Electronic structure and transport properties of quantum dots
The subject of this paper are electronic properties of isolated quantum dots as well as transport properties of quantum dots coupled to two electronic reservoirs. Thereby special focus is put on the effects of Coulomb interaction and possible correlations in the quantum dot states. First, the regime...
Saved in:
Published in | Annalen der Physik Vol. 516; no. 5; pp. 249 - 304 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin
WILEY‐VCH Verlag
11.06.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The subject of this paper are electronic properties of isolated quantum dots as well as transport properties of quantum dots coupled to two electronic reservoirs. Thereby special focus is put on the effects of Coulomb interaction and possible correlations in the quantum dot states. First, the regime of sequential tunneling to the reservoirs is investigated. It is shown that in case degenerate states participate in transport, the resonance positions in the differential conductance generally depend on temperature and the degree of degeneracy. This effect can be used to directly probe degeneracies in a quantum dot spectrum. A further effect, characteristic for sequential tunneling events, is the complete blocking of individual channels for transport. A generalisation of the well known spin blockade is found for correlated dot states transitions through which are not directly spin‐forbidden. In the second part, the electronic structure of spherical quantum dots is calculated. In order to account for correlation effects, the few‐particle Schrödinger equation is solved by an exact diagonalization procedure. The calculated electronic structure compares to experimental findings obtained on colloidal semiconductor nanocrystals by Scanning Tunneling Spectroscopy. It is found that the electric field induced by the tunneling tip is gives rise to a Stark effect which can break the spherical symmetry of the electronic ground state density which is in agreement with wave‐function mapping experiments. The symmetry breaking depends on the competition between exchange energy and the Stark energy. Moreover, a systematic dependence on particle number is found for the excitation energies of optical transitions which explains recent experimental findings on self‐organized quantum dots. In the last part, co‐tunneling in the Coulomb blockade regime is studied. For this end the tunneling current is calculated up to the forth order perturbation theory in the tunnel coupling by a real‐time Green's function approach for the non‐equilibrium case. The differential conductance calculated for a quantum dot containing up to two interacting electrons shows complex signatures of the excitation spectrum which are explained by a combination of co‐tunneling and sequential tunneling processes. Thereby the calculations show a peak structure within the Coulomb blockade regime which has also been observed in experiment. |
---|---|
