Measurement and calculation of gas compressibility factor for condensate gas and natural gas under pressure up to 116MPa
•Volumetric properties of two reservoir fluid samples were measured with pressure up to 116MPa.•Dew point pressures at four temperatures for condensate gas sample are obtained.•Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared.•The therm...
Saved in:
Published in | The Journal of chemical thermodynamics Vol. 63; pp. 38 - 43 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9614 1096-3626 |
DOI | 10.1016/j.jct.2013.03.025 |
Cover
Loading…
Abstract | •Volumetric properties of two reservoir fluid samples were measured with pressure up to 116MPa.•Dew point pressures at four temperatures for condensate gas sample are obtained.•Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared.•The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range.
The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50)MPa, while there is the opposite trend when the pressure is lower than (45 to 50)MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs. |
---|---|
AbstractList | •Volumetric properties of two reservoir fluid samples were measured with pressure up to 116MPa.•Dew point pressures at four temperatures for condensate gas sample are obtained.•Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared.•The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range.
The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50)MPa, while there is the opposite trend when the pressure is lower than (45 to 50)MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs. |
Author | Wang, Hai-Ying Liu, Huang Ma, Qing-Lan Yan, Ke-Le Sun, Chang-Yu Chen, Guang-Jin Shen, De-Ji Xiao, Xiang-Jiao |
Author_xml | – sequence: 1 givenname: Ke-Le surname: Yan fullname: Yan, Ke-Le organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 2 givenname: Huang surname: Liu fullname: Liu, Huang organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 3 givenname: Chang-Yu surname: Sun fullname: Sun, Chang-Yu email: cysun@cup.edu.cn organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 4 givenname: Qing-Lan surname: Ma fullname: Ma, Qing-Lan organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 5 givenname: Guang-Jin surname: Chen fullname: Chen, Guang-Jin email: gjchen@cup.edu.cn organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 6 givenname: De-Ji surname: Shen fullname: Shen, De-Ji organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 7 givenname: Xiang-Jiao surname: Xiao fullname: Xiao, Xiang-Jiao organization: Research Institute of Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, China – sequence: 8 givenname: Hai-Ying surname: Wang fullname: Wang, Hai-Ying organization: Research Institute of Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, China |
BookMark | eNp9kM9OwzAMxiM0JDbgAbjlBTqcpk1bcUKIf9IQHOBcuamLMnXJlKSIvT3Z4MRhki3Lsn-f5W_BZtZZYuxKwFKAUNfr5VrHZQ5CLiFFXp6wuYBGZVLlasbmALnIGiWKM7YIYQ0AjWxgzr5fCMPkaUM2crQ91zjqacRonOVu4J8YuHabracQTGdGE3d8QB2d50NK7WxPNmCkw-ZewGKcPI6HfkpTzw9wusGnLY-OC6Fe3vCCnQ44Brr8q-fs4-H-_e4pW70-Pt_drjItirzMmgIF9KrrRI111ysNUGqkCvOuIVSV7OpaUlNWFRRFIftSUgeVLsqh0X0tB3nOxK-u9i4ET0O79WaDftcKaPfWtes2WdfurWshRV4mpvrHaBMPlkSPZjxK3vySlF76MuTboA1ZTb3xlHZ7Z47QP5aQjMo |
