Electronic structure and transport properties of quantum dots

The subject of this paper are electronic properties of isolated quantum dots as well as transport properties of quantum dots coupled to two electronic reservoirs. Thereby special focus is put on the effects of Coulomb interaction and possible correlations in the quantum dot states. First, the regime...

Full description

Saved in:
Bibliographic Details
Published inAnnalen der Physik Vol. 516; no. 5; pp. 249 - 304
Main Author Tews, M.
Format Journal Article
LanguageEnglish
Published Berlin WILEY‐VCH Verlag 11.06.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The subject of this paper are electronic properties of isolated quantum dots as well as transport properties of quantum dots coupled to two electronic reservoirs. Thereby special focus is put on the effects of Coulomb interaction and possible correlations in the quantum dot states. First, the regime of sequential tunneling to the reservoirs is investigated. It is shown that in case degenerate states participate in transport, the resonance positions in the differential conductance generally depend on temperature and the degree of degeneracy. This effect can be used to directly probe degeneracies in a quantum dot spectrum. A further effect, characteristic for sequential tunneling events, is the complete blocking of individual channels for transport. A generalisation of the well known spin blockade is found for correlated dot states transitions through which are not directly spin‐forbidden. In the second part, the electronic structure of spherical quantum dots is calculated. In order to account for correlation effects, the few‐particle Schrödinger equation is solved by an exact diagonalization procedure. The calculated electronic structure compares to experimental findings obtained on colloidal semiconductor nanocrystals by Scanning Tunneling Spectroscopy. It is found that the electric field induced by the tunneling tip is gives rise to a Stark effect which can break the spherical symmetry of the electronic ground state density which is in agreement with wave‐function mapping experiments. The symmetry breaking depends on the competition between exchange energy and the Stark energy. Moreover, a systematic dependence on particle number is found for the excitation energies of optical transitions which explains recent experimental findings on self‐organized quantum dots. In the last part, co‐tunneling in the Coulomb blockade regime is studied. For this end the tunneling current is calculated up to the forth order perturbation theory in the tunnel coupling by a real‐time Green's function approach for the non‐equilibrium case. The differential conductance calculated for a quantum dot containing up to two interacting electrons shows complex signatures of the excitation spectrum which are explained by a combination of co‐tunneling and sequential tunneling processes. Thereby the calculations show a peak structure within the Coulomb blockade regime which has also been observed in experiment.
AbstractList The subject of this paper are electronic properties of isolated quantum dots as well as transport properties of quantum dots coupled to two electronic reservoirs. Thereby special focus is put on the effects of Coulomb interaction and possible correlations in the quantum dot states. First, the regime of sequential tunneling to the reservoirs is investigated. It is shown that in case degenerate states participate in transport, the resonance positions in the differential conductance generally depend on temperature and the degree of degeneracy. This effect can be used to directly probe degeneracies in a quantum dot spectrum. A further effect, characteristic for sequential tunneling events, is the complete blocking of individual channels for transport. A generalisation of the well known spin blockade is found for correlated dot states transitions through which are not directly spin‐forbidden. In the second part, the electronic structure of spherical quantum dots is calculated. In order to account for correlation effects, the few‐particle Schrödinger equation is solved by an exact diagonalization procedure. The calculated electronic structure compares to experimental findings obtained on colloidal semiconductor nanocrystals by Scanning Tunneling Spectroscopy. It is found that the electric field induced by the tunneling tip is gives rise to a Stark effect which can break the spherical symmetry of the electronic ground state density which is in agreement with wave‐function mapping experiments. The symmetry breaking depends on the competition between exchange energy and the Stark energy. Moreover, a systematic dependence on particle number is found for the excitation energies of optical transitions which explains recent experimental findings on self‐organized quantum dots. In the last part, co‐tunneling in the Coulomb blockade regime is studied. For this end the tunneling current is calculated up to the forth order perturbation theory in the tunnel coupling by a real‐time Green's function approach for the non‐equilibrium case. The differential conductance calculated for a quantum dot containing up to two interacting electrons shows complex signatures of the excitation spectrum which are explained by a combination of co‐tunneling and sequential tunneling processes. Thereby the calculations show a peak structure within the Coulomb blockade regime which has also been observed in experiment.
