Topological data analysis for driver behavior classification driven by vehicle trajectory data
With urbanization and rising vehicle numbers, road safety has become increasingly critical. Robust, trajectory-level risk assessment is essential for next-generation active safety systems, accident prevention, autonomous driving, and intelligent transportation networks. This paper presents a novel f...
Saved in:
Published in | Machine learning with applications Vol. 21; p. 100719 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2666-8270 2666-8270 |
DOI | 10.1016/j.mlwa.2025.100719 |
Cover
Loading…
Abstract | With urbanization and rising vehicle numbers, road safety has become increasingly critical. Robust, trajectory-level risk assessment is essential for next-generation active safety systems, accident prevention, autonomous driving, and intelligent transportation networks. This paper presents a novel framework for driver behavior classification using Topological Data Analysis (TDA) — a mathematical approach for analyzing high-dimensional data — via persistent homology applied to vehicle trajectory data. Traditional methods often struggle with the complexity of such data, but TDA captures topological features that reveal subtle, meaningful behavioral patterns. Using the HighD dataset, we train a class-weighted XGBoost classifier on persistence image (PI) features, achieving 96.8% overall accuracy, macro-F1 = 0.93, and retaining 87% F1 on the minority Aggressive class. Unsupervised K-means clustering of the same PI features naturally separates the data into three behavioral clusters whose ANOVA-verified risk profiles align with the MOR-defined classes, confirming the behavioral relevance of the topological descriptors. These results provide empirical evidence that PI features capture safety-critical structure more effectively than raw kinematics and demonstrate the robustness and scalability of TDA for analyzing large, noisy datasets. The proposed approach shows strong potential for real-time driver monitoring, risk assessment, and data-driven transportation management, with implications for traffic safety, autonomous systems, and personalized insurance.
•Introduces TDA as a novel method for trajectory-based driver-behavior classification.•Validates the approach on HighD dataset trajectories, demonstrating scalability.•Classifies driving styles into Safe, Moderate, and Aggressive via MOR thresholds.•TDA enables real-time trajectory-level driver-risk profiling. |
---|---|
AbstractList | With urbanization and rising vehicle numbers, road safety has become increasingly critical. Robust, trajectory-level risk assessment is essential for next-generation active safety systems, accident prevention, autonomous driving, and intelligent transportation networks. This paper presents a novel framework for driver behavior classification using Topological Data Analysis (TDA) — a mathematical approach for analyzing high-dimensional data — via persistent homology applied to vehicle trajectory data. Traditional methods often struggle with the complexity of such data, but TDA captures topological features that reveal subtle, meaningful behavioral patterns. Using the HighD dataset, we train a class-weighted XGBoost classifier on persistence image (PI) features, achieving 96.8% overall accuracy, macro-F1 = 0.93, and retaining 87% F1 on the minority Aggressive class. Unsupervised K-means clustering of the same PI features naturally separates the data into three behavioral clusters whose ANOVA-verified risk profiles align with the MOR-defined classes, confirming the behavioral relevance of the topological descriptors. These results provide empirical evidence that PI features capture safety-critical structure more effectively than raw kinematics and demonstrate the robustness and scalability of TDA for analyzing large, noisy datasets. The proposed approach shows strong potential for real-time driver monitoring, risk assessment, and data-driven transportation management, with implications for traffic safety, autonomous systems, and personalized insurance.
•Introduces TDA as a novel method for trajectory-based driver-behavior classification.•Validates the approach on HighD dataset trajectories, demonstrating scalability.•Classifies driving styles into Safe, Moderate, and Aggressive via MOR thresholds.•TDA enables real-time trajectory-level driver-risk profiling. |
