A Hybrid Model using Artificial Neural Network and Genetic Algorithm for Degree of Injury Determination

Essentially, determination degree of injury is crucial for to support the law enforcement process. The existing models are deemed difficult in identifying the critical features for degree of injury classification. Some of which are considerable irrelevant and cause the inconsistency decision on proc...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of innovative technology and exploring engineering Vol. 9; no. 2; pp. 1357 - 1365
Main Authors Wardhana, Mohd Hadyan, Basari, Prof. Dr. Abd Samad Hasan, Mohd Jaya, Dr. Abdul Syukor, Afandi, Prof. Dr. dr. Dedi, Dzakiyullah, Nur Rachman
Format Journal Article
LanguageEnglish
Published 30.12.2019
Online AccessGet full text
ISSN2278-3075
2278-3075
DOI10.35940/ijitee.B6169.129219

Cover

Abstract Essentially, determination degree of injury is crucial for to support the law enforcement process. The existing models are deemed difficult in identifying the critical features for degree of injury classification. Some of which are considerable irrelevant and cause the inconsistency decision on process to determine degree of injury among the practitioners. If the Visum et Repertum (VeR) report is not well interpreted, the victim will get injustice decision. The purpose of this study is to develop a hybrid model for determining degree of injury. Based on Visum et Repertum (VeR) data. The model can classify the output of either having a minor, moderate, or serious injury which inclusively stated in Indonesian Penal Code. A hybrid model is developed from literature and case studies are conducted in three hospitals in Pekanbaru, Indonesia. Analysis is performed to discover the suitable component of the model-due to lack of comparison and analysis on the combination of critical features analysis and optimize the classification algorithm. Development and testing of the model are utilized VeR Dataset as private dataset (289 patients’ data). In validating model, three case studies are investigated based on Subject Matter Expert (SME) groups to identify the agreement level. The questionnaires consist of a component, implementation, and viability of model that involved. Hybrid model components are validated by the SMEs, whereby the group determined highest rank of accuracy performance. Result from the questionnaire reveal that the average agreement level of SMEs. In conclusion, the finding shows hybrid model is generated 99.23% accuracy. The model components are implementable as a model and acceptable by the Practitioners as contribution for determining degree of injury.
AbstractList Essentially, determination degree of injury is crucial for to support the law enforcement process. The existing models are deemed difficult in identifying the critical features for degree of injury classification. Some of which are considerable irrelevant and cause the inconsistency decision on process to determine degree of injury among the practitioners. If the Visum et Repertum (VeR) report is not well interpreted, the victim will get injustice decision. The purpose of this study is to develop a hybrid model for determining degree of injury. Based on Visum et Repertum (VeR) data. The model can classify the output of either having a minor, moderate, or serious injury which inclusively stated in Indonesian Penal Code. A hybrid model is developed from literature and case studies are conducted in three hospitals in Pekanbaru, Indonesia. Analysis is performed to discover the suitable component of the model-due to lack of comparison and analysis on the combination of critical features analysis and optimize the classification algorithm. Development and testing of the model are utilized VeR Dataset as private dataset (289 patients’ data). In validating model, three case studies are investigated based on Subject Matter Expert (SME) groups to identify the agreement level. The questionnaires consist of a component, implementation, and viability of model that involved. Hybrid model components are validated by the SMEs, whereby the group determined highest rank of accuracy performance. Result from the questionnaire reveal that the average agreement level of SMEs. In conclusion, the finding shows hybrid model is generated 99.23% accuracy. The model components are implementable as a model and acceptable by the Practitioners as contribution for determining degree of injury.
Author Mohd Jaya, Dr. Abdul Syukor
Basari, Prof. Dr. Abd Samad Hasan
Wardhana, Mohd Hadyan
Afandi, Prof. Dr. dr. Dedi
Dzakiyullah, Nur Rachman
Author_xml – sequence: 1
  givenname: Mohd Hadyan
  surname: Wardhana
  fullname: Wardhana, Mohd Hadyan
– sequence: 2
  givenname: Prof. Dr. Abd Samad Hasan
  surname: Basari
  fullname: Basari, Prof. Dr. Abd Samad Hasan
– sequence: 3
  givenname: Dr. Abdul Syukor
  surname: Mohd Jaya
