A novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes
The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity...
Saved in:
Published in | Numerical Methods in Civil Engineering Vol. 6; no. 4; pp. 16 - 28 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
K. N. Toosi University of Technology
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2345-4296 2783-3941 |
DOI | 10.52547/nmce.6.4.16 |
Cover
Loading…
Abstract | The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An improved feature extraction technique based on autoregressive (AR) model is presented to extract independent residuals of the AR model as damage-sensitive features. This technique emphasizes to choose a sufficient order such that the model residuals be independent. The proposed univariate similarity approach is a new application of the well-known KS method that attempts to measure a difference between two randomly distributed variables. The major contribution of the proposed KS method is that it only requires one measurement of undamaged and damaged conditions to compute the similarity between them. For the process of damage localization, the sensor location associated with the largest KS quantity is identified as the damaged area. In the damage level estimation, it is necessary to compare at least two different damaged conditions and find the maximum KS value in these conditions as the highest level of damage severity. The performance and capability of the improved and proposed methods is successfully verified by an experimental laboratory frame belonging to the Los Alamos National Laboratory. Results show that the methods are powerful and reliable tools for identifying the location of damage and estimating the level of damage severity. |
---|---|
AbstractList | The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An improved feature extraction technique based on autoregressive (AR) model is presented to extract independent residuals of the AR model as damage-sensitive features. This technique emphasizes to choose a sufficient order such that the model residuals be independent. The proposed univariate similarity approach is a new application of the well-known KS method that attempts to measure a difference between two randomly distributed variables. The major contribution of the proposed KS method is that it only requires one measurement of undamaged and damaged conditions to compute the similarity between them. For the process of damage localization, the sensor location associated with the largest KS quantity is identified as the damaged area. In the damage level estimation, it is necessary to compare at least two different damaged conditions and find the maximum KS value in these conditions as the highest level of damage severity. The performance and capability of the improved and proposed methods is successfully verified by an experimental laboratory frame belonging to the Los Alamos National Laboratory. Results show that the methods are powerful and reliable tools for identifying the location of damage and estimating the level of damage severity. |
Author | Mahjoub, Reza Raftari, Mehdi Haghani Chegeni, Masoud Sharbatdar, Mohammad Kazem |
Author_xml | – sequence: 1 givenname: Masoud surname: Haghani Chegeni fullname: Haghani Chegeni, Masoud – sequence: 2 givenname: Mohammad Kazem surname: Sharbatdar fullname: Sharbatdar, Mohammad Kazem – sequence: 3 givenname: Reza surname: Mahjoub fullname: Mahjoub, Reza – sequence: 4 givenname: Mehdi surname: Raftari fullname: Raftari, Mehdi |