ArticleNumber | 100719 |
Author | Musau, Hannah Sulle, Methusela Ruganuza, Denis Gyimah, Nana Kankam Osei, Eric Siuhi, Saidi Omulokoli, Paul Indah, Debbie Mwakalonge, Judith Comert, Gurcan |
Author_xml | – sequence: 1 givenname: Debbie orcidid: 0009-0000-2930-4540 surname: Indah fullname: Indah, Debbie email: dindah@scsu.edu organization: Department of Engineering, South Carolina State University, Orangeburg, SC, 29117, USA – sequence: 2 givenname: Judith surname: Mwakalonge fullname: Mwakalonge, Judith email: jmwakalo@scsu.edu organization: Department of Engineering, South Carolina State University, Orangeburg, SC, 29117, USA – sequence: 3 givenname: Gurcan surname: Comert fullname: Comert, Gurcan email: gcomert@ncat.edu organization: Department of Computational Engineering and Data Science, North Carolina A&T State University, Greensboro, NC, 27411, USA – sequence: 4 givenname: Saidi surname: Siuhi fullname: Siuhi, Saidi email: ssiuhi@scsu.edu organization: Department of Engineering, South Carolina State University, Orangeburg, SC, 29117, USA – sequence: 5 givenname: Hannah surname: Musau fullname: Musau, Hannah email: hmusau@scsu.edu organization: Department of Engineering, South Carolina State University, Orangeburg, SC, 29117, USA – sequence: 6 givenname: Eric surname: Osei fullname: Osei, Eric email: eosei@scsu.edu organization: Department of Engineering, South Carolina State University, Orangeburg, SC, 29117, USA – sequence: 7 givenname: Paul surname: Omulokoli fullname: Omulokoli, Paul email: pomulokoli@scsu.edu organization: Department of Engineering, South Carolina State University, Orangeburg, SC, 29117, USA – sequence: 8 givenname: Methusela surname: Sulle fullname: Sulle, Methusela email: msulle@scsu.edu organization: Department of Engineering, South Carolina State University, Orangeburg, SC, 29117, USA – sequence: 9 givenname: Denis surname: Ruganuza fullname: Ruganuza, Denis email: druganuz@scsu.edu organization: Department of Engineering, South Carolina State University, Orangeburg, SC, 29117, USA – sequence: 10 givenname: Nana Kankam surname: Gyimah fullname: Gyimah, Nana Kankam email: ngyimah@scsu.edu organization: Department of Engineering, South Carolina State University, Orangeburg, SC, 29117, USA |
BookMark | eNp9kMtOwzAQRS1UJErpD7DyD6T4ETuNxAZVvKRKbMoWy7HH1FEaV3YUlL8nISxYsZrnvZo512jRhhYQuqVkQwmVd_Xm1HzpDSNMjA1S0PICLZmUMtuygiz-5FdonVJNCGFbSjnPl-jjEM6hCZ_e6AZb3WmsW90MySfsQsQ2-h4iruCoez_WptEpeTdudz6087jF1YB7OHrTAO6irsF0IQ4_bjfo0ukmwfo3rtD70-Nh95Lt355fdw_7zNCclJkRvHClFkJwZ4WWFRXGSFcUEiivwOhtZR0wJhwQUUluealdXpUFEdZykfMVYrOviSGlCE6doz_pOChK1ARJ1WqCpCZIaoY0iu5nEYyX9R6iSsZDa8D6OP6gbPD_yb8B2LF0JQ |
Cites_doi | 10.1109/TITS.2010.2050200 10.4171/owr/2015/45 10.1016/j.cie.2021.107600 10.1016/j.aap.2020.105805 10.1146/annurev-statistics-031017-100045 10.2174/1874447801913010065 10.1016/j.engappai.2023.106101 10.1016/0305-0548(94)00059-H 10.1016/j.trc.2010.12.007 10.1038/s41598-025-06551-3 10.3390/sym13060973 10.1016/j.softx.2024.101953 10.1007/BF02289263 10.1007/s10208-014-9206-z 10.1016/j.trf.2017.06.004 10.1109/MSP.2016.2602377 10.3390/su13169278 10.1109/JSEN.2017.2780089 10.3389/fpsyg.2018.01679 10.1109/OJITS.2022.3149474 10.3390/app122211498 10.1093/biomet/asab032 10.1007/s10462-022-10146-z 10.1080/15389588.2019.1675154 10.1093/tse/tdae015 10.1016/j.aap.2020.105676 10.3390/app13095675 10.3390/ijerph182312373 10.1109/TITS.2011.2179537 10.1140/epjds/s13688-017-0109-5 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.mlwa.2025.100719 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2666-8270 |
ExternalDocumentID | 10_1016_j_mlwa_2025_100719 S2666827025001021 |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M~E OK1 AAYXX CITATION |
ID | FETCH-LOGICAL-c1409-c537f9a5553fd5a6b15cc6f776e13beca8bdfe225fe05b63d39af4b9705dd3543 |
ISSN | 2666-8270 |
IngestDate | Thu Aug 21 00:29:33 EDT 2025 Sat Sep 06 17:18:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Driving behavior Trajectory classification Persistent homology Trajectory clustering Topological data analysis |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1409-c537f9a5553fd5a6b15cc6f776e13beca8bdfe225fe05b63d39af4b9705dd3543 |
ORCID | 0009-0000-2930-4540 |
OpenAccessLink | http://dx.doi.org/10.1016/j.mlwa.2025.100719 |
