Molecular stacking controlling coherent and incoherent singlet fission in polymorph rubrene single crystals Special Issue: Emerging Investigators

Singlet fission (SF) is an appealing process where one photoexcited singlet transforms to two triplets, which can overcome thermalization energy loss and improve solar cell efficiency. However, it remains unclear how intermolecular coupling, which is subject to molecular stacking, controls SF pathwa...

Full description

Saved in:
Bibliographic Details
Published inAggregate (Hoboken) Vol. 4; no. 5
Main Authors Liu, Yanping, Yang, Xuexiao, Ye, Lei, Ma, Haibo, Zhu, Haiming
Format Journal Article
LanguageEnglish
Published 01.10.2023
Online AccessGet full text
ISSN2692-4560
2692-4560
DOI10.1002/agt2.347

Cover

Loading…
Abstract Singlet fission (SF) is an appealing process where one photoexcited singlet transforms to two triplets, which can overcome thermalization energy loss and improve solar cell efficiency. However, it remains unclear how intermolecular coupling, which is subject to molecular stacking, controls SF pathways and dynamics. Here, we prepared polymorph rubrene single crystals with different stacking geometries, including orthorhombic (Orth.), triclinic (Tri.), and monoclinic (Mono.) phases. By micro‐area ultrafast spectroscopy, we find that Orth. and Tri. phases with closer π‐π stacking exhibit co‐existing coherent and incoherent SF channels while loosely stacked Mono. phase shows only incoherent SF. Furthermore, incoherent SF is thermally activated in Orth. but barrierless in Mono. and Tri. phases. Quantum mechanical calculation reveals that different electronic coupling strength in different phases leads to different SF dynamics. This study demonstrates that molecular stacking governs SF dynamics through electronic coupling, providing guidance for designing efficient SF materials via crystal structural engineering.
AbstractList Singlet fission (SF) is an appealing process where one photoexcited singlet transforms to two triplets, which can overcome thermalization energy loss and improve solar cell efficiency. However, it remains unclear how intermolecular coupling, which is subject to molecular stacking, controls SF pathways and dynamics. Here, we prepared polymorph rubrene single crystals with different stacking geometries, including orthorhombic (Orth.), triclinic (Tri.), and monoclinic (Mono.) phases. By micro‐area ultrafast spectroscopy, we find that Orth. and Tri. phases with closer π‐π stacking exhibit co‐existing coherent and incoherent SF channels while loosely stacked Mono. phase shows only incoherent SF. Furthermore, incoherent SF is thermally activated in Orth. but barrierless in Mono. and Tri. phases. Quantum mechanical calculation reveals that different electronic coupling strength in different phases leads to different SF dynamics. This study demonstrates that molecular stacking governs SF dynamics through electronic coupling, providing guidance for designing efficient SF materials via crystal structural engineering.