Author Tews, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Tews
  fullname: Tews, M.
  email: mtews@physnet.uni‐hamburg.de
BookMark eNqFkE9LxDAQxYOsYF337jFfoOskTdMU8bCs6x9Y1IOeSzZJIdJNapIi--1tWQ_iQU8zj3m_x_DO0cx5ZxC6JLAkAPRKOt0vKQArCYcS6AnKSElJXghRz1AGAMW4AztDixjfRzmZgLIM3Ww6o1LwziocUxhUGoLBYx5OQbrY-5BwH3xvQrImYt_ij0G6NOyx9ileoNNWdtEsvuccvd1tXtcP-fb5_nG92uaKMOC5roXUrCaE7qraEFq3gglS17zYmVJXWmnZtqLQwlRal4KXnHNCClJpRoEpKOaIH3NV8DEG0zbKJpmsd-OXtmsINFMPzdRD86OHEYRfYB_sXobDX8j1Efm0nTn8629WT7cvkx6vFS--ALw7c60
CitedBy_id crossref_primary_10_1016_j_physrep_2004_12_002
Cites_doi 10.1063/1.366452
10.1103/PhysRevB.52.R17017
10.1103/PhysRevB.58.16221
10.1007/978-1-4615-5807-1_5
10.1007/978-94-015-8839-3_1
10.1103/PhysRevLett.8.316
10.1016/0921-4526(93)90149-Z
10.1063/1.2808874
10.1103/PhysRevB.62.R7743
10.1103/PhysRevLett.70.69
10.1103/PhysRevB.65.073307
10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U
10.1103/PhysRevLett.74.984
10.1021/nl0342085
10.1103/PhysRevLett.59.807
10.1016/0375-9601(89)90934-1
10.1103/PhysRevB.53.R1713
10.1007/978-3-662-22375-8_1
10.1016/S1386-9477(99)00218-0
10.1021/nl015572b
10.1103/PhysRevB.65.165334
10.1103/PhysRevB.49.16514
10.1007/BF01307633
10.1002/1521-3951(200103)224:1<271::AID-PSSB271>3.0.CO;2-#
10.1007/BF02769980
10.1103/PhysRevLett.73.2252
10.1143/JJAP.38.388
10.1063/1.367978
10.1103/PhysRevB.62.8240
10.1103/PhysRevLett.65.3037
10.1063/1.1369405
10.1146/annurev.physchem.54.011002.103838
10.1103/PhysRevB.63.195318
10.1103/PhysRev.146.575
10.1103/PhysRevB.50.18436
10.1103/PhysRevLett.78.4482
10.1103/PhysRevB.53.1452
10.1103/PhysRevB.59.15819
10.1103/PhysRevB.61.16773
10.1103/PhysRevLett.65.2446
10.1146/annurev.matsci.30.1.475
10.1016/0039-6028(92)90380-O
10.1103/PhysRevLett.68.3228
10.1103/PhysRevB.53.16338
10.1007/978-3-642-72002-4
10.1126/science.281.5385.2013
10.1103/PhysRevLett.86.5751
10.1021/ja00039a038
10.1016/0022-2313(90)90007-X
10.1209/0295-5075/26/6/012
10.1063/1.113227
10.1063/1.445676
10.1088/0034-4885/64/6/201
10.1126/science.290.5489.122
10.1103/PhysRevLett.86.878
10.1038/39535
10.1103/PhysRevLett.62.583
10.1063/1.1382854
10.1103/PhysRevLett.85.1068
10.1017/CBO9780511524356
10.1063/1.124808
10.1103/PhysRevB.54.17628
10.1021/ja9805425
10.1088/0957-4484/13/3/304
10.1007/978-3-642-97675-9
10.1126/science.290.5490.314
10.1103/PhysRevLett.91.196804
10.1038/370354a0
10.1007/978-94-011-0019-9_21
10.1103/PhysRevB.65.045317
10.1126/science.1068153
10.1088/0953-8984/4/32/003
10.1103/PhysRevLett.74.1194
10.1063/1.476797
10.1103/PhysRevB.46.12485
10.1063/1.124354
10.1143/JJAP.34.1326
10.1017/CBO9780511626128
10.1103/PhysRevLett.65.1623
10.1364/JOSAB.10.000100
10.1063/1.447218
10.1063/1.110199
10.1038/35003535
10.1103/PhysRevLett.91.257401
10.1126/science.281.5385.2016
10.1038/22979
ContentType Journal Article
Copyright Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/andp.20045160502
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3889
EndPage 304
ExternalDocumentID 10_1002_andp_20045160502
ANDP200410076
Genre article
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
2WC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
669
66C
692
6J9
6P2
6TJ
6TS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQ8
