Oral Administration of FT-4202, an Allosteric Activator of Pyruvate Kinase-R, Has Potent Anti-Sickling Effects in a Sickle Cell Anemia (SCA) Mouse Model, Resulting in Improved RBC Survival and Hemoglobin Levels

Introduction: Sickle cell anemia (SCA) results from a mutant β-globin gene that produces abnormal hemoglobin S (HbS). HbS polymerizes upon deoxygenation, resulting in red blood cell (RBC) sickling and membrane damage, leading to vaso-occlusions and hemolysis. Additionally, sickle RBCs contain less A...

Full description

Saved in:
Bibliographic Details
Published inBlood Vol. 136; no. Supplement 1; pp. 21 - 22
Main Authors Shrestha, Archana, Chi, Mengna, Wagner, Kimberly, Drake, Adam, Fulzele, Keertik, Guichard, Sylvie, Malik, Punam
Format Journal Article
LanguageEnglish
Published Elsevier Inc 05.11.2020
Online AccessGet full text
ISSN0006-4971
1528-0020
DOI10.1182/blood-2020-140875

Cover

Abstract Introduction: Sickle cell anemia (SCA) results from a mutant β-globin gene that produces abnormal hemoglobin S (HbS). HbS polymerizes upon deoxygenation, resulting in red blood cell (RBC) sickling and membrane damage, leading to vaso-occlusions and hemolysis. Additionally, sickle RBCs contain less ATP and more 2,3-diphosphoglycerate (2,3-DPG) than normal RBCs; 2,3,DPG allosterically reduces hemoglobin (Hb) oxygen (O2)-affinity [i.e. increases P50], promoting faster unloading of O2, which potentiates HbS polymerization and RBC sickling. FT-4202, a selective and orally bioavailable allosteric activator of RBC pyruvate kinase (PKR), decreases 2,3-DPG and increases ATP in normal human RBCs (Blood, 2019, 134, Supplement 1:616). We hypothesized that oral administration of FT-4202 to SCA mice will increase HbS O2-affinity, and thereby decrease RBC sickling and membrane damage. Methods: Berkeley SCA mice were given 500-1000 mg/kg/day FT-4202 in chow (FT-4202 group) or control chow (control group) in 4 cohorts for 2 weeks (total 17-18 mice/group). In all cohorts, the health status, weight, and average chow consumption of each mouse was determined 3 times/week. Three cohorts were injected with sulfo-NHS-biotin 1 week into treatment (10-11 mice/group), and RBC survival assessed over the next week with serial micro-bleeds while on treatment. The 4th cohort was only bled at 2 week time-point to obtain P50 (Hemox Analyzer) and Hb levels (Hemavet). At experiment termination, all cohorts were terminally bled to determine (a) RBC levels of 2,3-DPG and ATP, (c) plasma levels of FT-4202 by LC-MS/MS, (d) the proportion of irreversibly sickled RBC (ISC) on blood smears (Image-J analysis), (e) the kinetics of experimentally-induced sickling (Lorrca®Oxygenscan) and (f) membrane deformability (Lorrca®Ektacytometry). Results: SCA mice on FT-4202 consumed a similar amount of food, and had similar weights and survival, compared to SCA mice on control chow throughout the 2-week period. As hypothesized, HbS O2 affinity increased, reflected by a decrease in P50 from 29.6 ± 0.62 mmHg (mean ± SEM) in the control group to 27.6 ± 0.58 mmHg in the FT-4202 group (p<0.03). Determinations of 2,3-DPG, ATP and FT-4202 are ongoing and will be presented. As expected, this increased HbS O2-affinity in the FT-4202 group reduced RBC sickling and membrane damage. At 2 weeks, the proportion of ISCs on blood smears was reduced in the FT-4202 group to 2.4 ± 0.3% vs. 5.9 ± 1.4% in the control group (p<0.02). The sickle RBC half-life increased to 1.8 ± 0.07 days in FT-4202 group vs. 1.4 ± 0.1 days in the control group, a 28% increase in RBC survival (p<0.01, Figure 1A). Hence, Hb levels in the FT-4202 group increased from 9.1 ± 0.2 g/dL before treatment, to 10.8 ± 0.3 g/dL 2 weeks after treatment (p<0.001), while Hb levels in the control group remained unchanged (Figure 1B). The reticulocytes