A novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes

The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity...

Full description

Saved in:
Bibliographic Details
Published inNumerical Methods in Civil Engineering Vol. 6; no. 4; pp. 16 - 28
Main Authors Haghani Chegeni, Masoud, Sharbatdar, Mohammad Kazem, Mahjoub, Reza, Raftari, Mehdi
Format Journal Article
LanguageEnglish
Published K. N. Toosi University of Technology 01.04.2022
Subjects
Online AccessGet full text
ISSN2345-4296
2783-3941
DOI10.52547/nmce.6.4.16

Cover

Loading…
Abstract The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An improved feature extraction technique based on autoregressive (AR) model is presented to extract independent residuals of the AR model as damage-sensitive features. This technique emphasizes to choose a sufficient order such that the model residuals be independent. The proposed univariate similarity approach is a new application of the well-known KS method that attempts to measure a difference between two randomly distributed variables. The major contribution of the proposed KS method is that it only requires one measurement of undamaged and damaged conditions to compute the similarity between them. For the process of damage localization, the sensor location associated with the largest KS quantity is identified as the damaged area. In the damage level estimation, it is necessary to compare at least two different damaged conditions and find the maximum KS value in these conditions as the highest level of damage severity. The performance and capability of the improved and proposed methods is successfully verified by an experimental laboratory frame belonging to the Los Alamos National Laboratory. Results show that the methods are powerful and reliable tools for identifying the location of damage and estimating the level of damage severity.
AbstractList The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An improved feature extraction technique based on autoregressive (AR) model is presented to extract independent residuals of the AR model as damage-sensitive features. This technique emphasizes to choose a sufficient order such that the model residuals be independent. The proposed univariate similarity approach is a new application of the well-known KS method that attempts to measure a difference between two randomly distributed variables. The major contribution of the proposed KS method is that it only requires one measurement of undamaged and damaged conditions to compute the similarity between them. For the process of damage localization, the sensor location associated with the largest KS quantity is identified as the damaged area. In the damage level estimation, it is necessary to compare at least two different damaged conditions and find the maximum KS value in these conditions as the highest level of damage severity. The performance and capability of the improved and proposed methods is successfully verified by an experimental laboratory frame belonging to the Los Alamos National Laboratory. Results show that the methods are powerful and reliable tools for identifying the location of damage and estimating the level of damage severity.
Author Mahjoub, Reza
Raftari, Mehdi
Haghani Chegeni, Masoud
Sharbatdar, Mohammad Kazem
Author_xml – sequence: 1
  givenname: Masoud
  surname: Haghani Chegeni
  fullname: Haghani Chegeni, Masoud
– sequence: 2
  givenname: Mohammad Kazem
  surname: Sharbatdar
  fullname: Sharbatdar, Mohammad Kazem
– sequence: 3
  givenname: Reza
  surname: Mahjoub
  fullname: Mahjoub, Reza
– sequence: 4
  givenname: Mehdi