ParticipantIDs | crossref_primary_10_1016_j_mlwa_2025_100719 elsevier_sciencedirect_doi_10_1016_j_mlwa_2025_100719 |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Machine learning with applications |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bubenik (b5) 2015; 16 Yang, Al Haddad, Yannis, Antoniou (b48) 2021 He (b18) 2017 Wang, Zhu, Gong (b44) 2010; 11 Jalilibal, Amiri, Castagliola, Khoo (b21) 2021; 161 Otter, Porter, Tillmann, Grindrod, Harrington (b34) 2017; 6 Pokorny, F. T., Hawasly, M., & Ramamoorthy, S. (2014). Multiscale Topological Trajectory Classification with Persistent Homology. In Carriere, Cuturi, Oudot (b9) 2017 Krishnan, Kasim, Hamid, Ghazali (b26) 2021; 13 Carlsson, Vejdemo-Johansson (b8) 2021 Arthur, Vassilvitskii (b3) 2006 Punzo, Borzacchiello, Ciuffo (b38) 2011; 19 Xie, Hilal, Kulić (b46) 2017; 18 Pun, Lee, Xia (b37) 2022; 55 Kose, Kopuklu, Unnervik, Rigoll (b24) 2019 Nietert, Goldfeld, Kato (b32) 2021 Li, Wu, Lee, Yang, Shi (b28) 2020; 144 Ravishanker, Chen (b39) 2019 Burton, Edelsbrunner, Erickson, Tillmann (b6) 2016; 12 Wallot, Mønster (b43) 2018; 9 AbuAli, Abou-Zeid (b1) 2016; 2016 Jadayil, Aqil, AbuAmmouna (b20) 2024 Miyajima, Takeda (b30) 2016; 33 Chandra, Bhattacharya, Mittal, Bera, Manocha (b10) 2020 Yang, Al Haddad, Yannis, Antoniou (b49) 2022; 3 Mohammed, Ambak, Mosa, Syamsunur (b31) 2019; 13 Diakoulaki, Mavrotas, Papayannakis (b13) 1995; 22 Aoude, Desaraju, Stephens, How (b2) 2012; 13 Chen, Cheng, Yang, Zang, Luo, Li (b11) 2023; 13 (pp. 1–10). Berkeley, USA. Fraser (b17) 2017 Ichinomiya (b19) 2025; 15 Li, Gan, Yi, Qu, Ran (b27) 2020; 148 Thorndike (b40) 1953; 18 Ding, Pan, Dai, Xu (b14) 2022; 12 Eboli, Mazzulla, Pungillo (b15) 2017; 49 Or, Klein (b33) 2023; 122 Chen, Xue, Zhao, Xing, Lu (b12) 2021; 18 Zheng, Wang, Li, Yu, Kodaka, Li (b50) 2014 Yan, Dai, Li, Tang, Guo (b47) 2019; 20 Zomorodian (b51) 2005 Liu, Deng, Liu, Liu, Wang (b29) 2024; 6 Cao, Leung, Monod (b7) 2024 Esteve, Falcó (b16) 2024; 28 Jiang, Zhu, Chang, Wu, Ding, Liu, Qiu (b22) 2021; 13 Biscio, Møller (b4) 2021; 108 Ucar, Patnayak, Oza, Hoh, Oguchi (b41) 2019 Perea, Harer (b35) 2015; 15 Krajewski, Bock, Kloeker, Eckstein (b25) 2018 Vieira, Nakhimovich, Gao, Wang, Yu, Bekris (b42) 2022 Jin, Wu, Xu, Huang, Liu (b23) 2022; vol. 1004 Wasserman (b45) 2018; 5 Burton (10.1016/j.mlwa.2025.100719_b6) 2016; 12 Kose (10.1016/j.mlwa.2025.100719_b24) 2019 10.1016/j.mlwa.2025.100719_b36 Carlsson (10.1016/j.mlwa.2025.100719_b8) 2021 Krishnan (10.1016/j.mlwa.2025.100719_b26) 2021; 13 Chen (10.1016/j.mlwa.2025.100719_b11) 2023; 13 Vieira (10.1016/j.mlwa.2025.100719_b42) 2022 Zheng (10.1016/j.mlwa.2025.100719_b50) 2014 Zomorodian (10.1016/j.mlwa.2025.100719_b51) 2005 Li (10.1016/j.mlwa.2025.100719_b28) 2020; 144 Nietert (10.1016/j.mlwa.2025.100719_b32) 2021 AbuAli (10.1016/j.mlwa.2025.100719_b1) 2016; 2016 Thorndike (10.1016/j.mlwa.2025.100719_b40) 1953; 18 He (10.1016/j.mlwa.2025.100719_b18) 2017 Xie (10.1016/j.mlwa.2025.100719_b46) 2017; 18 Yang (10.1016/j.mlwa.2025.100719_b49) 2022; 3 Fraser (10.1016/j.mlwa.2025.100719_b17) 2017 Wallot (10.1016/j.mlwa.2025.100719_b43) 2018; 9 Jalilibal (10.1016/j.mlwa.2025.100719_b21) 2021; 161 Carriere (10.1016/j.mlwa.2025.100719_b9) 2017 Diakoulaki (10.1016/j.mlwa.2025.100719_b13) 1995; 22 Arthur (10.1016/j.mlwa.2025.100719_b3) 2006 Krajewski (10.1016/j.mlwa.2025.100719_b25) 2018 Jadayil (10.1016/j.mlwa.2025.100719_b20) 2024 Chandra (10.1016/j.mlwa.2025.100719_b10) 2020 Yan (10.1016/j.mlwa.2025.100719_b47) 2019; 20 Wang (10.1016/j.mlwa.2025.100719_b44) 2010; 11 Jin (10.1016/j.mlwa.2025.100719_b23) 2022; vol. 1004 Eboli (10.1016/j.mlwa.2025.100719_b15) 2017; 49 Otter (10.1016/j.mlwa.2025.100719_b34) 2017; 6 Jiang (10.1016/j.mlwa.2025.100719_b22) 2021; 13 Or (10.1016/j.mlwa.2025.100719_b33) 2023; 122 Ravishanker (10.1016/j.mlwa.2025.100719_b39) 2019 Ucar (10.1016/j.mlwa.2025.100719_b41) 2019 Biscio (10.1016/j.mlwa.2025.100719_b4) 2021; 108 Mohammed (10.1016/j.mlwa.2025.100719_b31) 2019; 13 Yang (10.1016/j.mlwa.2025.100719_b48) 2021 Perea (10.1016/j.mlwa.2025.100719_b35) 2015; 15 Bubenik (10.1016/j.mlwa.2025.100719_b5) 2015; 16 Ding (10.1016/j.mlwa.2025.100719_b14) 2022; 12 Li (10.1016/j.mlwa.2025.100719_b27) 2020; 148 Miyajima (10.1016/j.mlwa.2025.100719_b30) 2016; 33 Wasserman (10.1016/j.mlwa.2025.100719_b45) 2018; 5 Chen (10.1016/j.mlwa.2025.100719_b12) 2021; 18 Cao (10.1016/j.mlwa.2025.100719_b7) 2024 Liu (10.1016/j.mlwa.2025.100719_b29) 2024; 6 Esteve (10.1016/j.mlwa.2025.100719_b16) 2024; 28 Ichinomiya (10.1016/j.mlwa.2025.100719_b19) 2025; 15 Aoude (10.1016/j.mlwa.2025.100719_b2) 2012; 13 Punzo (10.1016/j.mlwa.2025.100719_b38) 2011; 19 Pun (10.1016/j.mlwa.2025.100719_b37) 2022; 55 |