AbstractList | The subject of this paper are electronic properties of isolated quantum dots as well as transport properties of quantum dots coupled to two electronic reservoirs. Thereby special focus is put on the effects of Coulomb interaction and possible correlations in the quantum dot states. First, the regime of sequential tunneling to the reservoirs is investigated. It is shown that in case degenerate states participate in transport, the resonance positions in the differential conductance generally depend on temperature and the degree of degeneracy. This effect can be used to directly probe degeneracies in a quantum dot spectrum. A further effect, characteristic for sequential tunneling events, is the complete blocking of individual channels for transport. A generalisation of the well known spin blockade is found for correlated dot states transitions through which are not directly spin‐forbidden. In the second part, the electronic structure of spherical quantum dots is calculated. In order to account for correlation effects, the few‐particle Schrödinger equation is solved by an exact diagonalization procedure. The calculated electronic structure compares to experimental findings obtained on colloidal semiconductor nanocrystals by Scanning Tunneling Spectroscopy. It is found that the electric field induced by the tunneling tip is gives rise to a Stark effect which can break the spherical symmetry of the electronic ground state density which is in agreement with wave‐function mapping experiments. The symmetry breaking depends on the competition between exchange energy and the Stark energy. Moreover, a systematic dependence on particle number is found for the excitation energies of optical transitions which explains recent experimental findings on self‐organized quantum dots. In the last part, co‐tunneling in the Coulomb blockade regime is studied. For this end the tunneling current is calculated up to the forth order perturbation theory in the tunnel coupling by a real‐time Green's function approach for the non‐equilibrium case. The differential conductance calculated for a quantum dot containing up to two interacting electrons shows complex signatures of the excitation spectrum which are explained by a combination of co‐tunneling and sequential tunneling processes. Thereby the calculations show a peak structure within the Coulomb blockade regime which has also been observed in experiment. |
Author | Tews, M. |
Author_xml | – sequence: 1 givenname: M. surname: Tews fullname: Tews, M. email: mtews@physnet.uni‐hamburg.de |
BookMark | eNqFkE9LxDAQxYOsYF337jFfoOskTdMU8bCs6x9Y1IOeSzZJIdJNapIi--1tWQ_iQU8zj3m_x_DO0cx5ZxC6JLAkAPRKOt0vKQArCYcS6AnKSElJXghRz1AGAMW4AztDixjfRzmZgLIM3Ww6o1LwziocUxhUGoLBYx5OQbrY-5BwH3xvQrImYt_ij0G6NOyx9ileoNNWdtEsvuccvd1tXtcP-fb5_nG92uaKMOC5roXUrCaE7qraEFq3gglS17zYmVJXWmnZtqLQwlRal4KXnHNCClJpRoEpKOaIH3NV8DEG0zbKJpmsd-OXtmsINFMPzdRD86OHEYRfYB_sXobDX8j1Efm0nTn8629WT7cvkx6vFS--ALw7c60 |
CitedBy_id | crossref_primary_10_1016_j_physrep_2004_12_002 |
Cites_doi | 10.1063/1.366452 10.1103/PhysRevB.52.R17017 10.1103/PhysRevB.58.16221 10.1007/978-1-4615-5807-1_5 10.1007/978-94-015-8839-3_1 10.1103/PhysRevLett.8.316 10.1016/0921-4526(93)90149-Z 10.1063/1.2808874 10.1103/PhysRevB.62.R7743 10.1103/PhysRevLett.70.69 10.1103/PhysRevB.65.073307 10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U 10.1103/PhysRevLett.74.984 10.1021/nl0342085 10.1103/PhysRevLett.59.807 10.1016/0375-9601(89)90934-1 10.1103/PhysRevB.53.R1713 10.1007/978-3-662-22375-8_1 10.1016/S1386-9477(99)00218-0 