BookMark | eNo9kU1OHDEQha0IpBBglwP4APSkbZft7iVCEJCQsoG15Z_qGUfdNtiekTgFV6ZhoqzqvVLVt3jvBzlJOSEhP1m_kVyC_pUWjxu1gQ1T38gZ14PoxAjsZNUCZAd8VN_JZa3R9bLXQnHJz8j7NU35gDNdsO1yoFMuNGBD32La0trK3rd9sTMNdrFbpM5WDDSn1TfbhRIPmKhNgda4xNmW2N66483K2KX4usdK9ylgoZgOseS0YGor7_Mnv2CxLea0er-zaYv1gpxOdq54-W-ek-e726eb--7xz--Hm-vHzjNgqgOpGcDggEOwyMSotPSCgQCnJ817xXuHSlk1TIoJx4bejd7zAMxBD1yLc_Jw5IZs_5qXEhdb3ky20XwtctkaW1r0MxrvHFvTHMH6CfiAA_JJazbJQQ5OOVxZV0eWL7nWgtN_HuvNVzfmsxujDBimxAess4Z7 |
Cites_doi | 10.1002/9781118619193 10.1016/j.jmgm.2020.107815 10.1111/j.1467-8667.2010.00685.x 10.1006/mssp.2000.1323 10.1177/1475921718754372 10.1109/ISTEL.2010.5734164 10.1006/jsvi.1993.1340 10.1007/s13349-020-00421-4 10.2172/961604 10.1111/mice.12635 10.1016/j.measurement.2018.10.095 10.1007/978-3-030-66259-2_2 10.1098/rsta.2006.1935 10.1177/1077546319891306 10.1016/j.ymssp.2009.02.013 10.1177/1475921720973953 10.1177/1475921717693572 10.1002/stc.2481 10.1016/j.ymssp.2019.106495 10.1007/s40996-020-00463-0 10.1016/j.jsv.2005.06.016 10.1016/j.ymssp.2015.09.007 10.1061/(ASCE)CF.1943-5509.0001664 10.1007/978-3-030-66259-2_1 10.1002/9781118443118 10.1016/j.jsv.2017.02.038 10.1007/s11803-022-2079-2 10.1002/stc.1766 10.3390/biom11121773 10.1002/9780470061626.shm044 10.1098/rsta.2006.1928 10.3390/ecsa-6-06538 10.1098/rsta.2000.0717 10.3390/s20082328 10.1177/1475921712451956 10.1061/(ASCE)0733-9445(2000)126:11(1356) 10.1177/1475921718800306 10.1016/j.jsv.2014.04.062 10.1016/j.ymssp.2011.06.009 10.1002/stc.2663 10.1016/j.apm.2016.07.015 10.1007/s13349-014-0072-9 10.1016/j.apm.2020.07.044 10.1214/aoms/1177729694 |
ContentType | Journal Article |
CorporateAuthor | Assistant Professor Ph.D. Candidate Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran |
CorporateAuthor_xml | – name: Assistant Professor – name: Ph.D. Candidate – name: Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran |
DBID | AAYXX CITATION DOA |
DOI | 10.52547/nmce.6.4.16 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2783-3941 |
EndPage | 28 |
ExternalDocumentID | oai_doaj_org_article_cbb127894acf428e8e2f771f5858b6be 10_52547_nmce_6_4_16 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c1416-4571448b424dae139675c31434b7f720620be66a68f613b180b9cc2d41b404273 |
IEDL.DBID | DOA |
ISSN | 2345-4296 |
IngestDate | Wed Aug 27 01:29:04 EDT 2025 Tue Jul 01 02:13:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1416-4571448b424dae139675c31434b7f720620be66a68f613b180b9cc2d41b404273 |
OpenAccessLink | https://doaj.org/article/cbb127894acf428e8e2f771f5858b6be |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cbb127894acf428e8e2f771f5858b6be crossref_primary_10_52547_nmce_6_4_16 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-4-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-4-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Numerical Methods in Civil Engineering |
PublicationYear | 2022 |
Publisher | K. N. Toosi University of Technology |
Publisher_xml | – name: K. N. Toosi University of Technology |
References | ref13 ref35 ref57 ref79 ref15 ref37 ref59 ref31 ref53 ref75 ref11 ref33 ref55 ref77 ref1 ref17 ref39 ref19 ref71 ref51 ref73 ref91 ref23 ref45 ref67 ref89 ref25 ref47 ref69 ref41 ref63 ref85 ref21 ref43 ref65 ref87 ref27 ref49 ref29 ref7 ref9 ref3 ref5 ref81 ref61 ref83 |
