Measurement and calculation of gas compressibility factor for condensate gas and natural gas under pressure up to 116MPa

•Volumetric properties of two reservoir fluid samples were measured with pressure up to 116MPa.•Dew point pressures at four temperatures for condensate gas sample are obtained.•Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared.•The therm...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical thermodynamics Vol. 63; pp. 38 - 43
Main Authors Yan, Ke-Le, Liu, Huang, Sun, Chang-Yu, Ma, Qing-Lan, Chen, Guang-Jin, Shen, De-Ji, Xiao, Xiang-Jiao, Wang, Hai-Ying
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2013
Subjects
Online AccessGet full text
ISSN0021-9614
1096-3626
DOI10.1016/j.jct.2013.03.025

Cover

Loading…
Abstract •Volumetric properties of two reservoir fluid samples were measured with pressure up to 116MPa.•Dew point pressures at four temperatures for condensate gas sample are obtained.•Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared.•The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range. The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50)MPa, while there is the opposite trend when the pressure is lower than (45 to 50)MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs.
AbstractList •Volumetric properties of two reservoir fluid samples were measured with pressure up to 116MPa.•Dew point pressures at four temperatures for condensate gas sample are obtained.•Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared.•The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range. The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50)MPa, while there is the opposite trend when the pressure is lower than (45 to 50)MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs.
Author Wang, Hai-Ying
Liu, Huang
Ma, Qing-Lan
Yan, Ke-Le
Sun, Chang-Yu
Chen, Guang-Jin
Shen, De-Ji
Xiao, Xiang-Jiao
Author_xml – sequence: 1
  givenname: Ke-Le
  surname: Yan
  fullname: Yan, Ke-Le
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 2
  givenname: Huang
  surname: Liu
  fullname: Liu, Huang
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 3
  givenname: Chang-Yu
  surname: Sun
  fullname: Sun, Chang-Yu
  email: cysun@cup.edu.cn
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 4
  givenname: Qing-Lan
  surname: Ma
  fullname: Ma, Qing-Lan
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 5
  givenname: Guang-Jin
  surname: Chen
  fullname: Chen, Guang-Jin
  email: gjchen@cup.edu.cn
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 6
  givenname: De-Ji
  surname: Shen
  fullname: Shen, De-Ji
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 7
  givenname: Xiang-Jiao
  surname: Xiao
  fullname: Xiao, Xiang-Jiao
  organization: Research Institute of Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, China
– sequence: 8
  givenname: Hai-Ying
  surname: Wang
  fullname: Wang, Hai-Ying
  organization: Research Institute of Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, China
BookMark eNp9kM9OwzAMxiM0JDbgAbjlBTqcpk1bcUKIf9IQHOBcuamLMnXJlKSIvT3Z4MRhki3Lsn-f5W_BZtZZYuxKwFKAUNfr5VrHZQ5CLiFFXp6wuYBGZVLlasbmALnIGiWKM7YIYQ0AjWxgzr5fCMPkaUM2crQ91zjqacRonOVu4J8YuHabracQTGdGE3d8QB2d50NK7WxPNmCkw-ZewGKcPI6HfkpTzw9wusGnLY-OC6Fe3vCCnQ44Brr8q-fs4-H-_e4pW70-Pt_drjItirzMmgIF9KrrRI111ysNUGqkCvOuIVSV7OpaUlNWFRRFIftSUgeVLsqh0X0tB3nOxK-u9i4ET0O79WaDftcKaPfWtes2WdfurWshRV4mpvrHaBMPlkSPZjxK3vySlF76MuTboA1ZTb3xlHZ7Z47QP5aQjMo
CitedBy_id crossref_primary_10_1016_j_fluid_2023_113978
crossref_primary_10_1016_j_jngse_2013_10_004
crossref_primary_10_1016_j_fuel_2014_05_066
crossref_primary_10_3390_en16010105
crossref_primary_10_1515_zna_2017_0225
crossref_primary_10_1016_j_molliq_2015_12_103
crossref_primary_10_1016_j_ngib_2015_09_001
crossref_primary_10_1063_1_5096618
crossref_primary_10_1016_j_jngse_2014_07_021
crossref_primary_10_1016_j_petrol_2018_08_020