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6R
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGL
RIWAO
RJQFR
RNS
RNW
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
UPT
UQL
V8K
VH1
W8V
W99
WBKPD
WGJPS
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c1406-d98ad49112b79e129f84819963be5d7dcdaff83d8e7dd586566611317d4204c03
IEDL.DBID DR2
ISSN 0003-3804
IngestDate Tue Jul 01 02:44:37 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Wed Jan 22 16:25:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1406-d98ad49112b79e129f84819963be5d7dcdaff83d8e7dd586566611317d4204c03
PageCount 56
ParticipantIDs crossref_citationtrail_10_1002_andp_20045160502
crossref_primary_10_1002_andp_20045160502
wiley_primary_10_1002_andp_20045160502_ANDP200410076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-06-11
PublicationDateYYYYMMDD 2004-06-11
PublicationDate_xml – month: 06
  year: 2004
  text: 2004-06-11
  day: 11
PublicationDecade 2000
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Annalen der Physik
PublicationYear 2004
Publisher WILEY‐VCH Verlag
Publisher_xml – name: WILEY‐VCH Verlag
References 1995; 74
2002; 14
1998; 281
1997; 82
2000; 6
2002; 13
1995; 34
1994; 370
2000; 85
1993; 63
1994; 26
1999; 400
1998; 83
2001; 89
2003; 54
2001; 224
2000; 290
2001; 86
1997; 389
1987; 45
2003; 91
1990; 47
1993; 70
1991; 85
2000; 404
1995; 66
1992; 114
1999; 59
2000; 61
2000; 62
2003; 3
1992; 46
1994; 73
1998; 120
1992; 4
1998; 58
1989; 62
1995; 52
1984; 80
1992; 263
1962; 6
2002; 295
1989; 140
1994; 49
2002
1996; 54
1983; 79
1996; 53
2001; 63
1987; 59
2001; 64
1993; 189
1996; 99
1990; 65
1966; 146
1993; 10
1999; 38
2002; 65
2000; 30
1997; 78
1998; 109
1999; 75
1992; 68
2001; 1
1994; 50
2001; 79
e_1_2_1_81_2
e_1_2_1_66_2
e_1_2_1_89_2
e_1_2_1_20_2
e_1_2_1_43_2
e_1_2_1_62_2
e_1_2_1_85_2
Kuz'min L.S. (e_1_2_1_7_2) 1987; 45
e_1_2_1_24_2
e_1_2_1_47_2
e_1_2_1_28_2
e_1_2_1_92_2
e_1_2_1_103_2
e_1_2_1_54_2
e_1_2_1_4_2
e_1_2_1_77_2
e_1_2_1_12_2
e_1_2_1_50_2
e_1_2_1_96_2
e_1_2_1_31_2
e_1_2_1_73_2
e_1_2_1_16_2
e_1_2_1_35_2
e_1_2_1_58_2
e_1_2_1_8_2
e_1_2_1_39_2
e_1_2_1_40_2
e_1_2_1_86_2
e_1_2_1_67_2
e_1_2_1_44_2
e_1_2_1_82_2
e_1_2_1_21_2
e_1_2_1_63_2
e_1_2_1_48_2
e_1_2_1_25_2
e_1_2_1_29_2
e_1_2_1_70_2
e_1_2_1_102_2
e_1_2_1_55_2
e_1_2_1_78_2
e_1_2_1_97_2
e_1_2_1_3_2
e_1_2_1_32_2
e_1_2_1_51_2
e_1_2_1_74_2
e_1_2_1_93_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_17_2
e_1_2_1_59_2
e_1_2_1_41_2
e_1_2_1_64_2
e_1_2_1_87_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_60_2
e_1_2_1_83_2
e_1_2_1_26_2
e_1_2_1_49_2
e_1_2_1_68_2
e_1_2_1_90_2
e_1_2_1_101_2
e_1_2_1_105_2
e_1_2_1_6_2
e_1_2_1_75_2
e_1_2_1_56_2
e_1_2_1_98_2
e_1_2_1_2_2
e_1_2_1_33_2
e_1_2_1_71_2
e_1_2_1_10_2
e_1_2_1_52_2
e_1_2_1_94_2
e_1_2_1_37_2
e_1_2_1_14_2
e_1_2_1_79_2
e_1_2_1_18_2
e_1_2_1_80_2
e_1_2_1_65_2
e_1_2_1_88_2
e_1_2_1_23_2
e_1_2_1_61_2
e_1_2_1_42_2
e_1_2_1_84_2
e_1_2_1_27_2
e_1_2_1_46_2
e_1_2_1_69_2
e_1_2_1_91_2
e_1_2_1_100_2
e_1_2_1_104_2
e_1_2_1_30_2
e_1_2_1_53_2
e_1_2_1_76_2
e_1_2_1_99_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_72_2
e_1_2_1_95_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_19_2
e_1_2_1_57_2
e_1_2_1_9_2
References_xml – volume: 80
  start-page: 4403
  year: 1984
  publication-title: J. Chem. Phys.