References_xml | – ident: ref51 doi: 10.1002/9781118619193 – ident: ref67 doi: 10.1016/j.jmgm.2020.107815 – ident: ref47 doi: 10.1111/j.1467-8667.2010.00685.x – ident: ref87 – ident: ref39 doi: 10.1006/mssp.2000.1323 – ident: ref55 doi: 10.1177/1475921718754372 – ident: ref71 doi: 10.1109/ISTEL.2010.5734164 – ident: ref7 doi: 10.1006/jsvi.1993.1340 – ident: ref59 doi: 10.1007/s13349-020-00421-4 – ident: ref85 doi: 10.2172/961604 – ident: ref35 doi: 10.1111/mice.12635 – ident: ref53 doi: 10.1016/j.measurement.2018.10.095 – ident: ref81 doi: 10.1007/978-3-030-66259-2_2 – ident: ref31 doi: 10.1098/rsta.2006.1935 – ident: ref61 doi: 10.1177/1077546319891306 – ident: ref73 doi: 10.1016/j.ymssp.2009.02.013 – ident: ref21 doi: 10.1177/1475921720973953 – ident: ref25 doi: 10.1177/1475921717693572 – ident: ref11 doi: 10.1002/stc.2481 – ident: ref63 doi: 10.1016/j.ymssp.2019.106495 – ident: ref89 doi: 10.1007/s40996-020-00463-0 – ident: ref41 doi: 10.1016/j.jsv.2005.06.016 – ident: ref45 doi: 10.1016/j.ymssp.2015.09.007 – ident: ref33 doi: 10.1061/(ASCE)CF.1943-5509.0001664 – ident: ref83 doi: 10.1007/978-3-030-66259-2_1 – ident: ref17 doi: 10.1002/9781118443118 – ident: ref3 doi: 10.1016/j.jsv.2017.02.038 – ident: ref29 doi: 10.1007/s11803-022-2079-2 – ident: ref43 doi: 10.1002/stc.1766 – ident: ref69 doi: 10.3390/biom11121773 – ident: ref79 doi: 10.1002/9780470061626.shm044 – ident: ref65 – ident: ref1 doi: 10.1098/rsta.2006.1928 – ident: ref57 doi: 10.3390/ecsa-6-06538 – ident: ref15 doi: 10.1098/rsta.2000.0717 – ident: ref19 doi: 10.3390/s20082328 – ident: ref49 doi: 10.1177/1475921712451956 – ident: ref37 doi: 10.1061/(ASCE)0733-9445(2000)126:11(1356) – ident: ref27 doi: 10.1177/1475921718800306 – ident: ref77 doi: 10.1016/j.jsv.2014.04.062 – ident: ref75 doi: 10.1016/j.ymssp.2011.06.009 – ident: ref23 doi: 10.1002/stc.2663 – ident: ref13 doi: 10.1016/j.apm.2016.07.015 – ident: ref5 doi: 10.1007/s13349-014-0072-9 – ident: ref9 doi: 10.1016/j.apm.2020.07.044 – ident: ref91 doi: 10.1214/aoms/1177729694 |
SSID | ssib050736252 ssib057722580 |
Score | 2.178068 |
Snippet | The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 16 |
SubjectTerms | autoregressive model damage level estimation damage localization independent residuals kullback similarity structural damage detection |
Title | A novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes |
URI | https://doaj.org/article/cbb127894acf428e8e2f771f5858b6be |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAsS3PMDoNnHOThgLalUhlYlK3aLYvkiVaFq1iJG_wF_mLi5VNhaWDJFjRefTvXfJ3Tsh7jU6Q7BXqSoLqMDVoFxWBKWzHBNdA-pW1Gf6aiczeJmbeWfUF9eERXngaLiBdy7lbk2ofE1UGQvUdZ6nNdHcwlmHHH0J8zrJFHkSkRwKzGYP3IY4pDbtGDWdgVEUhG2sgjeUIOWDZumxb_vQ57HnHXzqyPi3eDM-Fkc7oiiH8QVPxAE2p-J7KJvVJ77LOPhZEuOUAfk_ACGQjFqwrKMhQ7WkQCEZo4JcNZILQVXYcGiTVRPkdrFcUE5LFFzFNXst163ktrKN7HTA0X78zGqNm92nQxn7hbdnYjYevT1P1G6kgvIpUS8FJqcMqnCgIVRI7I_yBZ8RZwKX17lOrE4cWlvZoiacd2mRuEfvdYDUAU_lyM5Fr1k1eCEkn0uoja98AEDIHJJRk6Bpb48Uti7Fw68hy3VUzigp42gNXrLBS1tCmdK6J7byfg3rXbc3yAvKnReUf3nB1X9sci0ONTc3tHU5N6JHh4a3RDk-3F3rXXSdfo1-AJsI1ko |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+detecting+structural+damage+based+on+data-driven+and+similarity-based+techniques+under+environmental+and+operational+changes&rft.jtitle=Numerical+Methods+in+Civil+Engineering&rft.au=Masoud+Haghani+Chegeni&rft.au=Mohammad+Kazem+Sharbatdar&rft.au=Reza+Mahjoub&rft.au=Mehdi+Raftari&rft.date=2022-04-01&rft.pub=K.+N.+Toosi+University+of+Technology&rft.issn=2345-4296&rft.eissn=2783-3941&rft.volume=6&rft.issue=4&rft.spage=16&rft.epage=28&rft_id=info:doi/10.52547%2Fnmce.6.4.16&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cbb127894acf428e8e2f771f5858b6be |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2345-4296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2345-4296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2345-4296&client=summon |