Distributionally Robust Optimization Adaptive Event‐Triggered SMPC for DC‐DC Converters Subject to Unknown Disturbances and DoS Attacks
In this paper, we present adaptive event‐triggered distributionally robust optimization stochastic model predictive control (AET‐DROSMPC) applied to DC‐DC converters subject to unknown disturbances and denial of service (DoS) attacks. The DoS attacks, causing communication interruptions on the contr...
Saved in:
Published in | IET power electronics Vol. 18; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.01.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present adaptive event‐triggered distributionally robust optimization stochastic model predictive control (AET‐DROSMPC) applied to DC‐DC converters subject to unknown disturbances and denial of service (DoS) attacks. The DoS attacks, causing communication interruptions on the controller and actuator (C‐A) channel, is described by using Bernoulli variables. While stochastic model predictive control (SMPC) has been extensively studied, existing approaches mostly focus on periodic stochastic model predictive control (PSMPC) and self‐triggering stochastic model predictive control (SSMPC) for systems with bounded disturbances or subject to Gaussian distribution. To address chance constraints and disturbances more effectively, we introduce the distributionally robust optimization (DRO) to transform the optimization problem with chance constraints into a convex optimization problem using second‐order cone (SOC) equivalence. Moreover, adaptive event‐triggered mechanism (AETM) is devised to reduce unnecessary sampling, lower updating frequencies of control input, and ultimately decrease the computational burden of the system, addressing the lack of consideration for exact sampling times and system computing burden. The study rigorously establishes the recursive feasibility and stability of the optimization problem subject to DoS attacks. Finally, a application is conducted to demonstrate the effectiveness and advancements of the proposed algorithm. |
---|---|
AbstractList | In this paper, we present adaptive event‐triggered distributionally robust optimization stochastic model predictive control (AET‐DROSMPC) applied to DC‐DC converters subject to unknown disturbances and denial of service (DoS) attacks. The DoS attacks, causing communication interruptions on the controller and actuator (C‐A) channel, is described by using Bernoulli variables. While stochastic model predictive control (SMPC) has been extensively studied, existing approaches mostly focus on periodic stochastic model predictive control (PSMPC) and self‐triggering stochastic model predictive control (SSMPC) for systems with bounded disturbances or subject to Gaussian distribution. To address chance constraints and disturbances more effectively, we introduce the distributionally robust optimization (DRO) to transform the optimization problem with chance constraints into a convex optimization problem using second‐order cone (SOC) equivalence. Moreover, adaptive event‐triggered mechanism (AETM) is devised to reduce unnecessary sampling, lower updating frequencies of control input, and ultimately decrease the computational burden of the system, addressing the lack of consideration for exact sampling times and system computing burden. The study rigorously establishes the recursive feasibility and stability of the optimization problem subject to DoS attacks. Finally, a application is conducted to demonstrate the effectiveness and advancements of the proposed algorithm. |