remained unchanged in both groups before and after treatment. When sickle RBCs were de-oxygenated from an ambient pO2 of ~150 mmHg to a pO2 of 10-15 mmHg, followed by their re-oxygenation to ambient pO2 at a constant shear stress of 30 Pa (Oxygenscan), the point of sickling (PoS; pO2 level when the EI becomes 95% of the EI at ambient O2) decreased on average from 37% pO2 in the control group, to 30% pO2 in the FT-4202 group (p<0.002, Figure 1C), with a significantly improved Elongation Index at the point of minimum pO2 (EImin), (p<0.05). Next, RBC membrane deformability was measured under ambient pO2 (normoxic conditions), but varying shear stress after the de-oxygenation/re-oxygenation cycle on the Oxygenscan. Sickle RBCs from the FT-4202 group were significantly more deformable [i.e. had a higher Elongation Index (EI)] compared to control sickle RBCs (p<0.01, Figure 1D), as shear stress increased to ≥3 Pa, demonstrating that FT-4202 sickle RBCs sustained significantly less membrane damage following sickling and un-sickling. Conclusion: A 2-week oral FT-4202 administration was well tolerated by SCA mice and demonstrated beneficial biological effects: improved RBC membrane deformability and sickling parameters, with a shift in the PoS to lower pO2, and increased RBC survival and Hb levels. A parallel human phase-I study in healthy subjects and sickle cell disease patients to assess the safety and PK/PD of FT-4202 is ongoing (NCT03815695). Overall, our results suggest that FT-4202 can be a potentially useful orally available agent with significant anti-sickling effect. [Display omitted] Drake:Forma Therapeutics: Other: Shareholder of Forma Therapeutics. Fulzele:FORMA Therapeutics, Inc: Current Employment, Other: Shareholder of Forma Therapeutics. Guichard:FORMA Therapeutics, Inc: Current Employment, Other: Shareholder of Forma Therapeutics; AstraZeneca: Other: Shareholder. Malik:Aruvant Sciences, Forma Therapeutics, Inc.: Consultancy; Aruvant Sciences, CSL Behring: Patents & Royalties.
AbstractList Introduction: Sickle cell anemia (SCA) results from a mutant β-globin gene that produces abnormal hemoglobin S (HbS). HbS polymerizes upon deoxygenation, resulting in red blood cell (RBC) sickling and membrane damage, leading to vaso-occlusions and hemolysis. Additionally, sickle RBCs contain less ATP and more 2,3-diphosphoglycerate (2,3-DPG) than normal RBCs; 2,3,DPG allosterically reduces hemoglobin (Hb) oxygen (O2)-affinity [i.e. increases P50], promoting faster unloading of O2, which potentiates HbS polymerization and RBC sickling. FT-4202, a selective and orally bioavailable allosteric activator of RBC pyruvate kinase (PKR), decreases 2,3-DPG and increases ATP in normal human RBCs (Blood, 2019, 134, Supplement 1:616). We hypothesized that oral administration of FT-4202 to SCA mice will increase HbS O2-affinity, and thereby decrease RBC sickling and membrane damage. Methods: Berkeley SCA mice were given 500-1000 mg/kg/day FT-4202 in chow (FT-4202 group) or control chow (control group) in 4 cohorts for 2 weeks (total 17-18 mice/group). In all cohorts, the health status, weight, and average chow consumption of each mouse was determined 3 times/week. Three cohorts were injected with sulfo-NHS-biotin 1 week into treatment (10-11 mice/group), and RBC survival assessed over the next week with serial micro-bleeds while on treatment. The 4th cohort was only bled at 2 week time-point to obtain P50 (Hemox Analyzer) and Hb levels (Hemavet). At experiment termination, all cohorts were terminally bled to determine (a) RBC levels of 2,3-DPG and ATP, (c) plasma levels of FT-4202 by LC-MS/MS, (d) the proportion of irreversibly sickled RBC (ISC) on blood smears (Image-J analysis), (e) the kinetics of experimentally-induced sickling (Lorrca®Oxygenscan) and (f) membrane deformability (Lorrca®Ektacytometry). Results: SCA mice on FT-4202 consumed a similar amount of food, and had similar weights and survival, compared to SCA mice on control chow throughout the 2-week period. As hypothesized, HbS O2 affinity increased, reflected by a decrease in P50 from 29.6 ± 0.62 mmHg (mean ± SEM) in the control group to 27.6 ± 0.58 mmHg in the FT-4202 group (p<0.03). Determinations of 2,3-DPG, ATP and FT-4202 are ongoing and will be presented. As expected, this increased HbS O2-affinity in the FT-4202 group reduced RBC sickling and membrane damage. At 2 weeks, the proportion of ISCs on blood smears was reduced in the FT-4202 group to 2.4 ± 0.3% vs. 5.9 ± 1.4% in the control group (p<0.02). The sickle RBC half-life increased to 1.8 ± 0.07 days in FT-4202 group vs. 1.4 ± 0.1 days in the control group, a 28% increase in RBC survival (p<0.01, Figure 1A). Hence, Hb levels in the FT-4202 group increased from 9.1 ± 0.2 g/dL before treatment, to 10.8 ± 0.3 g/dL 2 weeks after treatment (p<0.001), while Hb levels in the control group remained unchanged (Figure 1B). The reticulocytes remained unchanged in both groups before and after treatment. When sickle RBCs were de-oxygenated from an ambient pO2 of ~150 mmHg to a pO2 of 10-15 mmHg, followed by their re-oxygenation to ambient pO2 at a constant shear stress of 30 Pa (Oxygenscan), the point of sickling (PoS; pO2 level when the EI becomes 95% of the EI at ambient O2) decreased on average from 37% pO2 in the control group, to 30% pO2 in the FT-4202 group (p<0.002, Figure 1C), with a significantly improved Elongation Index at the point of minimum pO2 (EImin), (p<0.05). Next, RBC membrane deformability was measured under ambient pO2 (normoxic conditions), but varying shear stress after the de-oxygenation/re-oxygenation cycle on the Oxygenscan. Sickle RBCs from the FT-4202 group were significantly more deformable [i.e. had a higher Elongation Index (EI)] compared to control sickle RBCs (p<0.01, Figure 1D), as shear stress increased to ≥3 Pa, demonstrating that FT-4202 sickle RBCs sustained significantly less membrane damage following sickling and un-sickling. Conclusion: A 2-week oral FT-4202 administration was well tolerated by SCA mice and demonstrated beneficial biological effects: improved RBC membrane deformability and sickling parameters, with a shift in the PoS to lower pO2, and increased RBC survival and Hb levels. A parallel human phase-I study in healthy subjects and sickle cell disease patients to assess the safety and PK/PD of FT-4202 is ongoing (NCT03815695). Overall, our results suggest that FT-4202 can be a potentially useful orally available agent with significant anti-sickling effect.
Introduction: Sickle cell anemia (SCA) results from a mutant β-globin gene that produces abnormal hemoglobin S (HbS). HbS polymerizes upon deoxygenation, resulting in red blood cell (RBC) sickling and membrane damage, leading to vaso-occlusions and hemolysis. Additionally, sickle RBCs contain less ATP and more 2,3-diphosphoglycerate (2,3-DPG) than normal RBCs; 2,3,DPG allosterically reduces hemoglobin (Hb) oxygen (O2)-affinity [i.e. increases P50], promoting faster unloading of O2, which potentiates HbS polymerization and RBC sickling. FT-4202, a selective and orally bioavailable allosteric activator of RBC pyruvate kinase (PKR), decreases 2,3-DPG and increases ATP in normal human RBCs (Blood, 2019, 134, Supplement 1:616). We hypothesized that oral administration of FT-4202 to SCA mice will increase HbS O2-affinity, and thereby decrease RBC sickling and membrane damage. Methods: Berkeley SCA mice were given 500-1000 mg/kg/day FT-4202 in chow (FT-4202 group) or control chow (control group) in 4 cohorts for 2 weeks (total 17-18 mice/group). In all cohorts, the health status, weight, and