CitedBy_id | crossref_primary_10_1016_j_fluid_2023_113978 crossref_primary_10_1016_j_jngse_2013_10_004 crossref_primary_10_1016_j_fuel_2014_05_066 crossref_primary_10_3390_en16010105 crossref_primary_10_1515_zna_2017_0225 crossref_primary_10_1016_j_molliq_2015_12_103 crossref_primary_10_1016_j_ngib_2015_09_001 crossref_primary_10_1063_1_5096618 crossref_primary_10_1016_j_jngse_2014_07_021 crossref_primary_10_1016_j_petrol_2018_08_020 crossref_primary_10_1016_j_fluid_2019_112256 crossref_primary_10_1016_j_petlm_2016_05_001 crossref_primary_10_1007_s40948_019_00116_1 crossref_primary_10_1016_j_jngse_2020_103759 crossref_primary_10_1021_acs_jced_4c00460 crossref_primary_10_1080_10916466_2016_1221967 crossref_primary_10_1002_cjce_23215 crossref_primary_10_1016_j_fuel_2024_131147 crossref_primary_10_1016_j_flowmeasinst_2018_10_013 |
Cites_doi | 10.1016/j.fluid.2005.11.010 10.1016/S0378-3812(96)03140-8 10.1002/bbpc.199500057 10.1063/1.1750658 10.1021/je010053b 10.1016/S0378-3812(02)00305-9 10.1016/0009-2509(72)80096-4 10.1016/j.fluid.2012.10.011 10.1021/ef0498465 10.2118/9995-PA 10.1016/0378-3812(84)85027-X 10.1016/0378-3812(95)02771-6 10.1021/ie00005a019 10.1021/ef000216m 10.1021/ie2025757 10.1016/0378-3812(92)85090-U 10.1016/S0021-9614(02)00233-1 10.1016/j.cherd.2011.10.006 10.1016/0378-3812(94)02577-N 10.1016/j.fluid.2009.08.008 10.1016/S1003-9953(09)60050-5 10.1016/j.petrol.2010.05.008 10.1016/j.fluid.2007.07.075 10.1016/0378-3812(94)87002-0 10.1016/j.fluid.2006.09.004 10.1016/j.fluid.2008.02.017 10.1016/S0040-6031(00)00441-X 10.2118/942140-G |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jct.2013.03.025 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-3626 |
EndPage | 43 |
ExternalDocumentID | 10_1016_j_jct_2013_03_025 S0021961413001237 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN 9M8 A6W AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ H~9 IHE J1W JARJE KOM LG5 M35 M41 MAGPM MO0 N9A NCXOZ O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSG SSK SSR SSZ T5K UPT VOH WH7 WUQ XJT XOL XPP YQT ZCG ZU3 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c1425-94a10d6bb18a8bd6c005cae7a2b9ea673b883e957704443d53eb07c45f9cd83f3 |
IEDL.DBID | .~1 |
ISSN | 0021-9614 |
IngestDate | Thu Apr 24 22:56:29 EDT 2025 Tue Jul 01 01:07:16 EDT 2025 Fri Feb 23 02:12:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Model Thermodynamics Gas compressibility factor Dew point pressure Condensate gas |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1425-94a10d6bb18a8bd6c005cae7a2b9ea673b883e957704443d53eb07c45f9cd83f3 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_jct_2013_03_025 crossref_citationtrail_10_1016_j_jct_2013_03_025 elsevier_sciencedirect_doi_10_1016_j_jct_2013_03_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2013 2013-8-00 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: August 2013 |
PublicationDecade | 2010 |