References_xml | – volume: 55 start-page: 5169 year: 2022 end-page: 5213 ident: b37 article-title: Persistent-homology-based machine learning: a survey and a comparative study publication-title: Artificial Intelligence Review – year: 2005 ident: b51 article-title: Topology for computing – volume: 6 start-page: tdae015 year: 2024 ident: b29 article-title: A manoeuvre indicator and ensemble learning-based risky driver recognition approach for highway merging areas publication-title: Transportation Safety and Environment – volume: 19 start-page: 1243 year: 2011 end-page: 1262 ident: b38 article-title: On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (NGSIM) program data publication-title: Transportation Research Part C: Emerging Technologies – start-page: 1 year: 2019 end-page: 4 ident: b41 article-title: Management of anomalous driving behavior publication-title: 2019 IEEE vehicular networking conference – volume: 144 year: 2020 ident: b28 article-title: Analysis of the transition condition of rear-end collisions using time-to-collision index and vehicle trajectory data publication-title: Accident Analysis and Prevention – volume: 20 start-page: 807 year: 2019 end-page: 812 ident: b47 article-title: Driving risk assessment using driving behavior data under continuous tunnel environment publication-title: Traffic Injury Prevention – start-page: 1 year: 2024 end-page: 25 ident: b7 article-title: K-means clustering for persistent homology publication-title: Advances in Data Analysis and Classification – volume: 18 start-page: 267 year: 1953 end-page: 276 ident: b40 article-title: Who belongs in the family? publication-title: Psychometrika – volume: 3 start-page: 111 year: 2022 end-page: 125 ident: b49 article-title: Classification and evaluation of driving behavior safety levels: A driving simulation study publication-title: IEEE Open Journal of Intelligent Transportation Systems – reference: Pokorny, F. T., Hawasly, M., & Ramamoorthy, S. (2014). Multiscale Topological Trajectory Classification with Persistent Homology. In – volume: 2016 year: 2016 ident: b1 article-title: Driver behavior modeling: Developments and future directions publication-title: International Journal of Vehicular Technology – volume: 122 year: 2023 ident: b33 article-title: Learning vehicle trajectory uncertainty publication-title: Engineering Applications of Artificial Intelligence – start-page: 1 year: 2017 end-page: 33 ident: b18 article-title: Research based on high-fidelity NGSIM vehicle trajectory datasets: A review publication-title: Research Gate – start-page: 2118 year: 2018 end-page: 2125 ident: b25 article-title: The highd dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems publication-title: 2018 21st International conference on intelligent transportation systems – volume: 12 start-page: 2637 year: 2016 end-page: 2699 ident: b6 article-title: Computational geometric and algebraic topology publication-title: Oberwolfach Reports – volume: 11 start-page: 728 year: 2010 end-page: 737 ident: b44 article-title: Driving safety monitoring using semisupervised learning on time series data publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 18 start-page: 4777 year: 2017 end-page: 4784 ident: b46 article-title: Driving maneuver classification: A comparison of feature extraction methods publication-title: IEEE Sensors Journal – start-page: 1 year: 2021 end-page: 6 ident: b48 article-title: Driving behavior safety levels: Classification and evaluation publication-title: 2021 7th International conference on models and technologies for intelligent transportation systems – volume: 33 start-page: 14 year: 2016 end-page: 21 ident: b30 article-title: Driver-behavior modeling using on-road driving data: A new application for behavior signal processing publication-title: IEEE Signal Processing Magazine – volume: 13 start-page: 724 year: 2012 end-page: 736 ident: b2 article-title: Driver behavior classification at intersections and validation on large naturalistic data set publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2006 ident: b3 article-title: k-means++: The advantages of careful seeding – volume: 13 start-page: 