– volume: 59
  start-page: 807
  year: 1987
  publication-title: Phys. Rev. Lett.
– volume: 65
  start-page: 165334
  year: 2002
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 551
  year: 2001
  publication-title: Nano Lett.
– volume: 63
  start-page: 195318
  year: 2001
  publication-title: Phys. Rev. B
– volume: 62
  start-page: 583
  year: 1989
  publication-title: Phys. Rev. Lett.
– volume: 120
  start-page: 5343
  year: 1998
  publication-title: J. Am. Chem. Soc.
– volume: 404
  start-page: 59
  year: 2000
  publication-title: Nature
– volume: 78
  start-page: 4482
  year: 1997
  publication-title: Phys. Rev. Lett.
– volume: 79
  start-page: 5566
  year: 1983
  publication-title: J. Chem. Phys.
– volume: 65
  start-page: 3037
  year: 1990
  publication-title: Phys. Rev. Lett.
– volume: 63
  start-page: 3203
  year: 1993
  publication-title: Appl. Phys. Lett.
– volume: 38
  start-page: 388
  year: 1999
  publication-title: Jpn. J. Appl. Phys.
– volume: 64
  start-page: 701
  year: 2001
  publication-title: Rep. Prog. Phys.
– volume: 83
  start-page: 7965
  year: 1998
  publication-title: J. Appl. Phys.
– volume: 66
  start-page: 1316
  year: 1995
  publication-title: Appl. Phys. Lett.
– volume: 49
  start-page: 16514
  year: 1994
  publication-title: Phys. Rev. B
– volume: 389
  start-page: 699
  year: 1997
  publication-title: Nature
– volume: 59
  start-page: 15819
  year: 1999
  publication-title: Phys. Rev. B
– volume: 290
  start-page: 314
  year: 2000
  publication-title: Science
– volume: 65
  start-page: 045317
  year: 2002
  publication-title: Phys. Rev. B
– volume: 82
  start-page: 5837
  year: 1997
  publication-title: J. Appl. Phys.
– volume: 62
  start-page: 7743
  year: 2000
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 6651
  year: 1992
  publication-title: J. Phys., Condens. Matter
– volume: 14
  start-page: 317
  year: 2002
  publication-title: Adv. Mater.
– volume: 79
  start-page: 117
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 114
  start-page: 5221
  year: 1992
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 1452
  year: 1996
  publication-title: Phys. Rev. B
– volume: 68
  start-page: 3228
  year: 1992
  publication-title: Phys. Rev. Lett.
– volume: 109
  start-page: 2306
  year: 1998
  publication-title: J. Chem. Phys.
– volume: 54
  start-page: 465
  year: 2003
  publication-title: Annu. Rev. Phys. Chem.
– volume: 45
  start-page: 495
  year: 1987
  publication-title: JETP Lett. (USA)
– volume: 295
  start-page: 1506
  year: 2002
  publication-title: Science
– volume: 146
  start-page: 575
  year: 1966
  publication-title: Phys. Rev.
– volume: 91
  start-page: 257401
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 281
  start-page: 2013
  year: 1998
  publication-title: Science
– volume: 6
  start-page: 482
  year: 2000
  publication-title: Physica E
– volume: 47
  start-page: 113
  year: 1990
  publication-title: J. Lumin.