crossref_primary_10_1016_j_fluid_2019_112256
crossref_primary_10_1016_j_petlm_2016_05_001
crossref_primary_10_1007_s40948_019_00116_1
crossref_primary_10_1016_j_jngse_2020_103759
crossref_primary_10_1021_acs_jced_4c00460
crossref_primary_10_1080_10916466_2016_1221967
crossref_primary_10_1002_cjce_23215
crossref_primary_10_1016_j_fuel_2024_131147
crossref_primary_10_1016_j_flowmeasinst_2018_10_013
Cites_doi 10.1016/j.fluid.2005.11.010
10.1016/S0378-3812(96)03140-8
10.1002/bbpc.199500057
10.1063/1.1750658
10.1021/je010053b
10.1016/S0378-3812(02)00305-9
10.1016/0009-2509(72)80096-4
10.1016/j.fluid.2012.10.011
10.1021/ef0498465
10.2118/9995-PA
10.1016/0378-3812(84)85027-X
10.1016/0378-3812(95)02771-6
10.1021/ie00005a019
10.1021/ef000216m
10.1021/ie2025757
10.1016/0378-3812(92)85090-U
10.1016/S0021-9614(02)00233-1
10.1016/j.cherd.2011.10.006
10.1016/0378-3812(94)02577-N
10.1016/j.fluid.2009.08.008
10.1016/S1003-9953(09)60050-5
10.1016/j.petrol.2010.05.008
10.1016/j.fluid.2007.07.075
10.1016/0378-3812(94)87002-0
10.1016/j.fluid.2006.09.004
10.1016/j.fluid.2008.02.017
10.1016/S0040-6031(00)00441-X
10.2118/942140-G
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jct.2013.03.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-3626
EndPage 43
ExternalDocumentID 10_1016_j_jct_2013_03_025
S0021961413001237
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
9M8
A6W
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LG5
M35
M41
MAGPM
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSK
SSR
SSZ
T5K
UPT
VOH
WH7
WUQ
XJT
XOL
XPP
YQT
ZCG
ZU3
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c1425-94a10d6bb18a8bd6c005cae7a2b9ea673b883e957704443d53eb07c45f9cd83f3
IEDL.DBID .~1
ISSN 0021-9614
IngestDate Thu Apr 24 22:56:29 EDT 2025
Tue Jul 01 01:07:16 EDT 2025
Fri Feb 23 02:12:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Model
Thermodynamics
Gas compressibility factor
Dew point pressure
Condensate gas
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1425-94a10d6bb18a8bd6c005cae7a2b9ea673b883e957704443d53eb07c45f9cd83f3
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_jct_2013_03_025
crossref_citationtrail_10_1016_j_jct_2013_03_025
elsevier_sciencedirect_doi_10_1016_j_jct_2013_03_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2013
2013-8-00
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationTitle The Journal of chemical thermodynamics
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chylinski, Djamarani, Drummond, Saville, Wakeham (b0010) 1992; 76
Gozalpour, Danesh, Todd, Tehrani, Tohidi (b0130) 2003; 206
Dranchuk, Abou-Kassem (b0080) 1975
X.Q. Guo, Study on the phase behaviour and transport property of normal and abnormal reservoir fluids, University of Petroleum, Beijing, China, 1995.
Twu (b0170) 1984; 16
Ungerer, Faissat, Leibovici, Zhou, Behar, Moracchini, Courcy (b0005) 1995; 111
Gozalpour, Danesh, Todd, Tohidi (b0060) 2001; 46
Randzio (b0150) 2000; 355
C.H. Whitson, T.F. Anderson, I. Soreide, AIChE meeting, New Orleans, USA, 1988.
W. Yan, Study on the phase behaviour of near-critical reservoir fluids and the phase equilibrium of hydrocarbon-water systems, University of Petroleum, Beijing, China, 1999.
Shokir, El-Awad, Al-Quraishi, Al-Mahdy (b0100) 2012; 90
Lee, Kesler (b0175) 1980; 7
Bonyadi, Esmaeilzadeh (b0040) 2007; 260
Nasrifar, Bolland, Moshfeghian (b0195) 2005; 19
Elsharkawy, Hashem, Alikhan (b0020) 2001; 15
Soave (b0105) 1972; 27
Katz (b0180) 1983
Dohrn, Peper, Fonseca (b0015) 2010; 288
Anastasiades, Stamataki, Tassios (b0110) 1994; 93
Bennedict, Webb, Rubin (b0155) 1940; 8
Liu, Sun, Yan, Ma, Wang, Chen, Xiao, Wang, Zheng, Li (b0055) 2013; 337
Deiters, Randzio (b0145) 2007; 260
P.M. Boston, P.M. Mathias, in: Proceedings of the second International Conference on Phase Equilibria and Fluid Properties in the Chemical Process Industries, West Berlin, 1980, pp. 823–849.