PublicationTitle | The Journal of chemical thermodynamics |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chylinski, Djamarani, Drummond, Saville, Wakeham (b0010) 1992; 76 Gozalpour, Danesh, Todd, Tehrani, Tohidi (b0130) 2003; 206 Dranchuk, Abou-Kassem (b0080) 1975 X.Q. Guo, Study on the phase behaviour and transport property of normal and abnormal reservoir fluids, University of Petroleum, Beijing, China, 1995. Twu (b0170) 1984; 16 Ungerer, Faissat, Leibovici, Zhou, Behar, Moracchini, Courcy (b0005) 1995; 111 Gozalpour, Danesh, Todd, Tohidi (b0060) 2001; 46 Randzio (b0150) 2000; 355 C.H. Whitson, T.F. Anderson, I. Soreide, AIChE meeting, New Orleans, USA, 1988. W. Yan, Study on the phase behaviour of near-critical reservoir fluids and the phase equilibrium of hydrocarbon-water systems, University of Petroleum, Beijing, China, 1999. Shokir, El-Awad, Al-Quraishi, Al-Mahdy (b0100) 2012; 90 Lee, Kesler (b0175) 1980; 7 Bonyadi, Esmaeilzadeh (b0040) 2007; 260 Nasrifar, Bolland, Moshfeghian (b0195) 2005; 19 Elsharkawy, Hashem, Alikhan (b0020) 2001; 15 Soave (b0105) 1972; 27 Katz (b0180) 1983 Dohrn, Peper, Fonseca (b0015) 2010; 288 Anastasiades, Stamataki, Tassios (b0110) 1994; 93 Bennedict, Webb, Rubin (b0155) 1940; 8 Liu, Sun, Yan, Ma, Wang, Chen, Xiao, Wang, Zheng, Li (b0055) 2013; 337 Deiters, Randzio (b0145) 2007; 260 P.M. Boston, P.M. Mathias, in: Proceedings of the second International Conference on Phase Equilibria and Fluid Properties in the Chemical Process Industries, West Berlin, 1980, pp. 823–849. Jiang, Xiao, Zheng, Tang, Lin, Wang (b0125) 2006; 17 Chylinski, Cebola, Meredith, Saville, Wakeham (b0030) 2002; 34 Heidaryan, Moghadasi, Rahimi (b0095) 2010; 73 Randzio, Deiters (b0135) 1995; 99 J.P. Brill, H.D. Beggs, Two phase flow in pipes, Intercompressibility course, University of Tulsa, 1974. Barreau, Gaillard, Béhar, Daridon, Lagourette, Xans (b0120) 1997; 127 Sun, Liu, Yan, Ma, Liu, Chen, Xiao, Wang, Zheng, Li (b0050) 2012; 51 R.H. Cavett, in: Proceedings of the 27th API Meeting, San Francisco, CA, 1962, pp. 351–366. Pedersen, Blilie, Meisingset (b0190) 1992; 31 Standing, Katz (b0065) 1942; 146 Heidaryan, Salarabadi, Moghadasi (b0090) 2010; 19 Kay (b0205) 1936; 28 Mørch, Nasrifar, Bolland, Solbraa, Fredheim, Gjertsen (b0025) 2006; 239 Xiao, Yan, Wang, Liu, Sun, Sun (b0210) 2012; 32 Esmaeilzadeh, Samadi (b0115) 2008; 267 Deiters, Randzio (b0140) 1995; 103 P.M. Dranchuk, R.A. Purvis, D.B. Robinson, Institute Petrol. Tech. Series IP74-008 (1974) 1–13. Kesler, Lee (b0200) 1976; 55 Hall, Yaborough (b0070) 1973; 71 Shokir (10.1016/j.jct.2013.03.025_b0100) 2012; 90 Randzio (10.1016/j.jct.2013.03.025_b0135) 1995; 99 Sun (10.1016/j.jct.2013.03.025_b0050) 2012; 51 Dranchuk (10.1016/j.jct.2013.03.025_b0080) 1975 Esmaeilzadeh (10.1016/j.jct.2013.03.025_b0115) 2008; 267 Jiang (10.1016/j.jct.2013.03.025_b0125) 2006; 17 Dohrn (10.1016/j.jct.2013.03.025_b0015) 2010; 288 Deiters (10.1016/j.jct.2013.03.025_b0140) 1995; 103 Heidaryan (10.1016/j.jct.2013.03.025_b0090) 2010; 19 Twu (10.1016/j.jct.2013.03.025_b0170) 1984; 16 Chylinski (10.1016/j.jct.2013.03.025_b0010) 1992; 76 Hall (10.1016/j.jct.2013.03.025_b0070) 1973; 71 Heidaryan (10.1016/j.jct.2013.03.025_b0095) 2010; 73 10.1016/j.jct.2013.03.025_b0185 Bonyadi (10.1016/j.jct.2013.03.025_b0040) 2007; 260 10.1016/j.jct.2013.03.025_b0165 10.1016/j.jct.2013.03.025_b0045 Randzio (10.1016/j.jct.2013.03.025_b0150) 2000; 355 10.1016/j.jct.2013.03.025_b0160 Pedersen (10.1016/j.jct.2013.03.025_b0190) 1992; 31 10.1016/j.jct.2013.03.025_b0085 Mørch (10.1016/j.jct.2013.03.025_b0025) 2006; 239 Gozalpour (10.1016/j.jct.2013.03.025_b0130) 2003; 206 Deiters (10.1016/j.jct.2013.03.025_b0145) 2007; 260 Anastasiades (10.1016/j.jct.2013.03.025_b0110) 1994; 93 Ungerer (10.1016/j.jct.2013.03.025_b0005) 1995; 111 Chylinski (10.1016/j.jct.2013.03.025_b0030) 2002; 34 Soave (10.1016/j.jct.2013.03.025_b0105) 1972; 27 Barreau (10.1016/j.jct.2013.03.025_b0120) 1997; 127 Liu (10.1016/j.jct.2013.03.025_b0055) 2013; 337 Nasrifar (10.1016/j.jct.2013.03.025_b0195) 2005; 19 Kay (10.1016/j.jct.2013.03.025_b0205) 1936; 28 Katz (10.1016/j.jct.2013.03.025_b0180) 1983 Kesler (10.1016/j.jct.2013.03.025_b0200) 1976; 55 10.1016/j.jct.2013.03.025_b0035 Standing (10.1016/j.jct.2013.03.025_b0065) 1942; 146 Bennedict (10.1016/j.jct.2013.03.025_b0155) 1940; 8 10.1016/j.jct.2013.03.025_b0075 Lee (10.1016/j.jct.2013.03.025_b0175) 1980; 7 Xiao (10.1016/j.jct.2013.03.025_b0210) 2012; 32 Gozalpour (10.1016/j.jct.2013.03.025_b0060) 2001; 46 Elsharkawy (10.1016/j.jct.2013.03.025_b0020) 2001; 15 |
References_xml | – volume: 93 start-page: 23 year: 1994 end-page: 54 ident: b0110 publication-title: Fluid Phase Equilib. – volume: 260 start-page: 87 year: 2007 end-page: 97 ident: b0145 publication-title: Fluid Phase Equilib. – volume: 7 start-page: 163 year: 1980 end-page: 167 ident: b0175 publication-title: Hydrocarb. Process. – volume: 111 start-page: 287 year: 1995 end-page: 311 ident: b0005 publication-title: Fluid Phase Equilib. – volume: 19 start-page: 189 year: 2010 end-page: 192 ident: b0090 publication-title: J. Nat. Gas Chem. – volume: 90 start-page: 785 year: 2012 end-page: 792 ident: b0100 publication-title: Chem. Eng. Res. Des. – volume: 28 start-page: 1014 year: 1936 end-page: 1019 ident: b0205 publication-title: Ind. Eng. Chem. – volume: 71 start-page: 82 year: 1973 end-page: 92 ident: b0070 publication-title: Oil Gas J. – start-page: 34 year: 1975 end-page: 36 ident: b0080 publication-title: J. Can. Pet. Technol. – volume: 260 start-page: 326 year: 2007 end-page: 334 ident: b0040 publication-title: Fluid Phase Equilib. – volume: 355 start-page: 107 year: 2000 end-page: 113 ident: b0150 publication-title: Thermochim. Acta – volume: 146 start-page: 140 year: 1942 end-page: 149 ident: b0065 publication-title: Trans. AIME – reference: P.M. Boston, P.M. Mathias, in: Proceedings of the second International Conference on Phase Equilibria and Fluid Properties in the Chemical Process Industries, West Berlin, 1980, pp. 823–849. – volume: 239 start-page: 138 year: 2006 end-page: 145 ident: b0025 publication-title: Fluid Phase Equilib. – volume: 337 start-page: 363 year: 2013 end-page: 369 ident: b0055 publication-title: Fluid Phase Equilib. – volume: 55 start-page: 153 year: 1976 end-page: 158 ident: b0200 publication-title: Hydrocarb. Process. – volume: 127 start-page: 155 year: 1997 end-page: 171 ident: b0120 publication-title: Fluid Phase Equilib. – volume: 99 start-page: 1179 year: 1995 end-page: 1186 ident: b0135 publication-title: Ber. Bunsenges. Phys. Chem. – volume: 288 start-page: 1 year: 2010 end-page: 54 ident: b0015 publication-title: Fluid Phase Equilib. – volume: 19 start-page: 561 year: 2005 end-page: 572 ident: b0195 publication-title: Energy Fuels – volume: 34 start-page: 1703 year: 2002 end-page: 1728 ident: b0030 publication-title: J. Chem. Thermodyn. – volume: 17 start-page: 743 year: 2006 end-page: 746 