973 year: 2021 ident: b26 article-title: A modified CRITIC method to estimate the objective weights of decision criteria publication-title: Symmetry – volume: 6 start-page: 1 year: 2017 end-page: 38 ident: b34 article-title: A roadmap for the computation of persistent homology publication-title: EPJ Data Science – start-page: 2584 year: 2014 end-page: 2589 ident: b50 article-title: Driving risk assessment using cluster analysis based on naturalistic driving data publication-title: 17th International IEEE conference on intelligent transportation systems – volume: 108 start-page: 779 year: 2021 end-page: 783 ident: b4 article-title: Discussion of ‘event history and topological data analysis’ publication-title: Biometrika – volume: 148 year: 2020 ident: b27 article-title: Risk perception and the warning strategy based on safety potential field theory publication-title: Accident Analysis and Prevention – volume: 161 year: 2021 ident: b21 article-title: Monitoring the coefficient of variation: A literature review publication-title: Computers & Industrial Engineering – volume: 22 start-page: 763 year: 1995 end-page: 770 ident: b13 article-title: Determining objective weights in multiple criteria problems: The critic method publication-title: Computers & Operations Research – start-page: 2035 year: 2020 end-page: 2042 ident: b10 article-title: Cmetric: A driving behavior measure using centrality functions publication-title: 2020 IEEE/RSJ international conference on intelligent robots and systems – volume: 13 year: 2019 ident: b31 article-title: A review of traffic accidents and related practices worldwide publication-title: The Open Transportation Journal – volume: 18 start-page: 12373 year: 2021 ident: b12 article-title: Risky driving behavior recognition based on vehicle trajectory publication-title: International Journal of Environmental Research and Public Health – volume: 16 start-page: 77 year: 2015 end-page: 102 ident: b5 article-title: Statistical topological data analysis using persistence landscapes publication-title: Journal of Machine Learning Research – volume: 28 year: 2024 ident: b16 article-title: tramoTDA: A trajectory monitoring system using topological data analysis publication-title: SoftwareX – volume: 5 start-page: 501 year: 2018 end-page: 532 ident: b45 article-title: Topological data analysis publication-title: Annual Review of Statistics and its Application – volume: 12 start-page: 11498 year: 2022 ident: b14 article-title: Lateral oscillation characteristics of vehicle trajectories on the straight sections of freeways publication-title: Applied Sciences – volume: 15 start-page: 20508 year: 2025 ident: b19 article-title: Machine learning of time series data using persistent homology publication-title: Scientific Reports – start-page: 8172 year: 2021 end-page: 8183 ident: b32 article-title: Smooth publication-title: International conference on machine learning – volume: 13 start-page: 9278 year: 2021 ident: b22 article-title: Determining an improved traffic conflict indicator for highway safety estimation based on vehicle trajectory data publication-title: Sustainability – volume: vol. 1004 year: 2022 ident: b23 article-title: Travel-mode classification based on GPS-trajectory data and geographic information using an XGBoost classifier publication-title: IOP conference series: earth and environmental science – volume: 49 start-page: 29 year: 2017 end-page: 38 ident: b15 article-title: How to define the accident risk level of car drivers by combining objective and subjective measures of driving style publication-title: Transportation Research Part F: Traffic Psychology and Behaviour – volume: 13 start-page: 5675 year: 2023 ident: b11 article-title: Driving behavior risk measurement and cluster analysis driven by vehicle trajectory data publication-title: Applied Sciences – year: 2021 ident: b8 article-title: Topological data analysis with applications – reference: (pp. 1–10). Berkeley, USA. – year: 2019 ident: b39 article-title: Topological data analysis (TDA) for time series – year: 2017 ident: b17 article-title: TDA parameters in time series analysis – volume: 9 start-page: 1679 year: 2018 ident: b43 article-title: Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in matlab publication-title: Frontiers in Psychology – start-page: 664 year: 2017 end-page: 673 ident: b9 article-title: Sliced