  fullname: Mohd Jaya, Dr. Abdul Syukor
– sequence: 4
  givenname: Prof. Dr. dr. Dedi
  surname: Afandi
  fullname: Afandi, Prof. Dr. dr. Dedi
– sequence: 5
  givenname: Nur Rachman
  surname: Dzakiyullah
  fullname: Dzakiyullah, Nur Rachman
BookMark eNp9kEFOwzAQRS1UJErpDVj4AikeO4kTdqFAW6nABtaRk4yDS2ojxxHq7alSFogFqz_60ht9vUsysc4iIdfAFiLJY3ZjdiYgLu5SSPMF8JxDfkamnMssEkwmk1_3BZn3_Y4xBiKGLM2npC3o-lB509An12BHh97YlhY-GG1qozr6jIMfI3w5_0GVbegKLQZT06JrnTfhfU-18_QeW49InaYbuxv84VgE9HtjVTDOXpFzrboe5z85I2-PD6_LdbR9WW2WxTaqIeZ5VHMQEplSlU6qLEPJQTPIFNSN4hUmGCMkaSVklugKGJNaSSEVy2IpY1CNmJHb09_au773qMvahHFB8Mp0JbBytFaerJWjtfJk7QjHf-BPb_bKH_7HvgGhg3Wj
CitedBy_id crossref_primary_10_35940_ijies_B1089_11020224
crossref_primary_10_35940_ijitee_A9757_1213123
ContentType Journal Article
CorporateAuthor BC.s, MC.s, Center for Advanced Computing Technology (C-ACT), Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia. Faculty of Science and Technology, Department of Information Technology, Universitas ‘Aisyiyah Yogyakarta (UNISA), Indonesia
D.F.M., Sp.F.M.(K), Department of Forensic Medicine and Medicolegal Study, University of Riau, Pekanbaru, Indonesia
Center for Advanced Computing Technology (C-ACT), Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
CorporateAuthor_xml – name: Center for Advanced Computing Technology (C-ACT), Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
– name: D.F.M., Sp.F.M.(K), Department of Forensic Medicine and Medicolegal Study, University of Riau, Pekanbaru, Indonesia
– name: Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia. Faculty of Science and Technology, Department of Information Technology, Universitas ‘Aisyiyah Yogyakarta (UNISA), Indonesia
– name: BC.s, MC.s, Center for Advanced Computing Technology (C-ACT), Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
DBID AAYXX
CITATION
DOI 10.35940/ijitee.B6169.129219
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2278-3075
EndPage 1365
ExternalDocumentID 10_35940_ijitee_B6169_129219
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
OK1
RNS
ID FETCH-LOGICAL-c1429-c2137e0aabf5b88e721f018a1cda2be5e4e156b3785fb1007fa737a0847741ad3
ISSN 2278-3075
IngestDate Thu Apr 24 23:04:50 EDT 2025
Tue Jul 01 02:31:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1429-c2137e0aabf5b88e721f018a1cda2be5e4e156b3785fb1007fa737a0847741ad3
OpenAccessLink https://doi.org/10.35940/ijitee.b6169.129219
PageCount 9
ParticipantIDs crossref_citationtrail_10_35940_ijitee_B6169_129219
crossref_primary_10_35940_ijitee_B6169_129219
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-30
PublicationDateYYYYMMDD 2019-12-30
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-30
  day: 30
PublicationDecade 2010
PublicationTitle International journal of innovative technology and exploring engineering
PublicationYear 2019
SSID ssj0001341869
Score 2.0914872
Snippet Essentially, determination degree of injury is crucial for to support the law enforcement process. The existing models are deemed difficult in identifying the...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 1357
Title A Hybrid Model using Artificial Neural Network and Genetic Algorithm for Degree of Injury Determination
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELfa7GV7qPapdV_yw94QLAZs4JEum6JKmSatlfqGbDBNszRMDCplD_vbdz5TIFNUrXsIiSxzBO6HfT7_7o6Q9wXXsR_ywhWBwqTawk3MTqEUWpRcS1ZiSZbFFzE_D08v-MXB4WTEWmob5eW_9saV_I9WoQ30aqJk76HZXig0wG_QLxxBw3D8Jx2nznxrIq6wotnaaXHdn9ZI_zGecJN5A7-Q6o37BCbNtMnRmq4vq_qqWV4jz3CmYdmtbVjJCp4yNHQsmV5vq4HyPngQd_JO2PKqN9ppenc9XlL3ND89JD8cHPl1sZQ2MG1RLQsHhsLtgNgT-VPaWPivMGF4zqz2nFSBjSyvpek7ohTh2adyazewbL927Xzbtt-rnoGcliaMZ1deAZ8ZzOFjBwjD6g3dXg6OkyaY17jQ7Oa43tPWDfTJCM_-aNBmgc2R3RkAhvi3b3IJeBIaOubVChYD2jsRTCQemEu3Y_5OLu-_5tie-QhrLpSTWSkZSsmslEPyAF4TJBssfo88hWBoxFibsb8rGwOKgj7s-TsjG2tkLJ09JkfdKoemFrJPyIHePCWPRrkvn5HLlFrwUgQvRfDSAbzUgpd24KWgN9qBl_bgpQBeasFLq5Ja8NId8D4n558_nX2cu13VDzdnYBy5uc-CSE-lVCVXcawjn5VTFkuWF9JXmutQMy5UEMW8VIbjU8ooiOQUzCywjmURvCCTTbXRLwllIjQpE_wijuIwKHgstHF5FBGYZUkp1TEJbp9Tlncp8U1llnV2l5qOiduf9cOmhLmz_6t79n9NHg4wf0MmTd3qt2D5NuodAuMPXR6unw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Model+using+Artificial+Neural+Network+and+Genetic+Algorithm+for+Degree+of+Injury+Determination&rft.jtitle=International+journal+of+innovative+technology+and+exploring+engineering&rft.au=Wardhana%2C+Mohd+Hadyan&rft.au=Basari%2C+Prof.+Dr.+Abd+Samad+Hasan&rft.au=Mohd+Jaya%2C+Dr.+Abdul+Syukor&rft.au=Afandi%2C+Prof.+Dr.+dr.+Dedi&rft.date=2019-12-30&rft.issn=2278-3075&rft.eissn=2278-3075&rft.volume=9&rft.issue=2&rft.spage=1357&rft.epage=1365&rft_id=info:doi/10.35940%2Fijitee.B6169.129219&rft.externalDBID=n%2Fa&rft.externalDocID=10_35940_ijitee_B6169_129219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2278-3075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2278-3075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2278-3075&client=summon