10.1021/nl015572b 10.1103/PhysRevB.65.165334 10.1103/PhysRevB.49.16514 10.1007/BF01307633 10.1002/1521-3951(200103)224:1<271::AID-PSSB271>3.0.CO;2-# 10.1007/BF02769980 10.1103/PhysRevLett.73.2252 10.1143/JJAP.38.388 10.1063/1.367978 10.1103/PhysRevB.62.8240 10.1103/PhysRevLett.65.3037 10.1063/1.1369405 10.1146/annurev.physchem.54.011002.103838 10.1103/PhysRevB.63.195318 10.1103/PhysRev.146.575 10.1103/PhysRevB.50.18436 10.1103/PhysRevLett.78.4482 10.1103/PhysRevB.53.1452 10.1103/PhysRevB.59.15819 10.1103/PhysRevB.61.16773 10.1103/PhysRevLett.65.2446 10.1146/annurev.matsci.30.1.475 10.1016/0039-6028(92)90380-O 10.1103/PhysRevLett.68.3228 10.1103/PhysRevB.53.16338 10.1007/978-3-642-72002-4 10.1126/science.281.5385.2013 10.1103/PhysRevLett.86.5751 10.1021/ja00039a038 10.1016/0022-2313(90)90007-X 10.1209/0295-5075/26/6/012 10.1063/1.113227 10.1063/1.445676 10.1088/0034-4885/64/6/201 10.1126/science.290.5489.122 10.1103/PhysRevLett.86.878 10.1038/39535 10.1103/PhysRevLett.62.583 10.1063/1.1382854 10.1103/PhysRevLett.85.1068 10.1017/CBO9780511524356 10.1063/1.124808 10.1103/PhysRevB.54.17628 10.1021/ja9805425 10.1088/0957-4484/13/3/304 10.1007/978-3-642-97675-9 10.1126/science.290.5490.314 10.1103/PhysRevLett.91.196804 10.1038/370354a0 10.1007/978-94-011-0019-9_21 10.1103/PhysRevB.65.045317 10.1126/science.1068153 10.1088/0953-8984/4/32/003 10.1103/PhysRevLett.74.1194 10.1063/1.476797 10.1103/PhysRevB.46.12485 10.1063/1.124354 10.1143/JJAP.34.1326 10.1017/CBO9780511626128 10.1103/PhysRevLett.65.1623 10.1364/JOSAB.10.000100 10.1063/1.447218 10.1063/1.110199 10.1038/35003535 10.1103/PhysRevLett.91.257401 10.1126/science.281.5385.2016 10.1038/22979 |
ContentType | Journal Article |
Copyright | Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/andp.20045160502 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1521-3889 |
EndPage | 304 |
ExternalDocumentID | 10_1002_andp_20045160502 ANDP200410076 |
Genre | article |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 2WC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 669 66C 692 6J9 6P2 6TJ 6TS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM E3Z EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYQRN H.T H.X HBH HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQ8 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6R MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGL RIWAO RJQFR RNS RNW ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 UPT UQL V8K VH1 W8V W99 WBKPD WGJPS WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XOL XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c1406-d98ad49112b79e129f84819963be5d7dcdaff83d8e7dd586566611317d4204c03 |
IEDL.DBID | DR2 |
ISSN | 0003-3804 |
IngestDate | Tue Jul 01 02:44:37 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Wed Jan 22 16:25:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1406-d98ad49112b79e129f84819963be5d7dcdaff83d8e7dd586566611317d4204c03 |
PageCount | 56 |
ParticipantIDs | crossref_citationtrail_10_1002_andp_20045160502 crossref_primary_10_1002_andp_20045160502 wiley_primary_10_1002_andp_20045160502_ANDP200410076 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-06-11 |
PublicationDateYYYYMMDD | 2004-06-11 |