Jiang, Xiao, Zheng, Tang, Lin, Wang (b0125) 2006; 17
Chylinski, Cebola, Meredith, Saville, Wakeham (b0030) 2002; 34
Heidaryan, Moghadasi, Rahimi (b0095) 2010; 73
Randzio, Deiters (b0135) 1995; 99
J.P. Brill, H.D. Beggs, Two phase flow in pipes, Intercompressibility course, University of Tulsa, 1974.
Barreau, Gaillard, Béhar, Daridon, Lagourette, Xans (b0120) 1997; 127
Sun, Liu, Yan, Ma, Liu, Chen, Xiao, Wang, Zheng, Li (b0050) 2012; 51
R.H. Cavett, in: Proceedings of the 27th API Meeting, San Francisco, CA, 1962, pp. 351–366.
Pedersen, Blilie, Meisingset (b0190) 1992; 31
Standing, Katz (b0065) 1942; 146
Heidaryan, Salarabadi, Moghadasi (b0090) 2010; 19
Kay (b0205) 1936; 28
Mørch, Nasrifar, Bolland, Solbraa, Fredheim, Gjertsen (b0025) 2006; 239
Xiao, Yan, Wang, Liu, Sun, Sun (b0210) 2012; 32
Esmaeilzadeh, Samadi (b0115) 2008; 267
Deiters, Randzio (b0140) 1995; 103
P.M. Dranchuk, R.A. Purvis, D.B. Robinson, Institute Petrol. Tech. Series IP74-008 (1974) 1–13.
Kesler, Lee (b0200) 1976; 55
Hall, Yaborough (b0070) 1973; 71
Shokir (10.1016/j.jct.2013.03.025_b0100) 2012; 90
Randzio (10.1016/j.jct.2013.03.025_b0135) 1995; 99
Sun (10.1016/j.jct.2013.03.025_b0050) 2012; 51
Dranchuk (10.1016/j.jct.2013.03.025_b0080) 1975
Esmaeilzadeh (10.1016/j.jct.2013.03.025_b0115) 2008; 267
Jiang (10.1016/j.jct.2013.03.025_b0125) 2006; 17
Dohrn (10.1016/j.jct.2013.03.025_b0015) 2010; 288
Deiters (10.1016/j.jct.2013.03.025_b0140) 1995; 103
Heidaryan (10.1016/j.jct.2013.03.025_b0090) 2010; 19
Twu (10.1016/j.jct.2013.03.025_b0170) 1984; 16
Chylinski (10.1016/j.jct.2013.03.025_b0010) 1992; 76
Hall (10.1016/j.jct.2013.03.025_b0070) 1973; 71
Heidaryan (10.1016/j.jct.2013.03.025_b0095) 2010; 73
10.1016/j.jct.2013.03.025_b0185
Bonyadi (10.1016/j.jct.2013.03.025_b0040) 2007; 260
10.1016/j.jct.2013.03.025_b0165
10.1016/j.jct.2013.03.025_b0045
Randzio (10.1016/j.jct.2013.03.025_b0150) 2000; 355
10.1016/j.jct.2013.03.025_b0160
Pedersen (10.1016/j.jct.2013.03.025_b0190) 1992; 31
10.1016/j.jct.2013.03.025_b0085
Mørch (10.1016/j.jct.2013.03.025_b0025) 2006; 239
Gozalpour (10.1016/j.jct.2013.03.025_b0130) 2003; 206
Deiters (10.1016/j.jct.2013.03.025_b0145) 2007; 260
Anastasiades (10.1016/j.jct.2013.03.025_b0110) 1994; 93
Ungerer (10.1016/j.jct.2013.03.025_b0005) 1995; 111
Chylinski (10.1016/j.jct.2013.03.025_b0030) 2002; 34
Soave (10.1016/j.jct.2013.03.025_b0105) 1972; 27
Barreau (10.1016/j.jct.2013.03.025_b0120) 1997; 127
Liu (10.1016/j.jct.2013.03.025_b0055) 2013; 337
Nasrifar (10.1016/j.jct.2013.03.025_b0195) 2005; 19
Kay (10.1016/j.jct.2013.03.025_b0205) 1936; 28
Katz (10.1016/j.jct.2013.03.025_b0180) 1983
Kesler (10.1016/j.jct.2013.03.025_b0200) 1976; 55
10.1016/j.jct.2013.03.025_b0035
Standing (10.1016/j.jct.2013.03.025_b0065) 1942; 146
Bennedict (10.1016/j.jct.2013.03.025_b0155) 1940; 8
10.1016/j.jct.2013.03.025_b0075
Lee (10.1016/j.jct.2013.03.025_b0175) 1980; 7
Xiao (10.1016/j.jct.2013.03.025_b0210) 2012; 32
Gozalpour (10.1016/j.jct.2013.03.025_b0060) 2001; 46
Elsharkawy (10.1016/j.jct.2013.03.025_b0020) 2001; 15
References_xml – volume: 93
  start-page: 23
  year: 1994
  end-page: 54
  ident: b0110
  publication-title: Fluid Phase Equilib.