Author | Chen, Yadong Cheng, Peng |
Author_xml | – sequence: 1 givenname: Yadong surname: Chen fullname: Chen, Yadong organization: School of Aeronautics and Astro nautics Sichuan University Chengdu People's Republic of China – sequence: 2 givenname: Peng orcidid: 0009-0003-0933-0305 surname: Cheng fullname: Cheng, Peng organization: School of Aeronautics and Astro nautics Sichuan University Chengdu People's Republic of China, National Key Laboratory of Fundamental Science on Synthetic Vision Sichuan University Chengdu People's Republic of China |
BookMark | eNo9kE1PwjAYxxuDiYBe_AQ9mwzbrWPbkWz4kmAwAuelW5-SwmhJ22Hw5N2Ln9FPIlPj6f9y-D95fgPU00YDQteUjChh2e0emnCUEJLSM9SnSRwHLGZR799H8QUaOLchZExZnPbRR6Gct6pqvTKaN80Rv5iqdR7P917t1BvvejwR_BQPgKcH0P7r_XNp1XoNFgRePD3nWBqLi_zUFznOjT6A9WAdXrTVBmqPvcErvdXmVePuXGsrrmtwmGuBC7PAE-95vXWX6FzyxsHVnw7R6m66zB-C2fz-MZ_MgpqyiAZRIoCkqSQZExCLkAlKRUQSyeM6FaQiQMNMgqyy5PSjzMaCsyzllPFEEhLyaIhufndra5yzIMu9VTtujyUlZYex7DCWPxijb8gua5s |
Cites_doi | 10.1016/j.compeleceng.2022.107995 10.1016/j.automatica.2018.02.017 10.1109/TAC.2022.3191760 10.1016/j.automatica.2022.110638 10.24295/CPSSTPEA.2020.00016 10.1109/TAC.2022.3157131 10.1109/TAC.2023.3273775 10.1016/j.jfranklin.2021.04.034 10.1109/LCSYS.2021.3134199 10.1016/j.isatra.2021.01.036 10.1109/TPWRS.2022.3218080 10.1109/TASE.2023.3349150 10.1109/TPEL.2020.2969996 10.1109/TCST.2021.3094999 10.1016/j.automatica.2020.109095 10.1002/oca.2501 10.1007/s10957-006-9084-x 10.1109/OJIA.2020.3020184 10.1109/TCSII.2020.2983096 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1049/pel2.70081 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1755-4543 |
ExternalDocumentID | 10_1049_pel2_70081 |
GroupedDBID | 0R~ 0ZK 1OC 24P 29I 4.4 5GY 6IK 8FE 8FG AAHJG AAJGR AAMMB AAYXX ABJCF ABMDY ABQXS ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR AEFGJ AEGXH AENEX AFKRA AGXDD AIAGR AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CITATION CS3 DU5 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IDLOA IGS IPLJI ITC L6V M43 M7S MCNEO O9- OK1 P2P P62 PHGZM PHGZT PQGLB PTHSS RNS ROL RUI UNMZH WIN ~ZZ |
ID | FETCH-LOGICAL-c1431-37de088f094de5d24d11d307fa5c8d0b0e129fefb97145f96da498a14a7f002a3 |
ISSN | 1755-4535 |
IngestDate | Thu Jul 31 00:56:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1431-37de088f094de5d24d11d307fa5c8d0b0e129fefb97145f96da498a14a7f002a3 |
ORCID | 0009-0003-0933-0305 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/pel2.70081 |
ParticipantIDs | crossref_primary_10_1049_pel2_70081 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
PublicationDecade | 2020 |
PublicationTitle | IET power electronics |
PublicationYear | 2025 |
References | e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_21_1 e_1_2_10_11_1 e_1_2_10_22_1 e_1_2_10_20_1 Shen H. (e_1_2_10_16_1) 2023; 38 Shi T. (e_1_2_10_23_1) 2019; 128 e_1_2_10_2_1 Tang X. (e_1_2_10_18_1) 2024; 32 e_1_2_10_4_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 |