– volume: 62
  start-page: 8240
  year: 2000
  publication-title: Phys. Rev. B
– volume: 52
  start-page: 17017
  year: 1995
  publication-title: Phys. Rev. B
– volume: 65
  start-page: 2446
  year: 1990
  publication-title: Phys. Rev. Lett.
– volume: 86
  start-page: 5751
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 74
  start-page: 1194
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 290
  start-page: 122
  year: 2000
  publication-title: Science
– volume: 75
  start-page: 1751
  year: 1999
  publication-title: Appl. Phys. Lett.
– volume: 65
  start-page: 073307
  year: 2002
  publication-title: Phys. Rev. B
– volume: 34
  start-page: 1326
  year: 1995
  publication-title: Jpn. J. Appl. Phys.
– volume: 99
  start-page: 551
  year: 1996
  publication-title: Z. Phys. B
– volume: 54
  start-page: 17628
  year: 1996
  publication-title: Phys. Rev. B
– volume: 263
  start-page: 419
  year: 1992
  publication-title: Surf. Sci.
– volume: 91
  start-page: 196804
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 26
  start-page: 467
  year: 1994
  publication-title: Europhys. Lett. (France)
– volume: 140
  start-page: 251
  year: 1989
  publication-title: Phys. Lett. A
– volume: 281
  start-page: 2016
  year: 1998
  publication-title: Science
– volume: 13
  start-page: 1
  year: 2002
  publication-title: Nanotechnology
– volume: 86
  start-page: 878
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 61
  start-page: 16773
  year: 2000
  publication-title: Phys. Rev. B
– volume: 73
  start-page: 2252
  year: 1994
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 100
  year: 1993
  publication-title: J. Opt. Soc. Am. B
– volume: 46
  start-page: 12485
  year: 1992
  publication-title: Phys. Rev. B
– volume: 85
  start-page: 375
  year: 1991
  publication-title: Condensed Matter
– volume: 75
  start-page: 301
  year: 1999
  publication-title: Appl. Phys. Lett.
– volume: 224
  start-page: 271
  year: 2001
  publication-title: phys. stat. sol. (b)
– volume: 3
  start-page: 857
  year: 2003
  publication-title: Nano Lett.
– volume: 74
  start-page: 984
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 54
  start-page: 1713
  year: 1996
  publication-title: Phys. Rev. B
– volume: 85
  start-page: 1068
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 189
  start-page: 88
  year: 1993
  publication-title: Physica B
– volume: 370
  start-page: 354
  year: 1994
  publication-title: Nature
– volume: 6
  start-page: 316
  year: 1962
  publication-title: Phys. Rev. Lett.
– year: 2002
– volume: 400
  start-page: 542
  year: 1999
  publication-title: Letters to Nature
– volume: 89
  start-page: 8127
  year: 2001
  publication-title: J. Appl. Phys.
– volume: 50
  start-page: 18436
  year: 1994
  publication-title: Phys. Rev. B
– volume: 65
  start-page: 1623
  year: 1990
  publication-title: Phys. Rev. Lett.
– volume: 58
  start-page: 16221
  year: 1998
  publication-title: Phys. Rev. B
– volume: 70
  start-page: 69
  year: 1993
  publication-title: Phys. Rev. Lett.
– volume: 53
  start-page: 16338
  year: 1996
  publication-title: Phys. Rev. B
– volume: 30
  start-page: 475
  year: 2000
  publication-title: Annu. Rev. Mater. Sci.