– volume: 260
  start-page: 87
  year: 2007
  end-page: 97
  ident: b0145
  publication-title: Fluid Phase Equilib.
– volume: 7
  start-page: 163
  year: 1980
  end-page: 167
  ident: b0175
  publication-title: Hydrocarb. Process.
– volume: 111
  start-page: 287
  year: 1995
  end-page: 311
  ident: b0005
  publication-title: Fluid Phase Equilib.
– volume: 19
  start-page: 189
  year: 2010
  end-page: 192
  ident: b0090
  publication-title: J. Nat. Gas Chem.
– volume: 90
  start-page: 785
  year: 2012
  end-page: 792
  ident: b0100
  publication-title: Chem. Eng. Res. Des.
– volume: 28
  start-page: 1014
  year: 1936
  end-page: 1019
  ident: b0205
  publication-title: Ind. Eng. Chem.
– volume: 71
  start-page: 82
  year: 1973
  end-page: 92
  ident: b0070
  publication-title: Oil Gas J.
– start-page: 34
  year: 1975
  end-page: 36
  ident: b0080
  publication-title: J. Can. Pet. Technol.
– volume: 260
  start-page: 326
  year: 2007
  end-page: 334
  ident: b0040
  publication-title: Fluid Phase Equilib.
– volume: 355
  start-page: 107
  year: 2000
  end-page: 113
  ident: b0150
  publication-title: Thermochim. Acta
– volume: 146
  start-page: 140
  year: 1942
  end-page: 149
  ident: b0065
  publication-title: Trans. AIME
– reference: P.M. Boston, P.M. Mathias, in: Proceedings of the second International Conference on Phase Equilibria and Fluid Properties in the Chemical Process Industries, West Berlin, 1980, pp. 823–849.
– volume: 239
  start-page: 138
  year: 2006
  end-page: 145
  ident: b0025
  publication-title: Fluid Phase Equilib.
– volume: 337
  start-page: 363
  year: 2013
  end-page: 369
  ident: b0055
  publication-title: Fluid Phase Equilib.
– volume: 55
  start-page: 153
  year: 1976
  end-page: 158
  ident: b0200
  publication-title: Hydrocarb. Process.
– volume: 127
  start-page: 155
  year: 1997
  end-page: 171
  ident: b0120
  publication-title: Fluid Phase Equilib.
– volume: 99
  start-page: 1179
  year: 1995
  end-page: 1186
  ident: b0135
  publication-title: Ber. Bunsenges. Phys. Chem.
– volume: 288
  start-page: 1
  year: 2010
  end-page: 54
  ident: b0015
  publication-title: Fluid Phase Equilib.
– volume: 19
  start-page: 561
  year: 2005
  end-page: 572
  ident: b0195
  publication-title: Energy Fuels
– volume: 34
  start-page: 1703
  year: 2002
  end-page: 1728
  ident: b0030
  publication-title: J. Chem. Thermodyn.
– volume: 17
  start-page: 743
  year: 2006
  end-page: 746
  ident: b0125
  publication-title: Nat. Gas Geosci.