ident: b0125 publication-title: Nat. Gas Geosci. – reference: W. Yan, Study on the phase behaviour of near-critical reservoir fluids and the phase equilibrium of hydrocarbon-water systems, University of Petroleum, Beijing, China, 1999. – volume: 206 start-page: 95 year: 2003 end-page: 104 ident: b0130 publication-title: Fluid Phase Equilib. – start-page: 1205 year: 1983 end-page: 1214 ident: b0180 publication-title: J. Pet. Technol. – volume: 46 start-page: 1305 year: 2001 end-page: 1308 ident: b0060 publication-title: J. Chem. Eng. Data. – volume: 76 start-page: 225 year: 1992 end-page: 235 ident: b0010 publication-title: Fluid Phase Equilib. – reference: R.H. Cavett, in: Proceedings of the 27th API Meeting, San Francisco, CA, 1962, pp. 351–366. – volume: 32 start-page: 42 year: 2012 end-page: 46 ident: b0210 publication-title: Nat. Gas Ind. – volume: 103 start-page: 199 year: 1995 end-page: 212 ident: b0140 publication-title: Fluid Phase Equilib. – volume: 31 start-page: 1378 year: 1992 end-page: 1384 ident: b0190 publication-title: Ind. Eng. Chem. Res. – volume: 15 start-page: 807 year: 2001 end-page: 816 ident: b0020 publication-title: Energy Fuels – reference: P.M. Dranchuk, R.A. Purvis, D.B. Robinson, Institute Petrol. Tech. Series IP74-008 (1974) 1–13. – reference: C.H. Whitson, T.F. Anderson, I. Soreide, AIChE meeting, New Orleans, USA, 1988. – reference: X.Q. Guo, Study on the phase behaviour and transport property of normal and abnormal reservoir fluids, University of Petroleum, Beijing, China, 1995. – volume: 73 start-page: 67 year: 2010 end-page: 72 ident: b0095 publication-title: J. Pet. Sci. Eng. – volume: 51 start-page: 6916 year: 2012 end-page: 6925 ident: b0050 publication-title: Ind. Eng. Chem. Res. – reference: J.P. Brill, H.D. Beggs, Two phase flow in pipes, Intercompressibility course, University of Tulsa, 1974. – volume: 8 start-page: 334 year: 1940 end-page: 345 ident: b0155 publication-title: J. Chem. Phys. – volume: 16 start-page: 137 year: 1984 end-page: 150 ident: b0170 publication-title: Fluid Phase Equilib. – volume: 27 start-page: 1197 year: 1972 end-page: 1203 ident: b0105 publication-title: Chem. Eng. Sci. – volume: 267 start-page: 113 year: 2008 end-page: 118 ident: b0115 publication-title: Fluid Phase Equilib. – volume: 239 start-page: 138 year: 2006 ident: 10.1016/j.jct.2013.03.025_b0025 publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2005.11.010 – volume: 127 start-page: 155 year: 1997 ident: 10.1016/j.jct.2013.03.025_b0120 publication-title: Fluid Phase Equilib. doi: 10.1016/S0378-3812(96)03140-8 – volume: 99 start-page: 1179 year: 1995 ident: 10.1016/j.jct.2013.03.025_b0135 publication-title: Ber. Bunsenges. Phys. Chem. doi: 10.1002/bbpc.199500057 – ident: 10.1016/j.jct.2013.03.025_b0045 – volume: 8 start-page: 334 year: 1940 ident: 10.1016/j.jct.2013.03.025_b0155 publication-title: J. Chem. Phys. doi: 10.1063/1.1750658 – ident: 10.1016/j.jct.2013.03.025_b0185 – volume: 55 start-page: 153 year: 1976 ident: 10.1016/j.jct.2013.03.025_b0200 publication-title: Hydrocarb. Process. – ident: 10.1016/j.jct.2013.03.025_b0160 – volume: 46 start-page: 1305 year: 2001 ident: 10.1016/j.jct.2013.03.025_b0060 publication-title: J. Chem. Eng. Data. doi: 10.1021/je010053b – ident: 