average chow consumption of each mouse was determined 3 times/week. Three cohorts were injected with sulfo-NHS-biotin 1 week into treatment (10-11 mice/group), and RBC survival assessed over the next week with serial micro-bleeds while on treatment. The 4th cohort was only bled at 2 week time-point to obtain P50 (Hemox Analyzer) and Hb levels (Hemavet). At experiment termination, all cohorts were terminally bled to determine (a) RBC levels of 2,3-DPG and ATP, (c) plasma levels of FT-4202 by LC-MS/MS, (d) the proportion of irreversibly sickled RBC (ISC) on blood smears (Image-J analysis), (e) the kinetics of experimentally-induced sickling (Lorrca®Oxygenscan) and (f) membrane deformability (Lorrca®Ektacytometry). Results: SCA mice on FT-4202 consumed a similar amount of food, and had similar weights and survival, compared to SCA mice on control chow throughout the 2-week period. As hypothesized, HbS O2 affinity increased, reflected by a decrease in P50 from 29.6 ± 0.62 mmHg (mean ± SEM) in the control group to 27.6 ± 0.58 mmHg in the FT-4202 group (p<0.03). Determinations of 2,3-DPG, ATP and FT-4202 are ongoing and will be presented. As expected, this increased HbS O2-affinity in the FT-4202 group reduced RBC sickling and membrane damage. At 2 weeks, the proportion of ISCs on blood smears was reduced in the FT-4202 group to 2.4 ± 0.3% vs. 5.9 ± 1.4% in the control group (p<0.02). The sickle RBC half-life increased to 1.8 ± 0.07 days in FT-4202 group vs. 1.4 ± 0.1 days in the control group, a 28% increase in RBC survival (p<0.01, Figure 1A). Hence, Hb levels in the FT-4202 group increased from 9.1 ± 0.2 g/dL before treatment, to 10.8 ± 0.3 g/dL 2 weeks after treatment (p<0.001), while Hb levels in the control group remained unchanged (Figure 1B). The reticulocytes remained unchanged in both groups before and after treatment. When sickle RBCs were de-oxygenated from an ambient pO2 of ~150 mmHg to a pO2 of 10-15 mmHg, followed by their re-oxygenation to ambient pO2 at a constant shear stress of 30 Pa (Oxygenscan), the point of sickling (PoS; pO2 level when the EI becomes 95% of the EI at ambient O2) decreased on average from 37% pO2 in the control group, to 30% pO2 in the FT-4202 group (p<0.002, Figure 1C), with a significantly improved Elongation Index at the point of minimum pO2 (EImin), (p<0.05). Next, RBC membrane deformability was measured under ambient pO2 (normoxic conditions), but varying shear stress after the de-oxygenation/re-oxygenation cycle on the Oxygenscan. Sickle RBCs from the FT-4202 group were significantly more deformable [i.e. had a higher Elongation Index (EI)] compared to control sickle RBCs (p<0.01, Figure 1D), as shear stress increased to ≥3 Pa, demonstrating that FT-4202 sickle RBCs sustained significantly less membrane damage following sickling and un-sickling. Conclusion: A 2-week oral FT-4202 administration was well tolerated by SCA mice and demonstrated beneficial biological effects: improved RBC membrane deformability and sickling parameters, with a shift in the PoS to lower pO2, and increased RBC survival and Hb levels. A parallel human phase-I study in healthy subjects and sickle cell disease patients to assess the safety and PK/PD of FT-4202 is ongoing (NCT03815695). Overall, our results suggest that FT-4202 can be a potentially useful orally available agent with significant anti-sickling effect. [Display omitted] Drake:Forma Therapeutics: Other: Shareholder of Forma Therapeutics. Fulzele:FORMA Therapeutics, Inc: Current Employment, Other: Shareholder of Forma Therapeutics. Guichard:FORMA Therapeutics, Inc: Current Employment, Other: Shareholder of Forma Therapeutics; AstraZeneca: Other: Shareholder. Malik:Aruvant Sciences, Forma Therapeutics, Inc.: Consultancy; Aruvant Sciences, CSL Behring: Patents & Royalties.
