtjj4GFfe8eebHH4nu31m1v4gAyytx-9If8CSeNtaw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Pre-Exploitation+Detection+Model+for+Android+Malware+Attacks&rft.jtitle=Engineering%2C+technology+%26+applied+science+research&rft.au=Al+Besher%2C+Hamad+Saleh&rft.au=Bin+Rohani%2C+Mohd+Fo%E2%80%99ad&rft.au=Saleh+Al-rimy%2C+Bander+Ali&rft.date=2024-10-09&rft.issn=2241-4487&rft.eissn=1792-8036&rft.volume=14&rft.issue=5&rft.spage=16252&rft.epage=16259&rft_id=info:doi/10.48084%2Fetasr.7661&rft.externalDBID=n%2Fa&rft.externalDocID=10_48084_etasr_7661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2241-4487&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2241-4487&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2241-4487&client=summon |