10.1016/j.jct.2013.03.025_b0085 – volume: 28 start-page: 1014 year: 1936 ident: 10.1016/j.jct.2013.03.025_b0205 publication-title: Ind. Eng. Chem. – volume: 206 start-page: 95 year: 2003 ident: 10.1016/j.jct.2013.03.025_b0130 publication-title: Fluid Phase Equilib. doi: 10.1016/S0378-3812(02)00305-9 – start-page: 34 year: 1975 ident: 10.1016/j.jct.2013.03.025_b0080 publication-title: J. Can. Pet. Technol. – volume: 27 start-page: 1197 year: 1972 ident: 10.1016/j.jct.2013.03.025_b0105 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(72)80096-4 – volume: 32 start-page: 42 year: 2012 ident: 10.1016/j.jct.2013.03.025_b0210 publication-title: Nat. Gas Ind. – volume: 337 start-page: 363 year: 2013 ident: 10.1016/j.jct.2013.03.025_b0055 publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2012.10.011 – volume: 19 start-page: 561 year: 2005 ident: 10.1016/j.jct.2013.03.025_b0195 publication-title: Energy Fuels doi: 10.1021/ef0498465 – start-page: 1205 year: 1983 ident: 10.1016/j.jct.2013.03.025_b0180 publication-title: J. Pet. Technol. doi: 10.2118/9995-PA – volume: 16 start-page: 137 year: 1984 ident: 10.1016/j.jct.2013.03.025_b0170 publication-title: Fluid Phase Equilib. doi: 10.1016/0378-3812(84)85027-X – volume: 111 start-page: 287 year: 1995 ident: 10.1016/j.jct.2013.03.025_b0005 publication-title: Fluid Phase Equilib. doi: 10.1016/0378-3812(95)02771-6 – volume: 31 start-page: 1378 year: 1992 ident: 10.1016/j.jct.2013.03.025_b0190 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00005a019 – volume: 15 start-page: 807 year: 2001 ident: 10.1016/j.jct.2013.03.025_b0020 publication-title: Energy Fuels doi: 10.1021/ef000216m – volume: 51 start-page: 6916 year: 2012 ident: 10.1016/j.jct.2013.03.025_b0050 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie2025757 – ident: 10.1016/j.jct.2013.03.025_b0075 – volume: 76 start-page: 225 year: 1992 ident: 10.1016/j.jct.2013.03.025_b0010 publication-title: Fluid Phase Equilib. doi: 10.1016/0378-3812(92)85090-U – volume: 34 start-page: 1703 year: 2002 ident: 10.1016/j.jct.2013.03.025_b0030 publication-title: J. Chem. Thermodyn. doi: 10.1016/S0021-9614(02)00233-1 – volume: 90 start-page: 785 year: 2012 ident: 10.1016/j.jct.2013.03.025_b0100 publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2011.10.006 – volume: 103 start-page: 199 year: 1995 ident: 10.1016/j.jct.2013.03.025_b0140 publication-title: Fluid Phase Equilib. doi: 10.1016/0378-3812(94)02577-N – volume: 288 start-page: 1 year: 2010 ident: 10.1016/j.jct.2013.03.025_b0015 publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2009.08.008 – volume: 19 start-page: 189 year: 2010 ident: 10.1016/j.jct.2013.03.025_b0090 publication-title: J. Nat. Gas Chem. doi: 10.1016/S1003-9953(09)60050-5 – volume: 73 start-page: 67 year: 2010 ident: 10.1016/j.jct.2013.03.025_b0095 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2010.05.008 – volume: 17 start-page: 743 year: 2006 ident: 10.1016/j.jct.2013.03.025_b0125 publication-title: Nat. Gas Geosci. – volume: 71 start-page: 82 year: 1973 ident: 10.1016/j.jct.2013.03.025_b0070 publication-title: Oil Gas J. – ident: 10.1016/j.jct.2013.03.025_b0035 – volume: 7 start-page: 163 year: 1980 ident: 10.1016/j.jct.2013.03.025_b0175 publication-title: Hydrocarb. Process. – ident: 