– ident: e_1_2_1_39_2
  doi: 10.1063/1.366452
– ident: e_1_2_1_51_2
  doi: 10.1103/PhysRevB.52.R17017
– ident: e_1_2_1_84_2
  doi: 10.1103/PhysRevB.58.16221
– ident: e_1_2_1_22_2
  doi: 10.1007/978-1-4615-5807-1_5
– ident: e_1_2_1_4_2
  doi: 10.1007/978-94-015-8839-3_1
– ident: e_1_2_1_23_2
  doi: 10.1103/PhysRevLett.8.316
– ident: e_1_2_1_55_2
– ident: e_1_2_1_90_2
– ident: e_1_2_1_103_2
– ident: e_1_2_1_2_2
– ident: e_1_2_1_105_2
– ident: e_1_2_1_88_2
– ident: e_1_2_1_97_2
  doi: 10.1016/0921-4526(93)90149-Z
– ident: e_1_2_1_27_2
  doi: 10.1063/1.2808874
– ident: e_1_2_1_52_2
  doi: 10.1103/PhysRevB.62.R7743
– ident: e_1_2_1_98_2
  doi: 10.1103/PhysRevLett.70.69
– ident: e_1_2_1_87_2
  doi: 10.1103/PhysRevB.65.073307
– ident: e_1_2_1_26_2
– ident: e_1_2_1_44_2
  doi: 10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U
– ident: e_1_2_1_20_2
  doi: 10.1103/PhysRevLett.74.984
– ident: e_1_2_1_35_2
  doi: 10.1021/nl0342085
– ident: e_1_2_1_8_2
  doi: 10.1103/PhysRevLett.59.807
– ident: e_1_2_1_12_2
  doi: 10.1016/0375-9601(89)90934-1
– ident: e_1_2_1_21_2
  doi: 10.1103/PhysRevB.53.R1713
– ident: e_1_2_1_24_2
  doi: 10.1007/978-3-662-22375-8_1
– ident: e_1_2_1_80_2
  doi: 10.1016/S1386-9477(99)00218-0
– ident: e_1_2_1_54_2
  doi: 10.1021/nl015572b
– ident: e_1_2_1_68_2
  doi: 10.1103/PhysRevB.65.165334
– ident: e_1_2_1_101_2
  doi: 10.1103/PhysRevB.49.16514
– ident: e_1_2_1_96_2
  doi: 10.1007/BF01307633
– ident: e_1_2_1_59_2
  doi: 10.1002/1521-3951(200103)224:1<271::AID-PSSB271>3.0.CO;2-#
– ident: e_1_2_1_30_2
– ident: e_1_2_1_33_2
  doi: 10.1007/BF02769980
– ident: e_1_2_1_86_2
  doi: 10.1103/PhysRevLett.73.2252
– ident: e_1_2_1_104_2
  doi: 10.1143/JJAP.38.388
– ident: e_1_2_1_38_2
  doi: 10.1063/1.367978
– ident: e_1_2_1_29_2
  doi: 10.1103/PhysRevB.62.8240
– ident: e_1_2_1_14_2
  doi: 10.1103/PhysRevLett.65.3037
– ident: e_1_2_1_92_2
  doi: 10.1063/1.1369405
– ident: e_1_2_1_17_2
  doi: 10.1146/annurev.physchem.54.011002.103838
– ident: e_1_2_1_67_2
  doi: 10.1103/PhysRevB.63.195318
– ident: e_1_2_1_73_2
  doi: 10.1103/PhysRev.146.575
– ident: e_1_2_1_11_2
  doi: 10.1103/PhysRevB.50.18436
– ident: e_1_2_1_93_2
  doi: 10.1103/PhysRevLett.78.4482
– ident: e_1_2_1_81_2
  doi: 10.1103/PhysRevB.53.1452
– ident: e_1_2_1_69_2
  doi: 10.1103/PhysRevB.59.15819
– ident: e_1_2_1_56_2
  doi: 10.1103/PhysRevB.61.16773
– ident: e_1_2_1_13_2
  doi: 10.1103/PhysRevLett.65.2446
– ident: e_1_2_1_94_2
– ident: e_1_2_1_6_2
  doi: 10.1007/978-94-015-8839-3_1
– ident: e_1_2_1_74_2
  doi: 10.1146/annurev.matsci.30.1.475
– ident: e_1_2_1_99_2
  doi: 10.1016/0039-6028(92)90380-O
– ident: e_1_2_1_95_2
  doi: 10.1103/PhysRevLett.68.3228
– ident: e_1_2_1_65_2
  doi: 10.1103/PhysRevB.53.16338