PublicationDate_xml | – month: 06 year: 2004 text: 2004-06-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Annalen der Physik |
PublicationYear | 2004 |
Publisher | WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY‐VCH Verlag |
References | 1995; 74 2002; 14 1998; 281 1997; 82 2000; 6 2002; 13 1995; 34 1994; 370 2000; 85 1993; 63 1994; 26 1999; 400 1998; 83 2001; 89 2003; 54 2001; 224 2000; 290 2001; 86 1997; 389 1987; 45 2003; 91 1990; 47 1993; 70 1991; 85 2000; 404 1995; 66 1992; 114 1999; 59 2000; 61 2000; 62 2003; 3 1992; 46 1994; 73 1998; 120 1992; 4 1998; 58 1989; 62 1995; 52 1984; 80 1992; 263 1962; 6 2002; 295 1989; 140 1994; 49 2002 1996; 54 1983; 79 1996; 53 2001; 63 1987; 59 2001; 64 1993; 189 1996; 99 1990; 65 1966; 146 1993; 10 1999; 38 2002; 65 2000; 30 1997; 78 1998; 109 1999; 75 1992; 68 2001; 1 1994; 50 2001; 79 e_1_2_1_81_2 e_1_2_1_66_2 e_1_2_1_89_2 e_1_2_1_20_2 e_1_2_1_43_2 e_1_2_1_62_2 e_1_2_1_85_2 Kuz'min L.S. (e_1_2_1_7_2) 1987; 45 e_1_2_1_24_2 e_1_2_1_47_2 e_1_2_1_28_2 e_1_2_1_92_2 e_1_2_1_103_2 e_1_2_1_54_2 e_1_2_1_4_2 e_1_2_1_77_2 e_1_2_1_12_2 e_1_2_1_50_2 e_1_2_1_96_2 e_1_2_1_31_2 e_1_2_1_73_2 e_1_2_1_16_2 e_1_2_1_35_2 e_1_2_1_58_2 e_1_2_1_8_2 e_1_2_1_39_2 e_1_2_1_40_2 e_1_2_1_86_2 e_1_2_1_67_2 e_1_2_1_44_2 e_1_2_1_82_2 e_1_2_1_21_2 e_1_2_1_63_2 e_1_2_1_48_2 e_1_2_1_25_2 e_1_2_1_29_2 e_1_2_1_70_2 e_1_2_1_102_2 e_1_2_1_55_2 e_1_2_1_78_2 e_1_2_1_97_2 e_1_2_1_3_2 e_1_2_1_32_2 e_1_2_1_51_2 e_1_2_1_74_2 e_1_2_1_93_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_17_2 e_1_2_1_59_2 e_1_2_1_41_2 e_1_2_1_64_2 e_1_2_1_87_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_60_2 e_1_2_1_83_2 e_1_2_1_26_2 e_1_2_1_49_2 e_1_2_1_68_2 e_1_2_1_90_2 e_1_2_1_101_2 e_1_2_1_105_2 e_1_2_1_6_2 e_1_2_1_75_2 e_1_2_1_56_2 e_1_2_1_98_2 e_1_2_1_2_2 e_1_2_1_33_2 e_1_2_1_71_2 e_1_2_1_10_2 e_1_2_1_52_2 e_1_2_1_94_2 e_1_2_1_37_2 e_1_2_1_14_2 e_1_2_1_79_2 e_1_2_1_18_2 e_1_2_1_80_2 e_1_2_1_65_2 e_1_2_1_88_2 e_1_2_1_23_2 e_1_2_1_61_2 e_1_2_1_42_2 e_1_2_1_84_2 e_1_2_1_27_2 e_1_2_1_46_2 e_1_2_1_69_2 e_1_2_1_91_2 e_1_2_1_100_2 e_1_2_1_104_2 e_1_2_1_30_2 e_1_2_1_53_2 e_1_2_1_76_2 e_1_2_1_99_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_72_2 e_1_2_1_95_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_19_2 e_1_2_1_57_2 e_1_2_1_9_2 |
References_xml | – volume: 80 start-page: 4403 year: 1984 publication-title: J. Chem. Phys. – volume: 59 start-page: 807 year: 1987 publication-title: Phys. Rev. Lett. – volume: 65 start-page: 165334 year: 2002 publication-title: Phys. Rev. B – volume: 1 start-page: 551 year: 2001 publication-title: Nano Lett. – volume: 63 start-page: 195318 year: 2001 publication-title: Phys. Rev. B – volume: 62 start-page: 583 year: 1989 publication-title: Phys. Rev. Lett. – volume: 120 start-page: 5343 year: 1998 publication-title: J. Am. Chem. Soc. – volume: 404 start-page: 59 year: 2000 publication-title: Nature – volume: 78 start-page: 4482 year: 1997 publication-title: Phys. Rev. Lett. – volume: 79 start-page: 5566 year: 1983 publication-title: J. Chem. Phys. – volume: 65 start-page: 3037 year: 1990 publication-title: Phys. Rev. Lett. – volume: 63 start-page: 3203 year: 1993 publication-title: Appl. Phys. Lett. – volume: 38 start-page: 388 year: 1999 publication-title: Jpn. J. Appl. Phys. – volume: 64 start-page: 701 year: 2001 publication-title: Rep. Prog. Phys. – volume: 83 start-page: 7965 year: 1998 publication-title: J. Appl. Phys. – volume: 66 start-page: 1316 year: 1995 publication-title: Appl. Phys. Lett. – volume: 49 start-page: 16514 year: 1994 publication-title: Phys. Rev. B – volume: 389 start-page: 699 year: 1997 publication-title: Nature – volume: 59 start-page: 15819 year: 1999 publication-title: Phys. Rev. B – volume: 290 start-page: 314 year: 2000 publication-title: Science – volume: 65 start-page: 045317 year: 2002 publication-title: Phys. Rev. B – volume: 82 start-page: 5837 year: 1997 publication-title: J. Appl. Phys. – volume: 62 start-page: 7743 year: 2000 publication-title: Phys. Rev. B – volume: 4 start-page: 6651 year: 1992 publication-title: J. Phys., Condens. Matter – volume: 14 start-page: 317 year: 2002 publication-title: Adv. Mater. – volume: 79 start-page: 117 year: 2001 publication-title: Appl. Phys. Lett. – volume: 114 start-page: 5221 year: 1992 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 1452 year: 1996 publication-title: Phys. Rev. B – volume: 68 start-page: 3228 year: 1992 publication-title: Phys. Rev. Lett. – volume: 109 start-page: 2306 year: 1998 publication-title: J. Chem. Phys. – volume: 54 start-page: 465 year: 2003 publication-title: Annu. Rev. Phys. Chem. – volume: 45 start-page: 495 year: 1987 publication-title: JETP Lett. (USA) – volume: 295 start-page: 1506 year: 2002 publication-title: Science – volume: 146 start-page: 575 year: 1966 publication-title: Phys. Rev. – volume: 91 start-page: 257401 year: 2003 publication-title: Phys. Rev. Lett. – volume: 281 start-page: 2013 year: 1998 publication-title: Science – volume: 6 start-page: 482 year: 2000 publication-title: Physica E – volume: 47 start-page: 113 year: 1990 publication-title: J. Lumin. – volume: 62 start-page: 8240 year: 2000 publication-title: Phys. Rev. B – volume: 52 start-page: 17017 year: 1995 publication-title: Phys. Rev. B – volume: 65 start-page: 2446 year: 1990 publication-title: Phys. Rev. Lett. – volume: 86 start-page: 5751 year: 2001 publication-title: Phys. Rev. Lett. – volume: 74 start-page: 1194 year: 1995 publication-title: Phys. Rev. Lett. – volume: 290 start-page: 122 year: 2000 publication-title: Science – volume: 75 start-page: 1751 year: 1999 publication-title: Appl. Phys. Lett. – volume: 65 start-page: 073307 year: 2002 publication-title: Phys. Rev. B – volume: 34 start-page: 1326 year: 1995 publication-title: Jpn. J. Appl. Phys. – volume: 99 start-page: 551 year: 1996 publication-title: Z. Phys. B – volume: 54 start-page: 17628 year: 1996 publication-title: Phys. Rev. B – volume: 263 start-page: 419 year: 1992 publication-title: Surf. Sci. – volume: 91 start-page: 196804 year: 2003 publication-title: Phys. Rev. Lett. – volume: 26 start-page: 467 year: 1994 publication-title: Europhys. Lett. (France) – volume: 140 start-page: 251 year: 1989 publication-title: Phys. Lett. A – volume: 281 start-page: 2016 year: 1998 publication-title: Science – volume: 13 start-page: 1 year: 2002 publication-title: Nanotechnology – volume: 86 start-page: 878 year: 2001 publication-title: Phys. Rev. Lett. – volume: 61 start-page: 16773 year: 2000 publication-title: Phys. Rev. B – volume: 73 start-page: 2252 year: 1994 