Frobenius methods for analytic second order linear partial differential equations

The main subject of this text is the study of analytic second order linear partial differential equations. We aim to solve the classical equations and some more, in the real or complex analytical case. This is done by introducing methods inspired by the Frobenius method for second order linear ordin...

Full description

Saved in:
Bibliographic Details
Published inSelecciones matemáticas : revista científica del Departamento Académico de Matemáticas Vol. 10; no. 2; pp. 210 - 248
Main Authors Martínez León, Víctor Arturo, Azevedo Scárdua, Bruno César
Format Journal Article
LanguageEnglish
Spanish
Published 30.11.2023
Subjects
Online AccessGet full text
ISSN2411-1783
2411-1783
DOI10.17268/sel.mat.2023.02.01

Cover

Loading…
Abstract The main subject of this text is the study of analytic second order linear partial differential equations. We aim to solve the classical equations and some more, in the real or complex analytical case. This is done by introducing methods inspired by the Frobenius method for second order linear ordinary differential equations. We introduce a notion of Euler type partial differential equation. To such a PDE we associate an indicial conic, which is an affine plane curve of degree two. Then comes the concept of regular singularity and finally convergence theorems, which must necessarily take into account the type of PDE (parabolic, elliptical or hyperbolic) and a nonresonance condition. This condition gives a new geometric interpretation of the original condition between the roots of the original Frobenius theorem for second order ODEs. The interpretation is something like, a certain reticulate has or not vertices on the indexical conic. Finally, we retrieve the solution of all the classical PDEs by this method (heat diffusion, wave propagation and Laplace equation), and also increase the class of those that have explicit algorithmic solution to far beyond those admitting separable variables. The last part of the text is dedicated to the construction of PDE models for the classical ODEs like Airy, Legendre, Laguerre, Hermite and Chebyshev by two different means. One model is based on the requirement that the restriction of the PDE to lines through the origin must be the classical ODE model. The second is based on the idea of having symmetries on the PDE model and imitating the ODE model. We study these PDEs and obtain their solutions, obtaining for the framework of PDEs some of the classical results, like existence of polynomial solutions (Laguerre, Hermite and Chebyshev polynomials).
AbstractList The main subject of this text is the study of analytic second order linear partial differential equations. We aim to solve the classical equations and some more, in the real or complex analytical case. This is done by introducing methods inspired by the method of Frobenius method for second order linear ordinary differential equations. We introduce a notion of Euler type partial differential equation. To such a PDE we associate an indicial conic, which is an affine plane curve of degree two. Then comes the concept of regular singularity and finally convergence theorems, which must necessarily take into account the type of PDE (parabolic, elliptical or hyperbolic) and a nonresonance condition. This condition gives a new geometric interpretation of the original condition between the roots of the original Frobenius theorem for second order ODEs. The interpretation is something like, a certain reticulate has or not vertices on the indexical conic. Finally, we retrieve the solution of all the classical PDEs by this method (heat diffusion, wave propagation and Laplace