  surname: Raftari
  fullname: Raftari, Mehdi
BookMark eNo9kU1OHDEQha0IpBBglwP4APSkbZft7iVCEJCQsoG15Z_qGUfdNtiekTgFV6ZhoqzqvVLVt3jvBzlJOSEhP1m_kVyC_pUWjxu1gQ1T38gZ14PoxAjsZNUCZAd8VN_JZa3R9bLXQnHJz8j7NU35gDNdsO1yoFMuNGBD32La0trK3rd9sTMNdrFbpM5WDDSn1TfbhRIPmKhNgda4xNmW2N66483K2KX4usdK9ylgoZgOseS0YGor7_Mnv2CxLea0er-zaYv1gpxOdq54-W-ek-e726eb--7xz--Hm-vHzjNgqgOpGcDggEOwyMSotPSCgQCnJ817xXuHSlk1TIoJx4bejd7zAMxBD1yLc_Jw5IZs_5qXEhdb3ky20XwtctkaW1r0MxrvHFvTHMH6CfiAA_JJazbJQQ5OOVxZV0eWL7nWgtN_HuvNVzfmsxujDBimxAess4Z7
Cites_doi 10.1002/9781118619193
10.1016/j.jmgm.2020.107815
10.1111/j.1467-8667.2010.00685.x
10.1006/mssp.2000.1323
10.1177/1475921718754372
10.1109/ISTEL.2010.5734164
10.1006/jsvi.1993.1340
10.1007/s13349-020-00421-4
10.2172/961604
10.1111/mice.12635
10.1016/j.measurement.2018.10.095
10.1007/978-3-030-66259-2_2
10.1098/rsta.2006.1935
10.1177/1077546319891306
10.1016/j.ymssp.2009.02.013
10.1177/1475921720973953
10.1177/1475921717693572
10.1002/stc.2481
10.1016/j.ymssp.2019.106495
10.1007/s40996-020-00463-0
10.1016/j.jsv.2005.06.016
10.1016/j.ymssp.2015.09.007
10.1061/(ASCE)CF.1943-5509.0001664
10.1007/978-3-030-66259-2_1
10.1002/9781118443118
10.1016/j.jsv.2017.02.038
10.1007/s11803-022-2079-2
10.1002/stc.1766
10.3390/biom11121773
10.1002/9780470061626.shm044
10.1098/rsta.2006.1928
10.3390/ecsa-6-06538
10.1098/rsta.2000.0717
10.3390/s20082328
10.1177/1475921712451956
10.1061/(ASCE)0733-9445(2000)126:11(1356)
10.1177/1475921718800306
10.1016/j.jsv.2014.04.062
10.1016/j.ymssp.2011.06.009
10.1002/stc.2663
10.1016/j.apm.2016.07.015
10.1007/s13349-014-0072-9
10.1016/j.apm.2020.07.044
10.1214/aoms/1177729694
ContentType Journal Article
CorporateAuthor Assistant Professor
Ph.D. Candidate
Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
CorporateAuthor_xml – name: Assistant Professor
– name: Ph.D. Candidate
– name: Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
DBID AAYXX
CITATION
DOA
DOI 10.52547/nmce.6.4.16
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2783-3941
EndPage 28
ExternalDocumentID oai_doaj_org_article_cbb127894acf428e8e2f771f5858b6be
10_52547_nmce_6_4_16
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c1416-4571448b424dae139675c31434b7f720620be66a68f613b180b9cc2d41b404273
IEDL.DBID DOA
ISSN 2345-4296
IngestDate Wed Aug 27 01:29:04 EDT 2025
Tue Jul 01 02:13:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1416-4571448b424dae139675c31434b7f720620be66a68f613b180b9cc2d41b404273
OpenAccessLink https://doaj.org/article/cbb127894acf428e8e2f771f5858b6be
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_cbb127894acf428e8e2f771f5858b6be
crossref_primary_10_52547_nmce_6_4_16
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-4-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-4-01
  day: 01
PublicationDecade 2020
PublicationTitle Numerical Methods in Civil Engineering
PublicationYear 2022
Publisher K. N. Toosi University of Technology
Publisher_xml – name: K. N. Toosi University of Technology
References ref13
ref35
ref57
ref79
ref15
ref37
ref59
ref31
ref53
ref75
ref11
ref33
ref55
ref77
ref1
ref17
ref39
ref19
ref71
ref51
ref73
ref91
ref23
ref45
ref67
ref89
ref25
ref47
ref69
ref41
ref63
ref85
ref21
ref43
ref65
ref87
ref27
ref49
ref29
ref7
ref9
ref3
ref5
ref81
ref61
ref83
References_xml – ident: ref51
  doi: 10.1002/9781118619193
– ident: ref67
  doi: 10.1016/j.jmgm.2020.107815
– ident: ref47
  doi: 10.1111/j.1467-8667.2010.00685.x
– ident: ref87
– ident: ref39
  doi: 10.1006/mssp.2000.1323
– ident: ref55
  doi: 10.1177/1475921718754372
– ident: ref71
  doi: 10.1109/ISTEL.2010.5734164
– ident: ref7