wasserstein kernel for persistence diagrams publication-title: International conference on machine learning – start-page: 1918 year: 2022 end-page: 1924 ident: b42 article-title: Persistent homology for effective non-prehensile manipulation publication-title: 2022 International conference on robotics and automation – volume: 15 start-page: 799 year: 2015 end-page: 838 ident: b35 article-title: Sliding windows and persistence: An application of topological methods to signal analysis publication-title: Foundations of Computational Mathematics – start-page: 3236 year: 2019 end-page: 3242 ident: b24 article-title: Real-time driver state monitoring using a CNN based spatio-temporal approach publication-title: 2019 IEEE intelligent transportation systems conference – start-page: 236 year: 2024 end-page: 252 ident: b20 article-title: Statistical analysis for major causes of traffic accidents publication-title: Evolutionary Studies in Imaginative Culture – volume: 11 start-page: 728 issue: 3 year: 2010 ident: 10.1016/j.mlwa.2025.100719_b44 article-title: Driving safety monitoring using semisupervised learning on time series data publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2010.2050200 – volume: 12 start-page: 2637 issue: 4 year: 2016 ident: 10.1016/j.mlwa.2025.100719_b6 article-title: Computational geometric and algebraic topology publication-title: Oberwolfach Reports doi: 10.4171/owr/2015/45 – volume: 161 year: 2021 ident: 10.1016/j.mlwa.2025.100719_b21 article-title: Monitoring the coefficient of variation: A literature review publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107600 – volume: 148 year: 2020 ident: 10.1016/j.mlwa.2025.100719_b27 article-title: Risk perception and the warning strategy based on safety potential field theory publication-title: Accident Analysis and Prevention doi: 10.1016/j.aap.2020.105805 – volume: 16 start-page: 77 issue: 1 year: 2015 ident: 10.1016/j.mlwa.2025.100719_b5 article-title: Statistical topological data analysis using persistence landscapes publication-title: Journal of Machine Learning Research – start-page: 1 year: 2017 ident: 10.1016/j.mlwa.2025.100719_b18 article-title: Research based on high-fidelity NGSIM vehicle trajectory datasets: A review publication-title: Research Gate – volume: 2016 issue: 1 year: 2016 ident: 10.1016/j.mlwa.2025.100719_b1 article-title: Driver behavior modeling: Developments and future directions publication-title: International Journal of Vehicular Technology – volume: 5 start-page: 501 issue: 1 year: 2018 ident: 10.1016/j.mlwa.2025.100719_b45 article-title: Topological data analysis publication-title: Annual Review of Statistics and its Application doi: 10.1146/annurev-statistics-031017-100045 – start-page: 1 year: 2021 ident: 10.1016/j.mlwa.2025.100719_b48 article-title: Driving behavior safety levels: Classification and evaluation – start-page: 2118 year: 2018 ident: 10.1016/j.mlwa.2025.100719_b25 article-title: The highd dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems – volume: 13 issue: 1 year: 2019 ident: 10.1016/j.mlwa.2025.100719_b31 article-title: A review of traffic accidents and related practices worldwide publication-title: The Open Transportation Journal doi: 10.2174/1874447801913010065 – volume: 122 year: 2023 ident: 10.1016/j.mlwa.2025.100719_b33 article-title: Learning vehicle trajectory uncertainty publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.106101 – volume: 22 start-page: 763 issue: 7 year: 1995 ident: 10.1016/j.mlwa.2025.100719_b13 article-title: Determining objective weights in multiple criteria problems: The critic method publication-title: Computers & Operations Research doi: 10.1016/0305-0548(94)00059-H – volume: 19 start-page: 1243 issue: 6 year: 2011 ident: 10.1016/j.mlwa.2025.100719_b38 article-title: On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (NGSIM) program data publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2010.12.007 – volume: 15 start-page: 20508 issue: 1 year: 2025 ident: 10.1016/j.mlwa.2025.100719_b19 article-title: Machine learning of time series data using persistent homology publication-title: Scientific Reports doi: 10.1038/s41598-025-06551-3 – year: 2017 ident: 10.1016/j.mlwa.2025.100719_b17 – year: 2019 ident: 10.1016/j.mlwa.2025.100719_b39 – volume: 13 start-page: 973 issue: 6 year: 2021 ident: 10.1016/j.mlwa.2025.100719_b26 article-title: A