New Form of Newton-Type Inequalities for Multiplicative Conformable Fractional Integrals

In this study, a new Newton-type inequality form for multiplicative convex functions is derived using multiplicative conformable fractional integrals. The developed new form presents an inequality that has not been encountered before in literature. To obtain the main results, an essential identity i...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences and modelling Vol. 8; no. 2; pp. 93 - 111
Main Authors Budak, Hüseyin, Ergün, Büşra Betül
Format Journal Article
LanguageEnglish
Published Mahmut Akyigit 28.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a new Newton-type inequality form for multiplicative convex functions is derived using multiplicative conformable fractional integrals. The developed new form presents an inequality that has not been encountered before in literature. To obtain the main results, an essential identity is first introduced, and this identity is combined with multiplicative conformable fractional integrals to create a new Newton-type inequality. This work not only provides a significant contribution to previous research on multiplicative convex functions but also offers a new perspective on the subject. Future research may aim to explore the application of this form to different fractional integral operators or function types.
AbstractList In this study, a new Newton-type inequality form for multiplicative convex functions is derived using multiplicative conformable fractional integrals. The developed new form presents an inequality that has not been encountered before in literature. To obtain the main results, an essential identity is first introduced, and this identity is combined with multiplicative conformable fractional integrals to create a new Newton-type inequality. This work not only provides a significant contribution to previous research on multiplicative convex functions but also offers a new perspective on the subject. Future research may aim to explore the application of this form to different fractional integral operators or function types.
Author Budak, Hüseyin
Ergün, Büşra Betül
Author_xml – sequence: 1
  givenname: Hüseyin
  orcidid: 0000-0001-8843-955X
  surname: Budak
  fullname: Budak, Hüseyin
– sequence: 2
  givenname: Büşra Betül
  orcidid: 0009-0009-4038-4487
  surname: Ergün
  fullname: Ergün, Büşra Betül
BookMark eNpNkE9LAzEUxINUsNYevecLbM2_TbJHKVYLVS8VvIUkfSkpu5ua3Sr99q61iKcZZng_eHONRm1qAaFbSmacU63udk3XzKhUoqT0Ao2Z5LLQsmKjf_4KTbtuRwhhVcUkkWP0_gJfeJFyg1PAg-9TW6yPe8DLFj4Oto59hA6HlPHzoe7jvo7e9vET8Dy1Q9pYVwNeZOv7mFpbD2c9bLOtuxt0GQaB6Vkn6G3xsJ4_FavXx-X8flV4KjgtxIYHzpxSDoJ3OggvJCNKyYqABB1KMjTgCNl47qT1ILQMABtBS-mryvMJWv5yN8nuzD7HxuajSTaaU5Dy1tjcR1-DGZ7mQpaMeAGCl5UOjjnwJCiltSjdwCp-WT6nrssQ_niUmNPK5mdlc16ZfwNJS3MA
Cites_doi 10.2298/FIL2330133A
10.1016/j.cam.2025.116600
10.1007/s11253-025-02404-4
10.1142/S0218348X25500197
10.1002/mma.10600
10.1016/j.jmaa.2024.128692
10.1080/10511979908965937
10.1016/j.jmaa.2007.03.081
10.3934/math.2023193
10.3390/sym15020460
10.1142/S0218348X20500371
10.1186/s13662-020-02637-6
10.1186/s13660-020-02442-5
10.12691/tjant-9-3-5
10.9734/arjom/2019/v12i330084
10.3390/sym15020451
10.18514/MMN.2020.3129
10.1186/s13660-023-03033-w
10.1216/rmj.2023.53.49
10.1080/0020739790100406
10.1186/s13660-023-02996-0
10.1186/s13661-023-01818-y
10.1090/proc/16292
10.3390/math12111721
10.1186/s13662-017-1306-z
10.1515/9780748631957-013
10.1142/S0218348X25500458
10.3390/fractalfract6030175
10.2298/FIL1609435N
10.3390/sym15040868
10.1007/0-387-31077-0
10.1002/mma.10378
10.1155/2022/6261970
10.22199/issn.0717-6279-4136
10.1142/S0218348X2550032X
10.1186/s13661-025-02026-6
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.33187/jmsm.1674511
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2636-8692
EndPage 111
ExternalDocumentID oai_doaj_org_article_299346520c4e43598fb2bec0f778845b
10_33187_jmsm_1674511
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c1431-4d3f32b77befcb8f4c462077690e6e8f507beeb00dc3b6ace486feed4156c99c3
IEDL.DBID DOA
ISSN 2636-8692
IngestDate Wed Aug 27 01:33:09 EDT 2025
Thu Jul 10 08:45:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1431-4d3f32b77befcb8f4c462077690e6e8f507beeb00dc3b6ace486feed4156c99c3