References_xml | – ident: e_1_2_10_20_1 doi: 10.1016/j.compeleceng.2022.107995 – ident: e_1_2_10_12_1 doi: 10.1016/j.automatica.2018.02.017 – ident: e_1_2_10_19_1 doi: 10.1109/TAC.2022.3191760 – ident: e_1_2_10_15_1 doi: 10.1016/j.automatica.2022.110638 – ident: e_1_2_10_2_1 doi: 10.24295/CPSSTPEA.2020.00016 – volume: 32 start-page: 4557 issue: 8 year: 2024 ident: e_1_2_10_18_1 article-title: Adaptive Event‐Triggered Model Predictive Load Frequency Control for Power Systems publication-title: IEEE Transactions on Power Systems – ident: e_1_2_10_9_1 doi: 10.1109/TAC.2022.3157131 – ident: e_1_2_10_14_1 doi: 10.1109/TAC.2023.3273775 – ident: e_1_2_10_22_1 doi: 10.1016/j.jfranklin.2021.04.034 – ident: e_1_2_10_8_1 doi: 10.1109/LCSYS.2021.3134199 – ident: e_1_2_10_21_1 doi: 10.1016/j.isatra.2021.01.036 – ident: e_1_2_10_5_1 doi: 10.1109/TPWRS.2022.3218080 – ident: e_1_2_10_17_1 doi: 10.1109/TASE.2023.3349150 – ident: e_1_2_10_3_1 doi: 10.1109/TPEL.2020.2969996 – volume: 128 start-page: 9 issue: 1 year: 2019 ident: e_1_2_10_23_1 article-title: Dynamic Event‐Triggered Model Predictive Control Under Channel Fading and Denial of Service Attacks publication-title: IEEE Transactions on Automation Science and Engineering – ident: e_1_2_10_6_1 doi: 10.1109/TCST.2021.3094999 – ident: e_1_2_10_11_1 doi: 10.1016/j.automatica.2020.109095 – ident: e_1_2_10_10_1 doi: 10.1002/oca.2501 – ident: e_1_2_10_13_1 doi: 10.1007/s10957-006-9084-x – volume: 38 start-page: 4003 issue: 5 year: 2023 ident: e_1_2_10_16_1 article-title: Predefined‐Time Event‐Triggered Tracking Control for Nonlinear Servo Systems: A Fuzzy Weight‐Based Reinforcement Learning Scheme publication-title: IEEE Transactions on Fuzzy Systems – ident: e_1_2_10_4_1 doi: 10.1109/OJIA.2020.3020184 – ident: e_1_2_10_7_1 doi: 10.1109/TCSII.2020.2983096 |
SSID | ssj0061458 |
Score | 2.3710866 |
Snippet | In this paper, we present adaptive event‐triggered distributionally robust optimization stochastic model predictive control (AET‐DROSMPC) applied to DC‐DC... |
SourceID | crossref |
SourceType | Index Database |
Title | Distributionally Robust Optimization Adaptive Event‐Triggered SMPC for DC‐DC Converters Subject to Unknown Disturbances and DoS Attacks |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5RuLQHBLRVX6CV6M1yGtu7fhwjO4hWgiKRSPQU7ZNLcKLWHOip9176G_tLOmOvHyIcKBcrmsRx5Pky8814HoR8FDwyXGnhK21SH0ec-xkXka-SLNWCcRvF2O98dh6fztmXK37VJ_Tr7pJKjtTPB_tKnqJVkIFesUv2PzTbfSkI4DXoF46gYTg-SscFTr11C6vEcnmHddK3PyrvK9iBG9dg6U20WNf1QVMsbeyKG2YQll_jok7v8uwir6sNi7x7t8ixFxB3NWODL1gXTNcgT52XmIUrcWonOCuJmGmmPBerS29SVdiyPyS8n6czb42b2Lx-4U5H43PXGvJN6JXzoE563dQOO6HLSoR8kJVoDGnCuc94M4pkZIayZizTpvVtUbZh1CGIwU3EZhmOEqQwvetqH9ff82hdnWH9hJ1lCzx3UZ_7jOyEEFDgrouQXbQ-GzhKvcm1-9XtIFuWfeqvO6AuAw4y2yO7LnigkwYJ-2TLlAfkxWCk5Evy-z4maIMJOsQEbTFBa0z8_fWnQwNFNFBAAy1ykBc57XFAHQ5otaIOB3SIAwo4oIAD6nDwisxPprP81HcLN3wFtDkAZ6MNeB0LIb82XIdMB4EGJ2AFV6key7EBdmiNlVkCN8xmMfybs1QETCQWPKuIXpPtclWaN4RKJq1IlJEys2yseRoJEUQ8VjoIbayit-S4vZeLdTNXZbGprXeP-tR78ryH4AeyXX2_NYdAFSt5VGv5H6dBbvY |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributionally+Robust+Optimization+Adaptive+Event%E2%80%90Triggered+SMPC+for+DC%E2%80%90DC+Converters+Subject+to+Unknown+Disturbances+and+DoS+Attacks&rft.jtitle=IET+power+electronics&rft.au=Chen%2C+Yadong&rft.au=Cheng%2C+Peng&rft.date=2025-01-01&rft.issn=1755-4535&rft.eissn=1755-4543&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1049%2Fpel2.70081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_pel2_70081 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4535&client=summon |