equation), and also increase the class of those that have explicit algorithmic solution to far beyond those admitting separable variables. The last part of the text is dedicated to the construction of PDE models for the classical ODEs like Airy, Legendre, Laguerre, Hermite and Chebyshev by two different means. One model is based on the requirement that the restriction of the PDE to lines through the origin must be the classical ODE model. The second is based on the idea of having symmetries on the PDE model and imitating the ODE model. We study these PDEs and obtain their solutions, obtaining for the framework of PDEs some of the classical results, like existence of polynomial solutions (Laguerre, Hermite and Chebyshev polynomials).
The main subject of this text is the study of analytic second order linear partial differential equations. We aim to solve the classical equations and some more, in the real or complex analytical case. This is done by introducing methods inspired by the Frobenius method for second order linear ordinary differential equations. We introduce a notion of Euler type partial differential equation. To such a PDE we associate an indicial conic, which is an affine plane curve of degree two. Then comes the concept of regular singularity and finally convergence theorems, which must necessarily take into account the type of PDE (parabolic, elliptical or hyperbolic) and a nonresonance condition. This condition gives a new geometric interpretation of the original condition between the roots of the original Frobenius theorem for second order ODEs. The interpretation is something like, a certain reticulate has or not vertices on the indexical conic. Finally, we retrieve the solution of all the classical PDEs by this method (heat diffusion, wave propagation and Laplace equation), and also increase the class of those that have explicit algorithmic solution to far beyond those admitting separable variables. The last part of the text is dedicated to the construction of PDE models for the classical ODEs like Airy, Legendre, Laguerre, Hermite and Chebyshev by two different means. One model is based on the requirement that the restriction of the PDE to lines through the origin must be the classical ODE model. The second is based on the idea of having symmetries on the PDE model and imitating the ODE model. We study these PDEs and obtain their solutions, obtaining for the framework of PDEs some of the classical results, like existence of polynomial solutions (Laguerre, Hermite and Chebyshev polynomials).
Author Martínez León, Víctor Arturo
Azevedo Scárdua, Bruno César
Author_xml – sequence: 1
  givenname: Víctor Arturo
  orcidid: 0000-0002-2082-6665
  surname: Martínez León
  fullname: Martínez León, Víctor Arturo
– sequence: 2
  givenname: Bruno César
  orcidid: 0000-0001-8280-1669
  surname: Azevedo Scárdua
  fullname: Azevedo Scárdua, Bruno César
BookMark eNpNkM9OwzAMxiM0JMbYE3DJC6w4aWkbics0MUCahEDjHLmNIzJ1yUi6w96ebgPEyX_kz5_9u2YjHzwxdisgE5Us67tEXbbFPpMg8wxkBuKCjWUhxExUdT76l1-xaUobAJBVXYg6H7O3ZQwNebdPfEv9ZzCJ2xA5euwOvWt5ojZ4w0M0FHnnPGHkO4y9w44bZy1F8qeCvvbYu-DTDbu02CWa_sQJ-1g-rhfPs9Xr08tivpq1opDDOY1SsrF5UYDBVkmriBQJKAtQUJWgpAJLaAQJZWxbDPNl2wAKJLB4b_IJezjvNYO9p17vottiPOiATv_29t5FFzaoKen5-3r4XFRHexjk-VnexpBSJPunF6BPXPXAVQ9c9ZGrBqlB5N9uzHEd
ContentType Journal Article
Copyright LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI
Copyright_xml – notice: LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI
CorporateAuthor Instituto Latino-Americano de Ciéncias da Vida e da Natureza-ILACVN, Universidade Federal da Integracao Latino-Americana-UNILA, Foz do Iguacu-Parana, Brasil
Instituto de Matemática, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro-Rio de Janeiro, Brasil