modified CRITIC method to estimate the objective weights of decision criteria publication-title: Symmetry doi: 10.3390/sym13060973 – volume: 28 year: 2024 ident: 10.1016/j.mlwa.2025.100719_b16 article-title: tramoTDA: A trajectory monitoring system using topological data analysis publication-title: SoftwareX doi: 10.1016/j.softx.2024.101953 – start-page: 664 year: 2017 ident: 10.1016/j.mlwa.2025.100719_b9 article-title: Sliced wasserstein kernel for persistence diagrams – year: 2021 ident: 10.1016/j.mlwa.2025.100719_b8 – start-page: 8172 year: 2021 ident: 10.1016/j.mlwa.2025.100719_b32 article-title: Smooth p-wasserstein distance: structure, empirical approximation, and statistical applications – volume: 18 start-page: 267 issue: 4 year: 1953 ident: 10.1016/j.mlwa.2025.100719_b40 article-title: Who belongs in the family? publication-title: Psychometrika doi: 10.1007/BF02289263 – volume: 15 start-page: 799 year: 2015 ident: 10.1016/j.mlwa.2025.100719_b35 article-title: Sliding windows and persistence: An application of topological methods to signal analysis publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-014-9206-z – start-page: 2584 year: 2014 ident: 10.1016/j.mlwa.2025.100719_b50 article-title: Driving risk assessment using cluster analysis based on naturalistic driving data – volume: vol. 1004 year: 2022 ident: 10.1016/j.mlwa.2025.100719_b23 article-title: Travel-mode classification based on GPS-trajectory data and geographic information using an XGBoost classifier – start-page: 1 year: 2019 ident: 10.1016/j.mlwa.2025.100719_b41 article-title: Management of anomalous driving behavior – start-page: 3236 year: 2019 ident: 10.1016/j.mlwa.2025.100719_b24 article-title: Real-time driver state monitoring using a CNN based spatio-temporal approach – start-page: 236 year: 2024 ident: 10.1016/j.mlwa.2025.100719_b20 article-title: Statistical analysis for major causes of traffic accidents publication-title: Evolutionary Studies in Imaginative Culture – year: 2006 ident: 10.1016/j.mlwa.2025.100719_b3 – volume: 49 start-page: 29 year: 2017 ident: 10.1016/j.mlwa.2025.100719_b15 article-title: How to define the accident risk level of car drivers by combining objective and subjective measures of driving style publication-title: Transportation Research Part F: Traffic Psychology and Behaviour doi: 10.1016/j.trf.2017.06.004 – volume: 33 start-page: 14 issue: 6 year: 2016 ident: 10.1016/j.mlwa.2025.100719_b30 article-title: Driver-behavior modeling using on-road driving data: A new application for behavior signal processing publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2016.2602377 – start-page: 2035 year: 2020 ident: 10.1016/j.mlwa.2025.100719_b10 article-title: Cmetric: A driving behavior measure using centrality functions – volume: 13 start-page: 9278 issue: 16 year: 2021 ident: 10.1016/j.mlwa.2025.100719_b22 article-title: Determining an improved traffic conflict indicator for highway safety estimation based on vehicle trajectory data publication-title: Sustainability doi: 10.3390/su13169278 – volume: 18 start-page: 4777 issue: 12 year: 2017 ident: 10.1016/j.mlwa.2025.100719_b46 article-title: Driving maneuver classification: A comparison of feature extraction methods publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2017.2780089 – volume: 9 start-page: 1679 year: 2018 ident: 10.1016/j.mlwa.2025.100719_b43 article-title: Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in matlab publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2018.01679 – volume: 3 start-page: 111 year: 2022 ident: 10.1016/j.mlwa.2025.100719_b49 article-title: Classification and evaluation of driving behavior safety levels: A driving simulation study publication-title: IEEE Open Journal of Intelligent Transportation Systems doi: 10.1109/OJITS.2022.3149474 – volume: 12 start-page: 11498 issue: 22 year: 2022 ident: 10.1016/j.mlwa.2025.100719_b14 article-title: Lateral oscillation characteristics of vehicle trajectories on the straight sections of freeways publication-title: Applied Sciences doi: 10.3390/app122211498 – volume: 108 start-page: 779 issue: 4 year: 2021 ident: 10.1016/j.mlwa.2025.100719_b4 article-title: Discussion of ‘event history and topological data analysis’ publication-title: Biometrika doi: 10.1093/biomet/asab032 – volume: 55 start-page: 5169 issue: 7 year: 2022 ident: 10.1016/j.mlwa.2025.100719_b37 