Molecular stacking controlling coherent and incoherent singlet fission in polymorph rubrene single crystals Special Issue: Emerging Investigators
Singlet fission (SF) is an appealing process where one photoexcited singlet transforms to two triplets, which can overcome thermalization energy loss and improve solar cell efficiency. However, it remains unclear how intermolecular coupling, which is subject to molecular stacking, controls SF pathwa...
Saved in:
Published in | Aggregate (Hoboken) Vol. 4; no. 5 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.10.2023
|
Online Access | Get full text |
ISSN | 2692-4560 2692-4560 |
DOI | 10.1002/agt2.347 |
Cover
Loading…
Abstract | Singlet fission (SF) is an appealing process where one photoexcited singlet transforms to two triplets, which can overcome thermalization energy loss and improve solar cell efficiency. However, it remains unclear how intermolecular coupling, which is subject to molecular stacking, controls SF pathways and dynamics. Here, we prepared polymorph rubrene single crystals with different stacking geometries, including orthorhombic (Orth.), triclinic (Tri.), and monoclinic (Mono.) phases. By micro‐area ultrafast spectroscopy, we find that Orth. and Tri. phases with closer π‐π stacking exhibit co‐existing coherent and incoherent SF channels while loosely stacked Mono. phase shows only incoherent SF. Furthermore, incoherent SF is thermally activated in Orth. but barrierless in Mono. and Tri. phases. Quantum mechanical calculation reveals that different electronic coupling strength in different phases leads to different SF dynamics. This study demonstrates that molecular stacking governs SF dynamics through electronic coupling, providing guidance for designing efficient SF materials via crystal structural engineering. |
---|---|
AbstractList | Singlet fission (SF) is an appealing process where one photoexcited singlet transforms to two triplets, which can overcome thermalization energy loss and improve solar cell efficiency. However, it remains unclear how intermolecular coupling, which is subject to molecular stacking, controls SF pathways and dynamics. Here, we prepared polymorph rubrene single crystals with different stacking geometries, including orthorhombic (Orth.), triclinic (Tri.), and monoclinic (Mono.) phases. By micro‐area ultrafast spectroscopy, we find that Orth. and Tri. phases with closer π‐π stacking exhibit co‐existing coherent and incoherent SF channels while loosely stacked Mono. phase shows only incoherent SF. Furthermore, incoherent SF is thermally activated in Orth. but barrierless in Mono. and Tri. phases. Quantum mechanical calculation reveals that different electronic coupling strength in different phases leads to different SF dynamics. This study demonstrates that molecular stacking governs SF dynamics through electronic coupling, providing guidance for designing efficient SF materials via crystal structural engineering. |
Author | Liu, Yanping Yang, Xuexiao Ma, Haibo Zhu, Haiming Ye, Lei |