Author Liu, Yanping
Yang, Xuexiao
Ma, Haibo
Zhu, Haiming
Ye, Lei
Author_xml – sequence: 1
  givenname: Yanping
  surname: Liu
  fullname: Liu, Yanping
  organization: State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited‐State Materials of Zhejiang Province, Department of Chemistry Zhejiang University Hangzhou China
– sequence: 2
  givenname: Xuexiao
  surname: Yang
  fullname: Yang, Xuexiao
  organization: School of Chemistry and Chemical Engineering Nanjing University Nanjing China
– sequence: 3
  givenname: Lei
  surname: Ye
  fullname: Ye, Lei
  organization: State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited‐State Materials of Zhejiang Province, Department of Chemistry Zhejiang University Hangzhou China
– sequence: 4
  givenname: Haibo
  surname: Ma
  fullname: Ma, Haibo
  organization: School of Chemistry and Chemical Engineering Nanjing University Nanjing China
– sequence: 5
  givenname: Haiming
  orcidid: 0000-0001-7747-9054
  surname: Zhu
  fullname: Zhu, Haiming
  organization: State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited‐State Materials of Zhejiang Province, Department of Chemistry Zhejiang University Hangzhou China, ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China
BookMark eNplkEFLAzEQhYNUsNaCPyFHL1uTbLLrHqWoFSpe9LzMzmbb2DQpSXrovzelRURPb4b3zYN512TkvNOE3HI244yJe1glMStlfUHGompEIVXFRr_mKzKN8YtlVPGSKzYmmzdvNe4tBBoT4Ma4FUXvUvDWnua1DtolCq6nxv2sMZtWJzqYGI132aI7bw9bH3ZrGvZdhvQZohgOOdvGG3I5ZNHTs07I5_PTx3xRLN9fXuePywK5FKkALVDImgP2jKtyQCUEg2booIFegxqqWtYdKtZj12TsQWVaVFpiLRrZV-WEzE65GHyMQQ8tmgTJHN8CY1vO2mNb7bGtNreVD-7-HOyC2UI4_Ee_AdP0b-E
CitedBy_id crossref_primary_10_1002_wcms_70002
crossref_primary_10_1021_acs_jctc_4c00185
crossref_primary_10_1021_acs_jpclett_3c02845
crossref_primary_10_1088_1402_4896_ad922a
crossref_primary_10_1021_acs_jpclett_4c03694
crossref_primary_10_1063_5_0166062
crossref_primary_10_1021_acsami_4c02332
crossref_primary_10_1002_agt2_507
crossref_primary_10_1021_acs_jpcc_4c02680
crossref_primary_10_1002_agt2_660
crossref_primary_10_1039_D3FD00150D
Cites_doi 10.1021/jacs.1c12414
10.1039/c6pp00171h
10.1002/adma.201601652
10.1021/jp907392q
10.1039/c2cp40449d
10.1021/acs.jctc.9b00122
10.1038/ncomms15953
10.1063/1.3664630
10.1016/0022-2313(91)90021-M
10.1021/acs.chemmater.6b04633
10.1146/annurev-physchem-040214-121235
10.1021/ja512668r
10.1063/1674-0068/cjcp2108132
10.1063/1.4794427
10.1038/nchem.2784
10.1016/j.chempr.2019.05.012
10.1021/acs.jpcc.2c04572
10.1038/nchem.1945
10.1063/1.449978
10.1103/PhysRevLett.115.107401
10.1002/agt2.320
10.1021/acs.chemmater.7b04170
10.1038/nchem.2856
10.1063/1.2356795
10.1063/1674-0068/cjcp2108135
10.1021/jacs.7b02621
10.1021/acs.nanolett.0c03328
10.1139/cjc-2018-0421
10.1038/nchem.2665
10.1063/1.1736034
10.1021/jacs.9b05561
10.1039/B914334C
10.1038/s41467-021-25395-9
10.1038/s41557-021-00665-7
10.1039/C6CE00873A
10.1016/j.chempr.2018.04.006
10.1146/annurev-physchem-040412-110130
10.1002/agt2.96
10.1021/jacs.6b03829
10.1073/pnas.1503471112
10.1002/adma.201102294
10.1021/ja408854u
10.1038/nchem.1436
10.1021/acs.chemrev.8b00572
10.1021/acs.chemrev.7b00601
10.1021/acs.jpclett.8b01834
10.1126/science.1213986
10.1021/acs.jpcc.1c10977
10.1021/cr1002613
10.1002/agt2.280
10.1021/acs.jpclett.8b02944
10.1039/D1TC02955J