  doi: 10.1006/jsvi.1993.1340
– ident: ref59
  doi: 10.1007/s13349-020-00421-4
– ident: ref85
  doi: 10.2172/961604
– ident: ref35
  doi: 10.1111/mice.12635
– ident: ref53
  doi: 10.1016/j.measurement.2018.10.095
– ident: ref81
  doi: 10.1007/978-3-030-66259-2_2
– ident: ref31
  doi: 10.1098/rsta.2006.1935
– ident: ref61
  doi: 10.1177/1077546319891306
– ident: ref73
  doi: 10.1016/j.ymssp.2009.02.013
– ident: ref21
  doi: 10.1177/1475921720973953
– ident: ref25
  doi: 10.1177/1475921717693572
– ident: ref11
  doi: 10.1002/stc.2481
– ident: ref63
  doi: 10.1016/j.ymssp.2019.106495
– ident: ref89
  doi: 10.1007/s40996-020-00463-0
– ident: ref41
  doi: 10.1016/j.jsv.2005.06.016
– ident: ref45
  doi: 10.1016/j.ymssp.2015.09.007
– ident: ref33
  doi: 10.1061/(ASCE)CF.1943-5509.0001664
– ident: ref83
  doi: 10.1007/978-3-030-66259-2_1
– ident: ref17
  doi: 10.1002/9781118443118
– ident: ref3
  doi: 10.1016/j.jsv.2017.02.038
– ident: ref29
  doi: 10.1007/s11803-022-2079-2
– ident: ref43
  doi: 10.1002/stc.1766
– ident: ref69
  doi: 10.3390/biom11121773
– ident: ref79
  doi: 10.1002/9780470061626.shm044
– ident: ref65
– ident: ref1
  doi: 10.1098/rsta.2006.1928
– ident: ref57
  doi: 10.3390/ecsa-6-06538
– ident: ref15
  doi: 10.1098/rsta.2000.0717
– ident: ref19
  doi: 10.3390/s20082328
– ident: ref49
  doi: 10.1177/1475921712451956
– ident: ref37
  doi: 10.1061/(ASCE)0733-9445(2000)126:11(1356)
– ident: ref27
  doi: 10.1177/1475921718800306
– ident: ref77
  doi: 10.1016/j.jsv.2014.04.062
– ident: ref75
  doi: 10.1016/j.ymssp.2011.06.009
– ident: ref23
  doi: 10.1002/stc.2663
– ident: ref13
  doi: 10.1016/j.apm.2016.07.015
– ident: ref5
  doi: 10.1007/s13349-014-0072-9
– ident: ref9
  doi: 10.1016/j.apm.2020.07.044
– ident: ref91
  doi: 10.1214/aoms/1177729694
SSID ssib050736252
ssib057722580
Score 2.178068
Snippet The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 16
SubjectTerms autoregressive model
damage level estimation
damage localization
independent residuals
kullback similarity
structural damage detection
Title A novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes
URI https://doaj.org/article/cbb127894acf428e8e2f771f5858b6be
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAsS3PMDoNnHOThgLalUhlYlK3aLYvkiVaFq1iJG_wF_mLi5VNhaWDJFjRefTvXfJ3Tsh7jU6Q7BXqSoLqMDVoFxWBKWzHBNdA-pW1Gf6aiczeJmbeWfUF9eERXngaLiBdy7lbk2ofE1UGQvUdZ6nNdHcwlmHHH0J8zrJFHkSkRwKzGYP3IY4pDbtGDWdgVEUhG2sgjeUIOWDZumxb_vQ57HnHXzqyPi3eDM-Fkc7oiiH8QVPxAE2p-J7KJvVJ77LOPhZEuOUAfk_ACGQjFqwrKMhQ7WkQCEZo4JcNZILQVXYcGiTVRPkdrFcUE5LFFzFNXst163ktrKN7HTA0X78zGqNm92nQxn7hbdnYjYevT1P1G6kgvIpUS8FJqcMqnCgIVRI7I_yBZ8RZwKX17lOrE4cWlvZoiacd2mRuEfvdYDUAU_lyM5Fr1k1eCEkn0uoja98AEDIHJJRk6Bpb48Uti7Fw68hy3VUzigp42gNXrLBS1tCmdK6J7byfg3rXbc3yAvKnReUf3nB1X9sci0ONTc3tHU5N6JHh4a3RDk-3F3rXXSdfo1-AJsI1ko
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+detecting+structural+damage+based+on+data-driven+and+similarity-based+techniques+under+environmental+and+operational+changes&rft.jtitle=Numerical+Methods+in+Civil+Engineering&rft.au=Masoud+Haghani+Chegeni&rft.au=Mohammad+Kazem+Sharbatdar&rft.au=Reza+Mahjoub&rft.au=Mehdi+Raftari&rft.date=2022-04-01&rft.pub=K.+N.+Toosi+University+of+Technology&rft.issn=2345-4296&rft.eissn=2783-3941&rft.volume=6&rft.issue=4&rft.spage=16&rft.epage=28&rft_id=info:doi/10.52547%2Fnmce.6.4.16&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cbb127894acf428e8e2f771f5858b6be
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2345-4296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2345-4296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2345-4296&client=summon