Author_xml | – sequence: 1 givenname: Yanping surname: Liu fullname: Liu, Yanping organization: State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited‐State Materials of Zhejiang Province, Department of Chemistry Zhejiang University Hangzhou China – sequence: 2 givenname: Xuexiao surname: Yang fullname: Yang, Xuexiao organization: School of Chemistry and Chemical Engineering Nanjing University Nanjing China – sequence: 3 givenname: Lei surname: Ye fullname: Ye, Lei organization: State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited‐State Materials of Zhejiang Province, Department of Chemistry Zhejiang University Hangzhou China – sequence: 4 givenname: Haibo surname: Ma fullname: Ma, Haibo organization: School of Chemistry and Chemical Engineering Nanjing University Nanjing China – sequence: 5 givenname: Haiming orcidid: 0000-0001-7747-9054 surname: Zhu fullname: Zhu, Haiming organization: State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited‐State Materials of Zhejiang Province, Department of Chemistry Zhejiang University Hangzhou China, ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China |
BookMark | eNplkEFLAzEQhYNUsNaCPyFHL1uTbLLrHqWoFSpe9LzMzmbb2DQpSXrovzelRURPb4b3zYN512TkvNOE3HI244yJe1glMStlfUHGompEIVXFRr_mKzKN8YtlVPGSKzYmmzdvNe4tBBoT4Ma4FUXvUvDWnua1DtolCq6nxv2sMZtWJzqYGI132aI7bw9bH3ZrGvZdhvQZohgOOdvGG3I5ZNHTs07I5_PTx3xRLN9fXuePywK5FKkALVDImgP2jKtyQCUEg2booIFegxqqWtYdKtZj12TsQWVaVFpiLRrZV-WEzE65GHyMQQ8tmgTJHN8CY1vO2mNb7bGtNreVD-7-HOyC2UI4_Ee_AdP0b-E |
CitedBy_id | crossref_primary_10_1002_wcms_70002 crossref_primary_10_1021_acs_jctc_4c00185 crossref_primary_10_1021_acs_jpclett_3c02845 crossref_primary_10_1088_1402_4896_ad922a crossref_primary_10_1021_acs_jpclett_4c03694 crossref_primary_10_1063_5_0166062 crossref_primary_10_1021_acsami_4c02332 crossref_primary_10_1002_agt2_507 crossref_primary_10_1021_acs_jpcc_4c02680 crossref_primary_10_1002_agt2_660 crossref_primary_10_1039_D3FD00150D |
Cites_doi | 10.1021/jacs.1c12414 10.1039/c6pp00171h 10.1002/adma.201601652 10.1021/jp907392q 10.1039/c2cp40449d 10.1021/acs.jctc.9b00122 10.1038/ncomms15953 10.1063/1.3664630 10.1016/0022-2313(91)90021-M 10.1021/acs.chemmater.6b04633 10.1146/annurev-physchem-040214-121235 10.1021/ja512668r 10.1063/1674-0068/cjcp2108132 10.1063/1.4794427 10.1038/nchem.2784 10.1016/j.chempr.2019.05.012 10.1021/acs.jpcc.2c04572 10.1038/nchem.1945 10.1063/1.449978 10.1103/PhysRevLett.115.107401 10.1002/agt2.320 10.1021/acs.chemmater.7b04170 10.1038/nchem.2856 10.1063/1.2356795 10.1063/1674-0068/cjcp2108135 10.1021/jacs.7b02621 10.1021/acs.nanolett.0c03328 10.1139/cjc-2018-0421 10.1038/nchem.2665 10.1063/1.1736034 10.1021/jacs.9b05561 10.1039/B914334C 10.1038/s41467-021-25395-9 10.1038/s41557-021-00665-7 10.1039/C6CE00873A 10.1016/j.chempr.2018.04.006 10.1146/annurev-physchem-040412-110130 10.1002/agt2.96 10.1021/jacs.6b03829 10.1073/pnas.1503471112 10.1002/adma.201102294 10.1021/ja408854u 10.1038/nchem.1436 10.1021/acs.chemrev.8b00572 10.1021/acs.chemrev.7b00601 10.1021/acs.jpclett.8b01834 10.1126/science.1213986 10.1021/acs.jpcc.1c10977 10.1021/cr1002613 10.1002/agt2.280 10.1021/acs.jpclett.8b02944 10.1039/D1TC02955J 10.1021/acs.jpcc.6b10075 10.1038/natrevmats.2017.63 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/agt2.347 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2692-4560 |