10.1021/acs.jpcc.6b10075
10.1038/natrevmats.2017.63
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/agt2.347
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2692-4560
ExternalDocumentID 10_1002_agt2_347
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
AAHJG
AAYXX
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
AVUZU
BENPR
CCPQU
CITATION
EBS
GROUPED_DOAJ
IAO
IGS
ITC
M~E
OK1
PHGZM
PHGZT
PIMPY
ID FETCH-LOGICAL-c142t-ae2c2471acd0153fc5220a9fba9adea5f6747bc50dcb971a8524726e4c7294d63
ISSN 2692-4560
IngestDate Thu Apr 24 22:58:00 EDT 2025
Tue Jul 01 02:17:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c142t-ae2c2471acd0153fc5220a9fba9adea5f6747bc50dcb971a8524726e4c7294d63
ORCID 0000-0001-7747-9054
ParticipantIDs crossref_citationtrail_10_1002_agt2_347
crossref_primary_10_1002_agt2_347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationTitle Aggregate (Hoboken)
PublicationYear 2023
References e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Kim W. (e_1_2_7_20_1) 2021; 6
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – ident: e_1_2_7_16_1
  doi: 10.1021/jacs.1c12414
– ident: e_1_2_7_40_1
  doi: 10.1039/c6pp00171h
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201601652
– ident: e_1_2_7_51_1
  doi: 10.1021/jp907392q
– ident: e_1_2_7_32_1
  doi: 10.1039/c2cp40449d
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.jctc.9b00122
– ident: e_1_2_7_47_1
  doi: 10.1038/ncomms15953
– ident: e_1_2_7_55_1
  doi: 10.1063/1.3664630
– ident: e_1_2_7_42_1
  doi: 10.1016/0022-2313(91)90021-M
– ident: e_1_2_7_54_1
  doi: 10.1021/acs.chemmater.6b04633
– ident: e_1_2_7_48_1
  doi: 10.1146/annurev-physchem-040214-121235
– ident: e_1_2_7_29_1
  doi: 10.1021/ja512668r
– ident: e_1_2_7_21_1
  doi: 10.1063/1674-0068/cjcp2108132
– ident: e_1_2_7_52_1
  doi: 10.1063/1.4794427
– ident: e_1_2_7_36_1
  doi: 10.1038/nchem.2784
– ident: e_1_2_7_11_1
  doi: 10.1016/j.chempr.2019.05.012
– ident: e_1_2_7_34_1
  doi: 10.1021/acs.jpcc.2c04572
– ident: e_1_2_7_23_1
  doi: 10.1038/nchem.1945
– ident: e_1_2_7_53_1
  doi: 10.1063/1.449978
– ident: e_1_2_7_17_1
  doi: 10.1103/PhysRevLett.115.107401
– ident: e_1_2_7_28_1
  doi: 10.1002/agt2.320
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.chemmater.7b04170
– ident: e_1_2_7_18_1
  doi: 10.1038/nchem.2856
– ident: e_1_2_7_5_1
  doi: 10.1063/1.2356795
– ident: e_1_2_7_22_1
  doi: 10.1063/1674-0068/cjcp2108135
– ident: e_1_2_7_33_1
  doi: 10.1021/jacs.7b02621
– ident: e_1_2_7_41_1
  doi: 10.1021/acs.nanolett.0c03328
– ident: e_1_2_7_46_1
  doi: 10.1139/cjc-2018-0421
– ident: e_1_2_7_15_1
  doi: 10.1038/nchem.2665
– ident: e_1_2_7_4_1
  doi: 10.1063/1.1736034
– ident: e_1_2_7_24_1
  doi: 10.1021/jacs.9b05561
– ident: e_1_2_7_35_1
  doi: 10.1039/B914334C
– ident: e_1_2_7_25_1
  doi: 10.1038/s41467-021-25395-9
– ident: e_1_2_7_12_1
  doi: 10.1038/s41557-021-00665-7
– ident: e_1_2_7_38_1
  doi: 10.1039/C6CE00873A
– ident: e_1_2_7_50_1
  doi: 10.1016/j.chempr.2018.04.006
– ident: e_1_2_7_3_1
  doi: 10.1146/annurev-physchem-040412-110130
– ident: e_1_2_7_27_1
  doi: 10.1002/agt2.96
– ident: e_1_2_7_30_1
  doi: 10.1021/jacs.6b03829
– ident: e_1_2_7_9_1
  doi: 10.1073/pnas.1503471112
– volume: 6
  year: 2021
  ident: e_1_2_7_20_1
  publication-title: Adv. Phys‐X.