– ident: e_1_2_1_3_2
  doi: 10.1007/978-3-642-72002-4
– ident: e_1_2_1_78_2
– ident: e_1_2_1_45_2
  doi: 10.1126/science.281.5385.2013
– ident: e_1_2_1_62_2
  doi: 10.1103/PhysRevLett.86.5751
– ident: e_1_2_1_60_2
  doi: 10.1021/ja00039a038
– ident: e_1_2_1_82_2
– ident: e_1_2_1_72_2
  doi: 10.1016/0022-2313(90)90007-X
– ident: e_1_2_1_19_2
  doi: 10.1209/0295-5075/26/6/012
– ident: e_1_2_1_40_2
  doi: 10.1063/1.113227
– ident: e_1_2_1_70_2
  doi: 10.1063/1.445676
– ident: e_1_2_1_16_2
  doi: 10.1088/0034-4885/64/6/201
– ident: e_1_2_1_64_2
  doi: 10.1126/science.290.5489.122
– ident: e_1_2_1_102_2
  doi: 10.1103/PhysRevLett.86.878
– ident: e_1_2_1_47_2
  doi: 10.1038/39535
– ident: e_1_2_1_9_2
  doi: 10.1103/PhysRevLett.62.583
– ident: e_1_2_1_58_2
  doi: 10.1063/1.1382854
– ident: e_1_2_1_63_2
  doi: 10.1103/PhysRevLett.85.1068
– ident: e_1_2_1_89_2
  doi: 10.1017/CBO9780511524356
– ident: e_1_2_1_50_2
  doi: 10.1063/1.124808
– ident: e_1_2_1_42_2
  doi: 10.1103/PhysRevB.54.17628
– ident: e_1_2_1_34_2
  doi: 10.1021/ja9805425
– ident: e_1_2_1_53_2
  doi: 10.1088/0957-4484/13/3/304
– ident: e_1_2_1_91_2
  doi: 10.1007/978-3-642-97675-9
– ident: e_1_2_1_43_2
  doi: 10.1126/science.290.5490.314
– ident: e_1_2_1_61_2
  doi: 10.1103/PhysRevLett.91.196804
– ident: e_1_2_1_41_2
  doi: 10.1038/370354a0
– ident: e_1_2_1_5_2
– ident: e_1_2_1_15_2
  doi: 10.1007/978-94-011-0019-9_21
– ident: e_1_2_1_31_2
  doi: 10.1103/PhysRevB.65.045317
– ident: e_1_2_1_37_2
  doi: 10.1126/science.1068153
– ident: e_1_2_1_77_2
  doi: 10.1088/0953-8984/4/32/003
– ident: e_1_2_1_18_2
  doi: 10.1103/PhysRevLett.74.1194
– ident: e_1_2_1_28_2
– ident: e_1_2_1_75_2
  doi: 10.1063/1.476797
– ident: e_1_2_1_10_2
  doi: 10.1103/PhysRevB.46.12485
– ident: e_1_2_1_49_2
  doi: 10.1063/1.124354
– ident: e_1_2_1_32_2
– ident: e_1_2_1_100_2
  doi: 10.1143/JJAP.34.1326
– ident: e_1_2_1_25_2
  doi: 10.1017/CBO9780511626128
– volume: 45
  start-page: 495
  year: 1987
  ident: e_1_2_1_7_2
  publication-title: JETP Lett. (USA)
– ident: e_1_2_1_48_2
  doi: 10.1103/PhysRevLett.65.1623
– ident: e_1_2_1_66_2
  doi: 10.1364/JOSAB.10.000100
– ident: e_1_2_1_71_2
  doi: 10.1063/1.447218
– ident: e_1_2_1_85_2
  doi: 10.1063/1.110199
– ident: e_1_2_1_36_2
  doi: 10.1038/35003535
– ident: e_1_2_1_79_2
– ident: e_1_2_1_83_2
  doi: 10.1103/PhysRevLett.91.257401
– ident: e_1_2_1_46_2
  doi: 10.1126/science.281.5385.2016
– ident: e_1_2_1_76_2
– ident: e_1_2_1_57_2
  doi: 10.1038/22979
SSID ssj0000502024
ssj0002169523
ssj0000502025
ssj0009609
Score 1.6266028
Snippet The subject of this paper are electronic properties of isolated quantum dots as well as transport properties of quantum dots coupled to two electronic...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