ExternalDocumentID | 10_1002_agt2_347 |
GroupedDBID | 0R~ 1OC 24P AAFWJ AAHHS AAHJG AAYXX ABMDY ABQXS ACCFJ ACCMX ACESK ACXQS ADZOD AEEZP AEQDE AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARCSS AVUZU BENPR CCPQU CITATION EBS GROUPED_DOAJ IAO IGS ITC M~E OK1 PHGZM PHGZT PIMPY |
ID | FETCH-LOGICAL-c142t-ae2c2471acd0153fc5220a9fba9adea5f6747bc50dcb971a8524726e4c7294d63 |
ISSN | 2692-4560 |
IngestDate | Thu Apr 24 22:58:00 EDT 2025 Tue Jul 01 02:17:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c142t-ae2c2471acd0153fc5220a9fba9adea5f6747bc50dcb971a8524726e4c7294d63 |
ORCID | 0000-0001-7747-9054 |
ParticipantIDs | crossref_citationtrail_10_1002_agt2_347 crossref_primary_10_1002_agt2_347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-00 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00 |
PublicationDecade | 2020 |
PublicationTitle | Aggregate (Hoboken) |
PublicationYear | 2023 |
References | e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Kim W. (e_1_2_7_20_1) 2021; 6 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – ident: e_1_2_7_16_1 doi: 10.1021/jacs.1c12414 – ident: e_1_2_7_40_1 doi: 10.1039/c6pp00171h – ident: e_1_2_7_7_1 doi: 10.1002/adma.201601652 – ident: e_1_2_7_51_1 doi: 10.1021/jp907392q – ident: e_1_2_7_32_1 doi: 10.1039/c2cp40449d – ident: e_1_2_7_19_1 doi: 10.1021/acs.jctc.9b00122 – ident: e_1_2_7_47_1 doi: 10.1038/ncomms15953 – ident: e_1_2_7_55_1 doi: 10.1063/1.3664630 – ident: e_1_2_7_42_1 doi: 10.1016/0022-2313(91)90021-M – ident: e_1_2_7_54_1 doi: 10.1021/acs.chemmater.6b04633 – ident: e_1_2_7_48_1 doi: 10.1146/annurev-physchem-040214-121235 – ident: e_1_2_7_29_1 doi: 10.1021/ja512668r – ident: e_1_2_7_21_1 doi: 10.1063/1674-0068/cjcp2108132 – ident: e_1_2_7_52_1 doi: 10.1063/1.4794427 – ident: e_1_2_7_36_1 doi: 10.1038/nchem.2784 – ident: e_1_2_7_11_1 doi: 10.1016/j.chempr.2019.05.012 – ident: e_1_2_7_34_1 doi: 10.1021/acs.jpcc.2c04572 – ident: e_1_2_7_23_1 doi: 10.1038/nchem.1945 – ident: e_1_2_7_53_1 doi: 10.1063/1.449978 – ident: e_1_2_7_17_1 doi: 10.1103/PhysRevLett.115.107401 – ident: e_1_2_7_28_1 doi: 10.1002/agt2.320 – ident: e_1_2_7_37_1 doi: 10.1021/acs.chemmater.7b04170 – ident: e_1_2_7_18_1 doi: 10.1038/nchem.2856 – ident: e_1_2_7_5_1 doi: 10.1063/1.2356795 – ident: e_1_2_7_22_1 doi: 10.1063/1674-0068/cjcp2108135 – ident: e_1_2_7_33_1 doi: 10.1021/jacs.7b02621 – ident: e_1_2_7_41_1 doi: 10.1021/acs.nanolett.0c03328 – ident: e_1_2_7_46_1 doi: 10.1139/cjc-2018-0421 – ident: e_1_2_7_15_1 doi: 10.1038/nchem.2665 – ident: e_1_2_7_4_1 doi: 10.1063/1.1736034 – ident: e_1_2_7_24_1 doi: 10.1021/jacs.9b05561 – ident: e_1_2_7_35_1 doi: 10.1039/B914334C – ident: e_1_2_7_25_1 