– reference: W. Yan, Study on the phase behaviour of near-critical reservoir fluids and the phase equilibrium of hydrocarbon-water systems, University of Petroleum, Beijing, China, 1999.
– volume: 206
  start-page: 95
  year: 2003
  end-page: 104
  ident: b0130
  publication-title: Fluid Phase Equilib.
– start-page: 1205
  year: 1983
  end-page: 1214
  ident: b0180
  publication-title: J. Pet. Technol.
– volume: 46
  start-page: 1305
  year: 2001
  end-page: 1308
  ident: b0060
  publication-title: J. Chem. Eng. Data.
– volume: 76
  start-page: 225
  year: 1992
  end-page: 235
  ident: b0010
  publication-title: Fluid Phase Equilib.
– reference: R.H. Cavett, in: Proceedings of the 27th API Meeting, San Francisco, CA, 1962, pp. 351–366.
– volume: 32
  start-page: 42
  year: 2012
  end-page: 46
  ident: b0210
  publication-title: Nat. Gas Ind.
– volume: 103
  start-page: 199
  year: 1995
  end-page: 212
  ident: b0140
  publication-title: Fluid Phase Equilib.
– volume: 31
  start-page: 1378
  year: 1992
  end-page: 1384
  ident: b0190
  publication-title: Ind. Eng. Chem. Res.
– volume: 15
  start-page: 807
  year: 2001
  end-page: 816
  ident: b0020
  publication-title: Energy Fuels
– reference: P.M. Dranchuk, R.A. Purvis, D.B. Robinson, Institute Petrol. Tech. Series IP74-008 (1974) 1–13.
– reference: C.H. Whitson, T.F. Anderson, I. Soreide, AIChE meeting, New Orleans, USA, 1988.
– reference: X.Q. Guo, Study on the phase behaviour and transport property of normal and abnormal reservoir fluids, University of Petroleum, Beijing, China, 1995.
– volume: 73
  start-page: 67
  year: 2010
  end-page: 72
  ident: b0095
  publication-title: J. Pet. Sci. Eng.
– volume: 51
  start-page: 6916
  year: 2012
  end-page: 6925
  ident: b0050
  publication-title: Ind. Eng. Chem. Res.
– reference: J.P. Brill, H.D. Beggs, Two phase flow in pipes, Intercompressibility course, University of Tulsa, 1974.
– volume: 8
  start-page: 334
  year: 1940
  end-page: 345
  ident: b0155
  publication-title: J. Chem. Phys.
– volume: 16
  start-page: 137
  year: 1984
  end-page: 150
  ident: b0170
  publication-title: Fluid Phase Equilib.
– volume: 27
  start-page: 1197
  year: 1972
  end-page: 1203
  ident: b0105
  publication-title: Chem. Eng. Sci.
– volume: 267
  start-page: 113
  year: 2008
  end-page: 118
  ident: b0115
  publication-title: Fluid Phase Equilib.
– volume: 239
  start-page: 138
  year: 2006
  ident: 10.1016/j.jct.2013.03.025_b0025
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2005.11.010
– volume: 127
  start-page: 155
  year: 1997
  ident: 10.1016/j.jct.2013.03.025_b0120
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/S0378-3812(96)03140-8
– volume: 99
  start-page: 1179
  year: 1995
  ident: 10.1016/j.jct.2013.03.025_b0135
  publication-title: Ber. Bunsenges. Phys. Chem.
  doi: 10.1002/bbpc.199500057
– ident: 10.1016/j.jct.2013.03.025_b0045
– volume: 8
  start-page: 334
  year: 1940
  ident: 10.1016/j.jct.2013.03.025_b0155
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750658
– ident: 10.1016/j.jct.2013.03.025_b0185
– volume: 55
  start-page: 153
  year: 1976
  ident: 10.1016/j.jct.2013.03.025_b0200
  publication-title: Hydrocarb. Process.
– ident: 10.1016/j.jct.2013.03.025_b0160
– volume: 46
  start-page: 1305
  year: 2001
  ident: 10.1016/j.jct.2013.03.025_b0060
  publication-title: J. Chem. Eng. Data.
  doi: 10.1021/je010053b
– ident: 10.1016/j.jct.2013.03.025_b0085
– volume: 28
  start-page: 1014
  year: 1936
  ident: 10.1016/j.jct.2013.03.025_b0205
  publication-title: Ind. Eng. Chem.