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 100 year: 1993 publication-title: J. Opt. Soc. Am. B – volume: 46 start-page: 12485 year: 1992 publication-title: Phys. Rev. B – volume: 85 start-page: 375 year: 1991 publication-title: Condensed Matter – volume: 75 start-page: 301 year: 1999 publication-title: Appl. Phys. Lett. – volume: 224 start-page: 271 year: 2001 publication-title: phys. stat. sol. (b) – volume: 3 start-page: 857 year: 2003 publication-title: Nano Lett. – volume: 74 start-page: 984 year: 1995 publication-title: Phys. Rev. Lett. – volume: 54 start-page: 1713 year: 1996 publication-title: Phys. Rev. B – volume: 85 start-page: 1068 year: 2000 publication-title: Phys. Rev. Lett. – volume: 189 start-page: 88 year: 1993 publication-title: Physica B – volume: 370 start-page: 354 year: 1994 publication-title: Nature – volume: 6 start-page: 316 year: 1962 publication-title: Phys. Rev. Lett. – year: 2002 – volume: 400 start-page: 542 year: 1999 publication-title: Letters to Nature – volume: 89 start-page: 8127 year: 2001 publication-title: J. Appl. Phys. – volume: 50 start-page: 18436 year: 1994 publication-title: Phys. Rev. B – volume: 65 start-page: 1623 year: 1990 publication-title: Phys. Rev. Lett. – volume: 58 start-page: 16221 year: 1998 publication-title: Phys. Rev. B – volume: 70 start-page: 69 year: 1993 publication-title: Phys. Rev. Lett. – volume: 53 start-page: 16338 year: 1996 publication-title: Phys. Rev. B – volume: 30 start-page: 475 year: 2000 publication-title: Annu. Rev. Mater. Sci. – ident: e_1_2_1_39_2 doi: 10.1063/1.366452 – ident: e_1_2_1_51_2 doi: 10.1103/PhysRevB.52.R17017 – ident: e_1_2_1_84_2 doi: 10.1103/PhysRevB.58.16221 – ident: e_1_2_1_22_2 doi: 10.1007/978-1-4615-5807-1_5 – ident: e_1_2_1_4_2 doi: 10.1007/978-94-015-8839-3_1 – ident: e_1_2_1_23_2 doi: 10.1103/PhysRevLett.8.316 – ident: e_1_2_1_55_2 – ident: e_1_2_1_90_2 – ident: e_1_2_1_103_2 – ident: e_1_2_1_2_2 – ident: e_1_2_1_105_2 – ident: e_1_2_1_88_2 – ident: e_1_2_1_97_2 doi: 10.1016/0921-4526(93)90149-Z – ident: e_1_2_1_27_2 doi: 10.1063/1.2808874 – ident: e_1_2_1_52_2 doi: 10.1103/PhysRevB.62.R7743 – ident: e_1_2_1_98_2 doi: 10.1103/PhysRevLett.70.69 – ident: e_1_2_1_87_2 doi: 10.1103/PhysRevB.65.073307 – ident: e_1_2_1_26_2 – ident: e_1_2_1_44_2 doi: 10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U – ident: e_1_2_1_20_2 doi: 10.1103/PhysRevLett.74.984 – ident: e_1_2_1_35_2 doi: 10.1021/nl0342085 – ident: e_1_2_1_8_2 doi: 10.1103/PhysRevLett.59.807 – ident: e_1_2_1_12_2 doi: 10.1016/0375-9601(89)90934-1 – ident: e_1_2_1_21_2 doi: 10.1103/PhysRevB.53.R1713 – ident: e_1_2_1_24_2 doi: 10.1007/978-3-662-22375-8_1 – ident: e_1_2_1_80_2 doi: 10.1016/S1386-9477(99)00218-0 – ident: e_1_2_1_54_2 doi: 10.1021/nl015572b – ident: e_1_2_1_68_2 doi: 10.1103/PhysRevB.65.165334 – ident: e_1_2_1_101_2 doi: 10.1103/PhysRevB.49.16514 – ident: e_1_2_1_96_2 doi: 10.1007/BF01307633 – ident: e_1_2_1_59_2 doi: 10.1002/1521-3951(200103)224:1<271::AID-PSSB271>3.0.CO;2-# – ident: e_1_2_1_30_2 – ident: e_1_2_1_33_2 doi: 10.1007/BF02769980 – ident: e_1_2_1_86_2 doi: 10.1103/PhysRevLett.73.2252 – ident: e_1_2_1_104_2 doi: 10.1143/JJAP.38.388 – ident: e_1_2_1_38_2 doi: 10.1063/1.367978 – ident: e_1_2_1_29_2 doi: 10.1103/PhysRevB.62.8240 – ident: e_1_2_1_14_2 