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201102294
– ident: e_1_2_7_56_1
  doi: 10.1021/ja408854u
– ident: e_1_2_7_14_1
  doi: 10.1038/nchem.1436
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.chemrev.8b00572
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.chemrev.7b00601
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.jpclett.8b01834
– ident: e_1_2_7_13_1
  doi: 10.1126/science.1213986
– ident: e_1_2_7_31_1
  doi: 10.1021/acs.jpcc.1c10977
– ident: e_1_2_7_2_1
  doi: 10.1021/cr1002613
– ident: e_1_2_7_8_1
  doi: 10.1002/agt2.280
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.jpclett.8b02944
– ident: e_1_2_7_43_1
  doi: 10.1039/D1TC02955J
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.jpcc.6b10075
– ident: e_1_2_7_6_1
  doi: 10.1038/natrevmats.2017.63
SSID ssj0002513150
Score 2.2742703
Snippet Singlet fission (SF) is an appealing process where one photoexcited singlet transforms to two triplets, which can overcome thermalization energy loss and...
SourceID crossref
SourceType Enrichment Source
Index Database
Subtitle Special Issue: Emerging Investigators
Title Molecular stacking controlling coherent and incoherent singlet fission in polymorph rubrene single crystals
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLZYe9kOCNimwQAZCWmHKl3rOFl8BASqEKBpolJvke3YXdTSVFkqDX49z4mdZKUHxiVK3Ze0yvv6_L2vz88InWo90CxKmBdqn3qUaekJmAc8JSNGVASY4WW1xV04GtPrSTBZW11SiL582riu5C1ehTHwq1kl-x-erW8KA3AO_oUjeBiOr_Lxrdvb1igCclatny1Lz-fV-W-Vuxpy04XBvjTyALirp1NTAluWOi6z-eNDBs-8l6-E6XJpjXoyf4R7z_-0SezZFJJ0I78ZejrKRDYzsatWFG7SVRnY-WLp5kUTVqwwPVmpvynPGq22VAZU2kjj5WzIU5G1FQnS1LbZwEVCRjwgZtX_LWrDmI28tAWwYGM8r_rD8mlB-n7VmfPfltlrU1ldYFg1YyaxuTKGK9-hLoE8gnRQ9_zy7uevWoYDeucPy31862_oWhQPyHf3wS3S0mIf9zto26YN-KzCwC7aUos99KHVTPIjmtVowA4NuIUG7NyPAQ24QQO2aMAWDfAWrtGALRqsEXZo-ITGV5f3FyPPbqXhySElhccVkQR4CJcJ8D9fS6DdA8604Iwnigc6hLRSyGCQSMHALArAmoSKSki-aBL6n1FnkS3UF4SpHyn4ff8QEU8oNxsWiAh4pFKcDVU41Pvom3tWsbR95s12J_N43Sn76KS2XFa9VV7YHLzC5it638DwEHWKfKWOgCoW4ti6-7iUWp4B98ZyMg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+stacking+controlling+coherent+and+incoherent+singlet+fission+in+polymorph+rubrene+single+crystals&rft.jtitle=Aggregate+%28Hoboken%29&rft.au=Liu%2C+Yanping&rft.au=Yang%2C+Xuexiao&rft.au=Ye%2C+Lei&rft.au=Ma%2C+Haibo&rft.date=2023-10-01&rft.issn=2692-4560&rft.eissn=2692-4560&rft.volume=4&rft.issue=5&rft_id=info:doi/10.1002%2Fagt2.347&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_agt2_347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-4560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-4560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-4560&client=summon