article-title: Persistent-homology-based machine learning: a survey and a comparative study publication-title: Artificial Intelligence Review doi: 10.1007/s10462-022-10146-z – start-page: 1918 year: 2022 ident: 10.1016/j.mlwa.2025.100719_b42 article-title: Persistent homology for effective non-prehensile manipulation – volume: 20 start-page: 807 issue: 8 year: 2019 ident: 10.1016/j.mlwa.2025.100719_b47 article-title: Driving risk assessment using driving behavior data under continuous tunnel environment publication-title: Traffic Injury Prevention doi: 10.1080/15389588.2019.1675154 – ident: 10.1016/j.mlwa.2025.100719_b36 – volume: 6 start-page: tdae015 issue: 4 year: 2024 ident: 10.1016/j.mlwa.2025.100719_b29 article-title: A manoeuvre indicator and ensemble learning-based risky driver recognition approach for highway merging areas publication-title: Transportation Safety and Environment doi: 10.1093/tse/tdae015 – year: 2005 ident: 10.1016/j.mlwa.2025.100719_b51 – volume: 144 year: 2020 ident: 10.1016/j.mlwa.2025.100719_b28 article-title: Analysis of the transition condition of rear-end collisions using time-to-collision index and vehicle trajectory data publication-title: Accident Analysis and Prevention doi: 10.1016/j.aap.2020.105676 – start-page: 1 year: 2024 ident: 10.1016/j.mlwa.2025.100719_b7 article-title: K-means clustering for persistent homology publication-title: Advances in Data Analysis and Classification – volume: 13 start-page: 5675 issue: 9 year: 2023 ident: 10.1016/j.mlwa.2025.100719_b11 article-title: Driving behavior risk measurement and cluster analysis driven by vehicle trajectory data publication-title: Applied Sciences doi: 10.3390/app13095675 – volume: 18 start-page: 12373 issue: 23 year: 2021 ident: 10.1016/j.mlwa.2025.100719_b12 article-title: Risky driving behavior recognition based on vehicle trajectory publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph182312373 – volume: 13 start-page: 724 issue: 2 year: 2012 ident: 10.1016/j.mlwa.2025.100719_b2 article-title: Driver behavior classification at intersections and validation on large naturalistic data set publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2011.2179537 – volume: 6 start-page: 1 year: 2017 ident: 10.1016/j.mlwa.2025.100719_b34 article-title: A roadmap for the computation of persistent homology publication-title: EPJ Data Science doi: 10.1140/epjds/s13688-017-0109-5 |
SSID | ssj0002811334 |
Score | 2.3020186 |
Snippet | With urbanization and rising vehicle numbers, road safety has become increasingly critical. Robust, trajectory-level risk assessment is essential for... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 100719 |
SubjectTerms | Driving behavior Persistent homology Topological data analysis Trajectory classification Trajectory clustering |
Title | Topological data analysis for driver behavior classification driven by vehicle trajectory data |
URI | https://dx.doi.org/10.1016/j.mlwa.2025.100719 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZbd-lldGyjv1Z06C042JIl2ccxtpVBe0kLPc3oJ03aOiUkLd1hf_uefthOtzC2XkywsRL0vjw-PX2fHkLHshKkYsJllKg8K12uMkVqlxFGOC2drvKotjjjJxflt0t2OezgB3fJUo31j42-kudEFe5BXL1L9j8i2w8KN-AzxBeuEGG4_luMY4eDuNMil95elY4Y8eJBs_Cai96IP9KeKHtlUIx5eNx6-nlvr_zIvl3ELBTxH0fJstbz1tOgubRdk4lUv13f_e4xBmv8q5TJ1HRQ1j7Ia3kzb2Mn9-gF6fc_5rfJOfR1tdADXCfTVWg5PJrIqZmu1ycI6wVYqWjWGWcGlRLkNqAFPKtI7BkythvupeQc7dN_5PlYcpiNb28e_OFRhAW1R0q-T8_Pnvhx_bBA9kIj85foFREi7Omf_hwKcqQqYL3uVQj9D0kmq6gH_P2rNhOZNXJyvoNep1UF_hgh8ga9sO1b9H0NHtgHFHfwwAAPHOGBO3jgp_CIj1usHnGCBx7gEUZ7hy6-fD7_dJKldhqZ9qeaZZpR4WrJGKPOMMlVwbTmTghuCwp_ZVkp4yzkd2dzpjg1tJauVLXImTGUlfQ92mrnrd1FGEik1LmsheS6LHUta5OXVBWiIIKbvN5Do25umrt4akrTyQlnjZ_Jxs9kE2dyD7Fu-prE-yKfayDcf3lv_5nvHaDtAaiHaGu5WNkPQC2X6iiUZI4CMH4BjkF-Zw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+data+analysis+for+driver+behavior+classification+driven+by+vehicle+trajectory+data&rft.jtitle=Machine+learning+with+applications&rft.au=Indah%2C+Debbie&rft.au=Mwakalonge%2C+Judith&rft.au=Comert%2C+Gurcan&rft.au=Siuhi%2C+Saidi&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=2666-8270&rft.eissn=2666-8270&rft.volume=21&rft_id=info:doi/10.1016%2Fj.mlwa.2025.100719&rft.externalDocID=S2666827025001021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-8270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-8270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-8270&client=summon |