StartPage 249
SubjectTerms co‐tunneling
Quantum dots
transport
Title Electronic structure and transport properties of quantum dots
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fandp.20045160502
Volume 516
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJSQW3ojykgcWhrR52I49MFTQqkKiQohK3aL4tQBtaZuFX48vr4YOIMFo5ZzIZ_v83eX8HULXqeZUQFwDuMw9ImzgSRUxz2iiYj9UJLRwUfhxxIZj8jChk8ZdmIIfog64wc7I7TVs8FQuu2vSUOdo53yTUGnWpzmfJKRsAS56DuswCzzxywsQ6zat22HABG0YbyBgq4rsRdwn5Z9NJ9jd_OC3k6yJbPOjabCHVDWoIiPltZOtZEd9bvA9_m_U-2i3RK64Vyy1A7RlpodoO88gVcsjdNuvC-rggpQ2WxjsXoRXFX86nkPkfwEUrnhm8UfmZjV7x84vXh6j8aD_cjf0ytoMnnIuGfO04KkmzlKGMhbGgQYLvPzOeYqkoTrWSqfW8khzE2tNOaBGFgQOrGgS-kT50QlqTWdTc4qwwzCRMKlQlgni0KMMrBBURURZ7qdStFG30nOiSuJyqJ_xlhSUy2ECSkkaSmmjm7rHvCDt-EGW5Pr-VTDpje6foA15Jezsb93O0U6R-sO8ILhALTcd5tKhmpW8ytftF1Hd5bc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ05T8MwFICtqgjBwo0opwcWhrQ5bCceGKoeKtBWCLVStyjxsQBt6bHw6_HL1dIBJBit2In8fL338vw9hG4jGVAOfg1gmVuEa8eKhccsJYnwbVcQV8NF4V6fdYbkcURHJdTI78KkfIjC4QYrI9mvYYGDQ7q2ooYaSzsBTkKqWZsCUHILEnsDQL_54haOFnhkZ1cgVmValF2Hcbq2fQOCLU-z5wU2yf5tmoq1zS9-O8vWddvkcGrvI5l3K41Jea0uF3FVfG4QH__Z7wO0lymvuJ7OtkNUUuMjtJ0EkYr5MbpvFTl1cMqlXc4UNi_Cixyhjqfg_J8BxRVPNP5YmoFdvmNjGs9P0LDdGjQ6VpaewRLGKmOW5EEkidks3djnyugNGtD8xn7yYkWlL4WMtA48GShfShqA4sgcx-grkrg2EbZ3isrjyVidIWzUGI-riAvNODEKZOxozqnwiNCBHcW8gmq5oEORscshhcZbmFKX3RCEEq4JpYLuihbTlNvxQ12SCPzXimG933yGMoSWsPO_NbtBO51Brxt2H_pPF2g3jQRiluNcorIZGnVllJxFfJ1M4i_RbunT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQEYiFN6I8PbAwpM3DduKBoaKtyquqEJW6RYkfC9CWtln49fjyaugAEoxWzol8ts_fXc7fIXQVyYByiGsAl7lFuHasWHjMUpII33YFcTVcFH7qs96Q3I_oqHIXJuOHKANusDNSew0bfCp1c0kaahztlG8SKs3aFPgk1wmzOZRvaD-7ZZwFHtn5DYhlm5Zt12GcVqw3MLAVVfa8wCb5r00j2Fz94rejrApt07Opu4NEMaosJeW1kSzihvhcIXz837B30XYOXXErW2t7aE2N99FGmkIq5gfoplNW1MEZK20yU9i8CC8KAnU8hdD_DDhc8UTjj8RMa_KOjWM8P0TDbufltmflxRksYXwyZkkeRJIYU-nGPlcGNWgg5jfekxcrKn0pZKR14MlA-VLSAGAjcxyDViRxbSJs7wjVxpOxOkbYgBiPq4gLzTgx8DF2NOdUeETowI5iXkfNQs-hyJnLoYDGW5hxLrshKCWsKKWOrsse04y14wdZkur7V8Gw1W8PoA2JJezkb90u0eag3Q0f7_oPp2grSwNiluOcoZqZGXVuEM4ivkiX8BcUyeiC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+structure+and+transport+properties+of+quantum+dots&rft.jtitle=Annalen+der+Physik&rft.au=Tews%2C+M.&rft.date=2004-06-11&rft.issn=0003-3804&rft.eissn=1521-3889&rft.volume=516&rft.issue=5&rft.spage=249&rft.epage=304&rft_id=info:doi/10.1002%2Fandp.20045160502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_andp_20045160502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-3804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-3804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-3804&client=summon