doi: 10.1038/s41467-021-25395-9 – ident: e_1_2_7_12_1 doi: 10.1038/s41557-021-00665-7 – ident: e_1_2_7_38_1 doi: 10.1039/C6CE00873A – ident: e_1_2_7_50_1 doi: 10.1016/j.chempr.2018.04.006 – ident: e_1_2_7_3_1 doi: 10.1146/annurev-physchem-040412-110130 – ident: e_1_2_7_27_1 doi: 10.1002/agt2.96 – ident: e_1_2_7_30_1 doi: 10.1021/jacs.6b03829 – ident: e_1_2_7_9_1 doi: 10.1073/pnas.1503471112 – volume: 6 year: 2021 ident: e_1_2_7_20_1 publication-title: Adv. Phys‐X. – ident: e_1_2_7_39_1 doi: 10.1002/adma.201102294 – ident: e_1_2_7_56_1 doi: 10.1021/ja408854u – ident: e_1_2_7_14_1 doi: 10.1038/nchem.1436 – ident: e_1_2_7_10_1 doi: 10.1021/acs.chemrev.8b00572 – ident: e_1_2_7_49_1 doi: 10.1021/acs.chemrev.7b00601 – ident: e_1_2_7_45_1 doi: 10.1021/acs.jpclett.8b01834 – ident: e_1_2_7_13_1 doi: 10.1126/science.1213986 – ident: e_1_2_7_31_1 doi: 10.1021/acs.jpcc.1c10977 – ident: e_1_2_7_2_1 doi: 10.1021/cr1002613 – ident: e_1_2_7_8_1 doi: 10.1002/agt2.280 – ident: e_1_2_7_44_1 doi: 10.1021/acs.jpclett.8b02944 – ident: e_1_2_7_43_1 doi: 10.1039/D1TC02955J – ident: e_1_2_7_26_1 doi: 10.1021/acs.jpcc.6b10075 – ident: e_1_2_7_6_1 doi: 10.1038/natrevmats.2017.63 |
SSID | ssj0002513150 |
Score | 2.2742703 |
Snippet | Singlet fission (SF) is an appealing process where one photoexcited singlet transforms to two triplets, which can overcome thermalization energy loss and... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
Subtitle | Special Issue: Emerging Investigators |
Title | Molecular stacking controlling coherent and incoherent singlet fission in polymorph rubrene single crystals |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLZYe9kOCNimwQAZCWmHKl3rOFl8BASqEKBpolJvke3YXdTSVFkqDX49z4mdZKUHxiVK3Ze0yvv6_L2vz88InWo90CxKmBdqn3qUaekJmAc8JSNGVASY4WW1xV04GtPrSTBZW11SiL582riu5C1ehTHwq1kl-x-erW8KA3AO_oUjeBiOr_Lxrdvb1igCclatny1Lz-fV-W-Vuxpy04XBvjTyALirp1NTAluWOi6z-eNDBs-8l6-E6XJpjXoyf4R7z_-0SezZFJJ0I78ZejrKRDYzsatWFG7SVRnY-WLp5kUTVqwwPVmpvynPGq22VAZU2kjj5WzIU5G1FQnS1LbZwEVCRjwgZtX_LWrDmI28tAWwYGM8r_rD8mlB-n7VmfPfltlrU1ldYFg1YyaxuTKGK9-hLoE8gnRQ9_zy7uevWoYDeucPy31862_oWhQPyHf3wS3S0mIf9zto26YN-KzCwC7aUos99KHVTPIjmtVowA4NuIUG7NyPAQ24QQO2aMAWDfAWrtGALRqsEXZo-ITGV5f3FyPPbqXhySElhccVkQR4CJcJ8D9fS6DdA8604Iwnigc6hLRSyGCQSMHALArAmoSKSki-aBL6n1FnkS3UF4SpHyn4ff8QEU8oNxsWiAh4pFKcDVU41Pvom3tWsbR95s12J_N43Sn76KS2XFa9VV7YHLzC5it638DwEHWKfKWOgCoW4ti6-7iUWp4B98ZyMg |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+stacking+controlling+coherent+and+incoherent+singlet+fission+in+polymorph+rubrene+single+crystals&rft.jtitle=Aggregate+%28Hoboken%29&rft.au=Liu%2C+Yanping&rft.au=Yang%2C+Xuexiao&rft.au=Ye%2C+Lei&rft.au=Ma%2C+Haibo&rft.date=2023-10-01&rft.issn=2692-4560&rft.eissn=2692-4560&rft.volume=4&rft.issue=5&rft_id=info:doi/10.1002%2Fagt2.347&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_agt2_347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-4560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-4560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-4560&client=summon |