CorporateAuthor_xml – name: Instituto Latino-Americano de Ciéncias da Vida e da Natureza-ILACVN, Universidade Federal da Integracao Latino-Americana-UNILA, Foz do Iguacu-Parana, Brasil
– name: Instituto de Matemática, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro-Rio de Janeiro, Brasil
DBID AAYXX
CITATION
AGMXS
FKZ
DOI 10.17268/sel.mat.2023.02.01
DatabaseName CrossRef
Dialnet (Open Access Full Text)
Dialnet
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2411-1783
EndPage 248
ExternalDocumentID oai_dialnet_unirioja_es_ART0001714210
10_17268_sel_mat_2023_02_01
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
OK1
AGMXS
FKZ
ID FETCH-LOGICAL-c1421-1b992bf3440dac92f9ee9e10640907609290fead1e19dfc41b96cb0a1ae0fa5d3
ISSN 2411-1783
IngestDate Wed Nov 06 05:34:22 EST 2024
Tue Jul 01 02:22:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
Spanish
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1421-1b992bf3440dac92f9ee9e10640907609290fead1e19dfc41b96cb0a1ae0fa5d3
ORCID 0000-0001-8280-1669
0000-0002-2082-6665
OpenAccessLink http://dx.doi.org/10.17268/sel.mat.2023.02.01
PageCount 39
ParticipantIDs dialnet_primary_oai_dialnet_unirioja_es_ART0001714210
crossref_primary_10_17268_sel_mat_2023_02_01
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-30
PublicationDateYYYYMMDD 2023-11-30
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-30
  day: 30
PublicationDecade 2020
PublicationTitle Selecciones matemáticas : revista científica del Departamento Académico de Matemáticas
PublicationYear 2023
SSID ssj0002784183
Score 2.2397146
Snippet The main subject of this text is the study of analytic second order linear partial differential equations. We aim to solve the classical equations and some...
SourceID dialnet
crossref
SourceType Open Website
Index Database
StartPage 210
SubjectTerms analytic solutions
Frobenius method
partial differential equation
regular singularity
Title Frobenius methods for analytic second order linear partial differential equations
URI https://dialnet.unirioja.es/servlet/oaiart?codigo=9782500
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9UwEA6HFcEXUVRcb-TBt9pjkl62fdTVZRFXEHdl30rSTuEsa6vtqeD5t_4TZ5K0p3tBXF9Km5ZJ2_mYTGYyXxh7qXVWyVJCKPKsDuM0E6HRyoSVMQrqLNEiokLho0_p4Un84TQ5XSx-z1YtDWuzLDfX1pX8j1axDfVKVbI30OwkFBvwHPWLR9QwHv9JxwdUy9Osht5vBN37NZH6_BfxsPY02a0Cy64ZkDtJtNYkxiZm3MYo9gJ-DLPAnXdVv9AOOSURGaF4TRF9yqlLin33NpBAC4TRtwxsSaW9-a7Gm0EFaEmBOtIUemztGnyXkP-GuMP7wdEledu4eOclNbAJPgKdv42sYfzq2inHQBmFoWsnrG7gJ1QtmiknsasG7WHbtMG-67nX3TzAoaKRWHG0g-hjyFDuuf1ulnBN22jIxQyw6oJVFrMBXjlqzytjx55KqSCih_Ml_tUlvYqlc5XboXJcHnBpBJ3WNdKMisQUKKRAIQUJKYQqqMLwlsKZjJjN-s_GvK8li50-yXNjkZzXV1_mgv90m4qLGljPXKLje-yun8vwNw6Y99kCmgfs8wRK7kHJEZR8BCV3oOQWlNyBkntQ8jko-QTKh-zk4P3x_mHo9-0ISxkr_AiT58rUURyLSpe5qnOAHCTljHNKBKNHLmq0YBJkXtVljM-npRFaahC1TqroEdtpEN2PGTfaEIEcxKWO4wTKrKplGaMLWiuZZlLvslfj3yi-O3qW4i9K2GWJ_2PT00SvPrYNzapbtWe6gL7A6aQjk8IvEk9u1s1TdmcL5GdsZ90N8Bx917V5YbX_Bxc9mhQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frobenius+methods+for+analytic+second+order+linear+partial+differential+equations&rft.jtitle=Selecciones+matem%C3%A1ticas+%3A+revista+cient%C3%ADfica+del+Departamento+Acad%C3%A9mico+de+Matem%C3%A1ticas&rft.au=Mart%C3%ADnez+Le%C3%B3n%2C+V%C3%ADctor+Arturo&rft.au=Azevedo+Sc%C3%A1rdua%2C+Bruno+C%C3%A9sar&rft.date=2023-11-30&rft.issn=2411-1783&rft.eissn=2411-1783&rft.volume=10&rft.issue=2&rft.spage=210&rft.epage=248&rft_id=info:doi/10.17268%2Fsel.mat.2023.02.01&rft.externalDBID=n%2Fa&rft.externalDocID=10_17268_sel_mat_2023_02_01
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2411-1783&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2411-1783&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2411-1783&client=summon