Author Shrestha, Archana
Fulzele, Keertik
Guichard, Sylvie
Chi, Mengna
Wagner, Kimberly
Malik, Punam
Drake, Adam
Author_xml – sequence: 1
  givenname: Archana
  surname: Shrestha
  fullname: Shrestha, Archana
  organization: Cincinnati Children's Hospital and Medical Center, Cincinnati, OH
– sequence: 2
  givenname: Mengna
  surname: Chi
  fullname: Chi, Mengna
  organization: Cincinnati Children's Hospital Medical Center, Cincinnati, OH
– sequence: 3
  givenname: Kimberly
  surname: Wagner
  fullname: Wagner, Kimberly
  organization: Cincinnati Children's Hospital Medical Center, Cincinnati, OH
– sequence: 4
  givenname: Adam
  surname: Drake
  fullname: Drake, Adam
  organization: Forma Therapeutics, Inc., Watertown, MA
– sequence: 5
  givenname: Keertik
  surname: Fulzele
  fullname: Fulzele, Keertik
  organization: Forma Therapeutics, Inc., Watertown, MA
– sequence: 6
  givenname: Sylvie
  surname: Guichard
  fullname: Guichard, Sylvie
  organization: Forma Therapeutics, Inc., Watertown, MA
– sequence: 7
  givenname: Punam
  surname: Malik
  fullname: Malik, Punam
  organization: Cincinnati Children's Hospital Medical Center, Cincinnati, OH
BookMark eNp9kU1v1DAQhi1UJLaFH8BtjiBtwHY-nIhTiFq2YlGr3XKOnHhSGRy7sr2R-jf5RXh3OXHoxSOP5pmP970kF9ZZJOQ9o58Yq_nnwTinMk45zVhBa1G-IitW8jqjKXVBVpTSKisawd6QyxB-UcqKnJcr8ufOSwOtmrXVIXoZtbPgJrh5yIrUbQ3SQmuMCxG9HqEdo15kdP5Yc__sD-mD8F1bGTDbrWEjA9y7iDZCa6PO9nr8bbR9hOtpwjEG0BYknLIIHZo02uKsJXzYd-1H-OEOAdOr0Kxhh-Fg4hFO0O385N2CCnZfO9gf_JLWMGk5BRuc3aNxQyra4oImvCWvJ2kCvvsXr8jPm-uHbpNt777ddu02G1nBy0yMSohKKFEVdSlZlVPOZFE2BZV1nQ8llSJXlDd8oFVeYdMUQy0bUU9DXRaq4vkVEee-o3cheJz6UceTgElHbXpG-6M1_cma_mhNf7Ymkew_8snrWfrnF5kvZyZdiItG34dRox1RaZ-U7ZXTL9B_AXiIqAc
CitedBy_id crossref_primary_10_1002_ajh_27082
crossref_primary_10_1182_bloodadvances_2020003670
ContentType Journal Article
Copyright 2020 American Society of Hematology
Copyright_xml – notice: 2020 American Society of Hematology
DBID AAYXX
CITATION
DOI 10.1182/blood-2020-140875
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
Anatomy & Physiology
EISSN 1528-0020
EndPage 22
ExternalDocumentID 10_1182_blood_2020_140875
S0006497118700360
GroupedDBID ---
-~X
.55
1CY
23N
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
6J9
AAEDW
AAXUO
ABOCM
ABVKL
ACGFO
ADBBV
AENEX
AFOSN
AHPSJ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
EX3
F5P
FDB
FRP
GS5
GX1
IH2
K-O
KQ8
L7B
LSO
MJL
N9A
OK1
P2P
R.V
RHF
RHI
ROL
SJN
THE
TR2
TWZ
W2D
W8F
WH7
WOQ
WOW
X7M
YHG
YKV
ZA5
0R~
AALRI
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFETI
AFPUW
AGCQF
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
H13
ID FETCH-LOGICAL-c1425-7cd7767d76485a163021a45940a883b50a73d0292b0636e994b8a978fb854d623
ISSN 0006-4971
IngestDate Thu Apr 24 23:04:29 EDT 2025
Tue Jul 01 00:18:52 EDT 2025