ORCID 0000-0001-8843-955X
0009-0009-4038-4487
OpenAccessLink https://doaj.org/article/299346520c4e43598fb2bec0f778845b
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_299346520c4e43598fb2bec0f778845b
crossref_primary_10_33187_jmsm_1674511
PublicationCentury 2000
PublicationDate 2025-06-28
PublicationDateYYYYMMDD 2025-06-28
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-28
  day: 28
PublicationDecade 2020
PublicationTitle Journal of mathematical sciences and modelling
PublicationYear 2025
Publisher Mahmut Akyigit
Publisher_xml – name: Mahmut Akyigit
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref48
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref1
– ident: ref3
– ident: ref37
  doi: 10.2298/FIL2330133A
– ident: ref7
– ident: ref40
  doi: 10.1016/j.cam.2025.116600
– ident: ref42
  doi: 10.1007/s11253-025-02404-4
– ident: ref45
– ident: ref29
– ident: ref43
  doi: 10.1142/S0218348X25500197
– ident: ref20
  doi: 10.1002/mma.10600
– ident: ref38
  doi: 10.1016/j.jmaa.2024.128692
– ident: ref22
  doi: 10.1080/10511979908965937
– ident: ref24
  doi: 10.1016/j.jmaa.2007.03.081
– ident: ref27
  doi: 10.3934/math.2023193
– ident: ref31
  doi: 10.3390/sym15020460
– ident: ref12
  doi: 10.1142/S0218348X20500371
– ident: ref18
  doi: 10.1186/s13662-020-02637-6
– ident: ref32
  doi: 10.1186/s13660-020-02442-5
– ident: ref41
  doi: 10.12691/tjant-9-3-5
– ident: ref25
  doi: 10.9734/arjom/2019/v12i330084
– ident: ref30
  doi: 10.3390/sym15020451
– ident: ref36
  doi: 10.18514/MMN.2020.3129
– ident: ref19
  doi: 10.1186/s13660-023-03033-w
– ident: ref4
– ident: ref11
  doi: 10.1216/rmj.2023.53.49
– ident: ref2
– ident: ref6
– ident: ref23
  doi: 10.1080/0020739790100406
– ident: ref13
  doi: 10.1186/s13660-023-02996-0
– ident: ref15
  doi: 10.1186/s13661-023-01818-y
– ident: ref34
  doi: 10.1090/proc/16292
– ident: ref28
  doi: 10.3390/math12111721
– ident: ref48
  doi: 10.1186/s13662-017-1306-z
– ident: ref5
  doi: 10.1515/9780748631957-013
– ident: ref21
– ident: ref14
  doi: 10.1142/S0218348X25500458
– ident: ref9
  doi: 10.3390/fractalfract6030175
– ident: ref17
  doi: 10.2298/FIL1609435N
– ident: ref33
  doi: 10.3390/sym15040868
– ident: ref47
– ident: ref46
  doi: 10.1007/0-387-31077-0
– ident: ref10
  doi: 10.1002/mma.10378
– ident: ref16
  doi: 10.1155/2022/6261970
– ident: ref8
– ident: ref26
  doi: 10.22199/issn.0717-6279-4136
– ident: ref39
  doi: 10.1142/S0218348X2550032X
– ident: ref44
  doi: 10.1186/s13661-025-02026-6
– ident: ref35
SSID ssj0002992606
Score 2.2956316
Snippet In this study, a new Newton-type inequality form for multiplicative convex functions is derived using multiplicative conformable fractional integrals. The...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 93
SubjectTerms conformable fractional integrals
convex functions
multiplicative calculus
newton inequality
Title New Form of Newton-Type Inequalities for Multiplicative Conformable Fractional Integrals
URI https://doaj.org/article/299346520c4e43598fb2bec0f778845b
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgfEFprajuOMgIhapDJRqVtU2-cBtSlqC7-fOzugMrGwRVHiRGfn7j3n7h1jN4XDoBG0xg_JhUxZLTMr3Jx-OBofwGsfswknL3o0Vc-zYrbT6otywpI8cDLcAN2lVLoQuVOgSG4uWIHPzUOJ5E0VlrwvxrwdMkU-GO9CoK6TqKbEdVsO3pab5R3l3BfD4a8gtKPVH4NKfcgOOjTI79NbHLE9aI_ZDB0PrxFL8lXgeExNfoku8nELqQYS2S1HsMknKRswbrt9AqfqPYKgdgG8XqeKBRx9nBQhFpsTNq2fXh9HWdcAIXMIY5DbeRmksGVpIThrgnJKC9LfqXLQYAJiOQvU_Mc7afXcgTI6YNAjUuaqyslT1mtXLZwxbqyTykFljIuKMsaDRbDgh6QB5svQZ7ffFmnek85Fg_wgmq4h0zWd6frsgez1cxHJU8cTOGlNN2nNX5N2_h-DXLB9Qc14c50Jc8l62_UHXCFC2NrruBi-AKuxuf4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Form+of+Newton-Type+Inequalities+for+Multiplicative+Conformable+Fractional+Integrals&rft.jtitle=Journal+of+mathematical+sciences+and+modelling&rft.au=Budak%2C+H%C3%BCseyin&rft.au=Erg%C3%BCn%2C+B%C3%BC%C5%9Fra+Bet%C3%BCl&rft.date=2025-06-28&rft.issn=2636-8692&rft.eissn=2636-8692&rft.volume=8&rft.issue=2&rft.spage=93&rft.epage=111&rft_id=info:doi/10.33187%2Fjmsm.1674511&rft.externalDBID=n%2Fa&rft.externalDocID=10_33187_jmsm_1674511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2636-8692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2636-8692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2636-8692&client=summon