– volume: 206
  start-page: 95
  year: 2003
  ident: 10.1016/j.jct.2013.03.025_b0130
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/S0378-3812(02)00305-9
– start-page: 34
  year: 1975
  ident: 10.1016/j.jct.2013.03.025_b0080
  publication-title: J. Can. Pet. Technol.
– volume: 27
  start-page: 1197
  year: 1972
  ident: 10.1016/j.jct.2013.03.025_b0105
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(72)80096-4
– volume: 32
  start-page: 42
  year: 2012
  ident: 10.1016/j.jct.2013.03.025_b0210
  publication-title: Nat. Gas Ind.
– volume: 337
  start-page: 363
  year: 2013
  ident: 10.1016/j.jct.2013.03.025_b0055
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2012.10.011
– volume: 19
  start-page: 561
  year: 2005
  ident: 10.1016/j.jct.2013.03.025_b0195
  publication-title: Energy Fuels
  doi: 10.1021/ef0498465
– start-page: 1205
  year: 1983
  ident: 10.1016/j.jct.2013.03.025_b0180
  publication-title: J. Pet. Technol.
  doi: 10.2118/9995-PA
– volume: 16
  start-page: 137
  year: 1984
  ident: 10.1016/j.jct.2013.03.025_b0170
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/0378-3812(84)85027-X
– volume: 111
  start-page: 287
  year: 1995
  ident: 10.1016/j.jct.2013.03.025_b0005
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/0378-3812(95)02771-6
– volume: 31
  start-page: 1378
  year: 1992
  ident: 10.1016/j.jct.2013.03.025_b0190
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00005a019
– volume: 15
  start-page: 807
  year: 2001
  ident: 10.1016/j.jct.2013.03.025_b0020
  publication-title: Energy Fuels
  doi: 10.1021/ef000216m
– volume: 51
  start-page: 6916
  year: 2012
  ident: 10.1016/j.jct.2013.03.025_b0050
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie2025757
– ident: 10.1016/j.jct.2013.03.025_b0075
– volume: 76
  start-page: 225
  year: 1992
  ident: 10.1016/j.jct.2013.03.025_b0010
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/0378-3812(92)85090-U
– volume: 34
  start-page: 1703
  year: 2002
  ident: 10.1016/j.jct.2013.03.025_b0030
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/S0021-9614(02)00233-1
– volume: 90
  start-page: 785
  year: 2012
  ident: 10.1016/j.jct.2013.03.025_b0100
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2011.10.006
– volume: 103
  start-page: 199
  year: 1995
  ident: 10.1016/j.jct.2013.03.025_b0140
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/0378-3812(94)02577-N
– volume: 288
  start-page: 1
  year: 2010
  ident: 10.1016/j.jct.2013.03.025_b0015
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2009.08.008
– volume: 19
  start-page: 189
  year: 2010
  ident: 10.1016/j.jct.2013.03.025_b0090
  publication-title: J. Nat. Gas Chem.
  doi: 10.1016/S1003-9953(09)60050-5
– volume: 73
  start-page: 67
  year: 2010
  ident: 10.1016/j.jct.2013.03.025_b0095
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2010.05.008
– volume: 17
  start-page: 743
  year: 2006
  ident: 10.1016/j.jct.2013.03.025_b0125
  publication-title: Nat. Gas Geosci.
– volume: 71
  start-page: 82
  year: 1973
  ident: 10.1016/j.jct.2013.03.025_b0070
  publication-title: Oil Gas J.
– ident: 10.1016/j.jct.2013.03.025_b0035
– volume: 7
  start-page: 163
  year: 1980
  ident: 10.1016/j.jct.2013.03.025_b0175
  publication-title: Hydrocarb. Process.