Fri Feb 23 02:43:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Supplement 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1425-7cd7767d76485a163021a45940a883b50a73d0292b0636e994b8a978fb854d623
PageCount 2
ParticipantIDs crossref_citationtrail_10_1182_blood_2020_140875
crossref_primary_10_1182_blood_2020_140875
elsevier_sciencedirect_doi_10_1182_blood_2020_140875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-05
2020-11-5
PublicationDateYYYYMMDD 2020-11-05
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-05
  day: 05
PublicationDecade 2020
PublicationTitle Blood
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
SSID ssj0014325
Score 2.3413248
Snippet Introduction: Sickle cell anemia (SCA) results from a mutant β-globin gene that produces abnormal hemoglobin S (HbS). HbS polymerizes upon deoxygenation,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 21
Title Oral Administration of FT-4202, an Allosteric Activator of Pyruvate Kinase-R, Has Potent Anti-Sickling Effects in a Sickle Cell Anemia (SCA) Mouse Model, Resulting in Improved RBC Survival and Hemoglobin Levels
URI https://dx.doi.org/10.1182/blood-2020-140875
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELXKIi4vCLoglpvmASGgDWRTJ00es2VXFaWw0K7Yt8iJExTRJqgXpOUz-QY-hBnbaRrtgmBfotSKG0tzMj62z8ww9lTGGffsLLE87guLS86twLETK9nPHBlIT0oVLjZ-7w1P-NtT97TV-rWlWlqv4lfJjwvjSi5jVWxDu1KU7H9YdvOn2ID3aF-8ooXx-k82_kDR9c30t0T-jqYWdyjlKQkzO-FsRoEcpJgPE1XMrFQnA8dnizX-SDujvMCpzFKKiKFYdo7LFQkEwmKVW5M8-aoC1g-N7iMvOqKjWtPOgPb9wiKd54KI6mQQ0h7DuFwvU1VjbabttyTNoo6c0VsYyHE_HZAgCN3Ud5OrYJjOS0pOgg-9Ix3TsnHaPDMl7XUySSonos-pKG-uKGqxkapQrJS6deNn8cUE9Yxyqn5S61ffLISWJoVSzLe3P3CtS1u6br0nV8XlNGSjNAlT7TyN2tS4dsrFbTt2w_f3mt57iwfocOnzM4xPGWt1VIEeD6eiAPV0uhE5ThTfw0Hso09EomBfYVedfl-JCUYf67Mu3nN0nQ0zZnP2ji96fe41F7OnLUY0vc1umaUMhBqXd1grLdpsNywQYPMzeAZKXKxObdrs2kF1d2NQlRhss-tjo-zYZT8Jy9DEMpQZGCx3QRRQIxk2SKZnKiRDheQuII5B4xgaOAaDY8gLEKBxDIRj0DiG54jiF6AwDArDXdggmDpVCAZEMFQIxsFJqBEMGsF32cnR4XQwtEy9EfRMnKo6J5JyW8k--i1X4EIF-a_gbsBt4fu92LVFvydtJ3Bi5PVeGgQ89kXQ97PYd7nEdcQ9tlOURXqfBIO-i9Q69eIMKb8rfU-t5LNMZjJBzrjH7MqOUWKS8VNNmFmkFuW-EynTR2T6SJt-j73cdPmmM9H87WFegSMyVFpT5Ahx_OduDy7X7SG7WX-aj9jOarFOHyNXX8VPFNR_A0nV5cs
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oral+Administration+of+FT-4202%2C+an+Allosteric+Activator+of+Pyruvate+Kinase-R%2C+Has+Potent+Anti-Sickling+Effects+in+a+Sickle+Cell+Anemia+%28SCA%29+Mouse+Model%2C+Resulting+in+Improved+RBC+Survival+and+Hemoglobin+Levels&rft.jtitle=Blood&rft.au=Shrestha%2C+Archana&rft.au=Chi%2C+Mengna&rft.au=Wagner%2C+Kimberly&rft.au=Drake%2C+Adam&rft.date=2020-11-05&rft.pub=Elsevier+Inc&rft.issn=0006-4971&rft.eissn=1528-0020&rft.volume=136&rft.spage=21&rft.epage=22&rft_id=info:doi/10.1182%2Fblood-2020-140875&rft.externalDocID=S0006497118700360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-4971&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-4971&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-4971&client=summon