10.1016/j.jct.2013.03.025_b0165 – volume: 260 start-page: 326 year: 2007 ident: 10.1016/j.jct.2013.03.025_b0040 publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2007.07.075 – volume: 93 start-page: 23 year: 1994 ident: 10.1016/j.jct.2013.03.025_b0110 publication-title: Fluid Phase Equilib. doi: 10.1016/0378-3812(94)87002-0 – volume: 260 start-page: 87 year: 2007 ident: 10.1016/j.jct.2013.03.025_b0145 publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2006.09.004 – volume: 267 start-page: 113 year: 2008 ident: 10.1016/j.jct.2013.03.025_b0115 publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2008.02.017 – volume: 355 start-page: 107 year: 2000 ident: 10.1016/j.jct.2013.03.025_b0150 publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(00)00441-X – volume: 146 start-page: 140 year: 1942 ident: 10.1016/j.jct.2013.03.025_b0065 publication-title: Trans. AIME doi: 10.2118/942140-G |
SSID | ssj0009390 |
Score | 1.9947633 |
Snippet | •Volumetric properties of two reservoir fluid samples were measured with pressure up to 116MPa.•Dew point pressures at four temperatures for condensate gas... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 38 |
SubjectTerms | Condensate gas Dew point pressure Gas compressibility factor Thermodynamics |
Title | Measurement and calculation of gas compressibility factor for condensate gas and natural gas under pressure up to 116MPa |
URI | https://dx.doi.org/10.1016/j.jct.2013.03.025 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHvQiPrE-yh48CbHZ7G4ex1IsVWnxYKG3sE9pkbT0AXrxtzu7SayCehBCIMlONkx2Z4bdb-ZD6Cq2wkYhk4HMhAkYgVNGOQ0I_G4byohQX-x5MIz7I3Y_5uMG6ta5MA5WWdn-0qZ7a13daVfabM8nE5fjC7MNvIvbkAH76zLKGUvcKL9538A8Mlqus3goArSudzY9xmuqHJySUF_n1LFl_-Sbvvib3j7aqwJF3Cm_5QA1THGIdro1P9sReh1slvewKDQGbauKjAvPLH4WS-wA4x7o6iGwb7hk18EQqMIjx327hFDTt3Qv8EU-oU937XLLFtgLQx94PcerGSYkHjyKYzTq3T51-0HFoxAoAlMyyJggoY6lJKlIpY4VzDwlTCIimRkRJ1SmKTUZTxJXPI5qTo0ME8W4zZROqaUnaKuYFeYUYaYjlWipjYks4xCYS22FAZuR8TCyMm6isNZgrqoi447r4iWv0WTTHJSeO6XnIRwRb6LrT5F5WWHjr8as_i35t2GSgwf4Xezsf2LnaDfy7BcO73eBtlaLtbmEGGQlW36QtdB25-6hP_wAchbcHQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH5oe6gXccW65uBJGJxMJrMcS1FatcVDC96GrNIibakV9N_7kplxAfUgDAOzvMnwkrw8ki_fB3CeWGGjMJaBzIUJYoqnnHEWUKxuG8qIMk_2PBgmvXF888Af1qBb74VxsMoq9pcx3Ufr6s5l5c3LxWTi9vhib8PRxS3IYPxN16Hp2Kl4A5qd_m1v-Mm9y8qpFo9GQIN6cdPDvKbKISop81SnTjD7p-Hpy5BzvQWbVa5IOuXvbMOame1Aq1tLtO3C6-Bzho-ImSbocFXpcZG5JY_imTjMuMe6ehTsGykFdgjmqvjIyd8-Y7bp33Qf8DyfWKa7dtvLlsQbYxnkZUFWc0JpMrgXezC-vhp1e0ElpRAoir0yyGNBQ51ISTORSZ0o7HxKmFREMjciSZnMMmZynqaOP45pzowMUxVzmyudMcv2oTGbz8wBkFhHKtVSGxPZmGNuLrUVBsNGzsPIyqQNYe3BQlU8407u4qmoAWXTAp1eOKcXIR4Rb8PFh8miJNn46-W4rpbiW0spcBD43ezwf2Zn0OqNBnfFXX94ewQbkRfDcPC_Y2isli_mBFOSlTytmtw7Bhjezg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+and+calculation+of+gas+compressibility+factor+for+condensate+gas+and+natural+gas+under+pressure+up+to+116MPa&rft.jtitle=The+Journal+of+chemical+thermodynamics&rft.au=Yan%2C+Ke-Le&rft.au=Liu%2C+Huang&rft.au=Sun%2C+Chang-Yu&rft.au=Ma%2C+Qing-Lan&rft.date=2013-08-01&rft.pub=Elsevier+Ltd&rft.issn=0021-9614&rft.eissn=1096-3626&rft.volume=63&rft.spage=38&rft.epage=43&rft_id=info:doi/10.1016%2Fj.jct.2013.03.025&rft.externalDocID=S0021961413001237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9614&client=summon |