– ident: 10.1016/j.jct.2013.03.025_b0165
– volume: 260
  start-page: 326
  year: 2007
  ident: 10.1016/j.jct.2013.03.025_b0040
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2007.07.075
– volume: 93
  start-page: 23
  year: 1994
  ident: 10.1016/j.jct.2013.03.025_b0110
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/0378-3812(94)87002-0
– volume: 260
  start-page: 87
  year: 2007
  ident: 10.1016/j.jct.2013.03.025_b0145
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2006.09.004
– volume: 267
  start-page: 113
  year: 2008
  ident: 10.1016/j.jct.2013.03.025_b0115
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2008.02.017
– volume: 355
  start-page: 107
  year: 2000
  ident: 10.1016/j.jct.2013.03.025_b0150
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(00)00441-X
– volume: 146
  start-page: 140
  year: 1942
  ident: 10.1016/j.jct.2013.03.025_b0065
  publication-title: Trans. AIME
  doi: 10.2118/942140-G
SSID ssj0009390
Score 1.9947633
Snippet •Volumetric properties of two reservoir fluid samples were measured with pressure up to 116MPa.•Dew point pressures at four temperatures for condensate gas...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 38
SubjectTerms Condensate gas
Dew point pressure
Gas compressibility factor
Thermodynamics
Title Measurement and calculation of gas compressibility factor for condensate gas and natural gas under pressure up to 116MPa
URI https://dx.doi.org/10.1016/j.jct.2013.03.025
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHvQiPrE-yh48CbHZ7G4ex1IsVWnxYKG3sE9pkbT0AXrxtzu7SayCehBCIMlONkx2Z4bdb-ZD6Cq2wkYhk4HMhAkYgVNGOQ0I_G4byohQX-x5MIz7I3Y_5uMG6ta5MA5WWdn-0qZ7a13daVfabM8nE5fjC7MNvIvbkAH76zLKGUvcKL9538A8Mlqus3goArSudzY9xmuqHJySUF_n1LFl_-Sbvvib3j7aqwJF3Cm_5QA1THGIdro1P9sReh1slvewKDQGbauKjAvPLH4WS-wA4x7o6iGwb7hk18EQqMIjx327hFDTt3Qv8EU-oU937XLLFtgLQx94PcerGSYkHjyKYzTq3T51-0HFoxAoAlMyyJggoY6lJKlIpY4VzDwlTCIimRkRJ1SmKTUZTxJXPI5qTo0ME8W4zZROqaUnaKuYFeYUYaYjlWipjYks4xCYS22FAZuR8TCyMm6isNZgrqoi447r4iWv0WTTHJSeO6XnIRwRb6LrT5F5WWHjr8as_i35t2GSgwf4Xezsf2LnaDfy7BcO73eBtlaLtbmEGGQlW36QtdB25-6hP_wAchbcHQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH5oe6gXccW65uBJGJxMJrMcS1FatcVDC96GrNIibakV9N_7kplxAfUgDAOzvMnwkrw8ki_fB3CeWGGjMJaBzIUJYoqnnHEWUKxuG8qIMk_2PBgmvXF888Af1qBb74VxsMoq9pcx3Ufr6s5l5c3LxWTi9vhib8PRxS3IYPxN16Hp2Kl4A5qd_m1v-Mm9y8qpFo9GQIN6cdPDvKbKISop81SnTjD7p-Hpy5BzvQWbVa5IOuXvbMOame1Aq1tLtO3C6-Bzho-ImSbocFXpcZG5JY_imTjMuMe6ehTsGykFdgjmqvjIyd8-Y7bp33Qf8DyfWKa7dtvLlsQbYxnkZUFWc0JpMrgXezC-vhp1e0ElpRAoir0yyGNBQ51ISTORSZ0o7HxKmFREMjciSZnMMmZynqaOP45pzowMUxVzmyudMcv2oTGbz8wBkFhHKtVSGxPZmGNuLrUVBsNGzsPIyqQNYe3BQlU8407u4qmoAWXTAp1eOKcXIR4Rb8PFh8miJNn46-W4rpbiW0spcBD43ezwf2Zn0OqNBnfFXX94ewQbkRfDcPC_Y2isli_mBFOSlTytmtw7Bhjezg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+and+calculation+of+gas+compressibility+factor+for+condensate+gas+and+natural+gas+under+pressure+up+to+116MPa&rft.jtitle=The+Journal+of+chemical+thermodynamics&rft.au=Yan%2C+Ke-Le&rft.au=Liu%2C+Huang&rft.au=Sun%2C+Chang-Yu&rft.au=Ma%2C+Qing-Lan&rft.date=2013-08-01&rft.pub=Elsevier+Ltd&rft.issn=0021-9614&rft.eissn=1096-3626&rft.volume=63&rft.spage=38&rft.epage=43&rft_id=info:doi/10.1016%2Fj.jct.2013.03.025&rft.externalDocID=S0021961413001237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9614&client=summon