doi: 10.1103/PhysRevLett.65.3037 – ident: e_1_2_1_92_2 doi: 10.1063/1.1369405 – ident: e_1_2_1_17_2 doi: 10.1146/annurev.physchem.54.011002.103838 – ident: e_1_2_1_67_2 doi: 10.1103/PhysRevB.63.195318 – ident: e_1_2_1_73_2 doi: 10.1103/PhysRev.146.575 – ident: e_1_2_1_11_2 doi: 10.1103/PhysRevB.50.18436 – ident: e_1_2_1_93_2 doi: 10.1103/PhysRevLett.78.4482 – ident: e_1_2_1_81_2 doi: 10.1103/PhysRevB.53.1452 – ident: e_1_2_1_69_2 doi: 10.1103/PhysRevB.59.15819 – ident: e_1_2_1_56_2 doi: 10.1103/PhysRevB.61.16773 – ident: e_1_2_1_13_2 doi: 10.1103/PhysRevLett.65.2446 – ident: e_1_2_1_94_2 – ident: e_1_2_1_6_2 doi: 10.1007/978-94-015-8839-3_1 – ident: e_1_2_1_74_2 doi: 10.1146/annurev.matsci.30.1.475 – ident: e_1_2_1_99_2 doi: 10.1016/0039-6028(92)90380-O – ident: e_1_2_1_95_2 doi: 10.1103/PhysRevLett.68.3228 – ident: e_1_2_1_65_2 doi: 10.1103/PhysRevB.53.16338 – ident: e_1_2_1_3_2 doi: 10.1007/978-3-642-72002-4 – ident: e_1_2_1_78_2 – ident: e_1_2_1_45_2 doi: 10.1126/science.281.5385.2013 – ident: e_1_2_1_62_2 doi: 10.1103/PhysRevLett.86.5751 – ident: e_1_2_1_60_2 doi: 10.1021/ja00039a038 – ident: e_1_2_1_82_2 – ident: e_1_2_1_72_2 doi: 10.1016/0022-2313(90)90007-X – ident: e_1_2_1_19_2 doi: 10.1209/0295-5075/26/6/012 – ident: e_1_2_1_40_2 doi: 10.1063/1.113227 – ident: e_1_2_1_70_2 doi: 10.1063/1.445676 – ident: e_1_2_1_16_2 doi: 10.1088/0034-4885/64/6/201 – ident: e_1_2_1_64_2 doi: 10.1126/science.290.5489.122 – ident: e_1_2_1_102_2 doi: 10.1103/PhysRevLett.86.878 – ident: e_1_2_1_47_2 doi: 10.1038/39535 – ident: e_1_2_1_9_2 doi: 10.1103/PhysRevLett.62.583 – ident: e_1_2_1_58_2 doi: 10.1063/1.1382854 – ident: e_1_2_1_63_2 doi: 10.1103/PhysRevLett.85.1068 – ident: e_1_2_1_89_2 doi: 10.1017/CBO9780511524356 – ident: e_1_2_1_50_2 doi: 10.1063/1.124808 – ident: e_1_2_1_42_2 doi: 10.1103/PhysRevB.54.17628 – ident: e_1_2_1_34_2 doi: 10.1021/ja9805425 – ident: e_1_2_1_53_2 doi: 10.1088/0957-4484/13/3/304 – ident: e_1_2_1_91_2 doi: 10.1007/978-3-642-97675-9 – ident: e_1_2_1_43_2 doi: 10.1126/science.290.5490.314 – ident: e_1_2_1_61_2 doi: 10.1103/PhysRevLett.91.196804 – ident: e_1_2_1_41_2 doi: 10.1038/370354a0 – ident: e_1_2_1_5_2 – ident: e_1_2_1_15_2 doi: 10.1007/978-94-011-0019-9_21 – ident: e_1_2_1_31_2 doi: 10.1103/PhysRevB.65.045317 – ident: e_1_2_1_37_2 doi: 10.1126/science.1068153 – ident: e_1_2_1_77_2 doi: 10.1088/0953-8984/4/32/003 – ident: e_1_2_1_18_2 doi: 10.1103/PhysRevLett.74.1194 – ident: e_1_2_1_28_2 – ident: e_1_2_1_75_2 doi: 10.1063/1.476797 – ident: e_1_2_1_10_2 doi: 10.1103/PhysRevB.46.12485 – ident: e_1_2_1_49_2 doi: 10.1063/1.124354 – ident: e_1_2_1_32_2 – ident: e_1_2_1_100_2 doi: 10.1143/JJAP.34.1326 – ident: e_1_2_1_25_2 doi: 10.1017/CBO9780511626128 – volume: 45 start-page: 495 year: 1987 ident: e_1_2_1_7_2 publication-title: JETP Lett. (USA) – ident: e_1_2_1_48_2 doi: 10.1103/PhysRevLett.65.1623 – ident: e_1_2_1_66_2 doi: 10.1364/JOSAB.10.000100 – ident: e_1_2_1_71_2 doi: 10.1063/1.447218 – ident: e_1_2_1_85_2 doi: 10.1063/1.110199 – ident: e_1_2_1_36_2 doi: 10.1038/35003535 – ident: e_1_2_1_79_2 – ident: e_1_2_1_83_2 doi: 10.1103/PhysRevLett.91.257401 – ident: e_1_2_1_46_2 doi: 10.1126/science.281.5385.2016 – ident: e_1_2_1_76_2 – ident: e_1_2_1_57_2 doi: 10.1038/22979 |
SSID | ssj0000502024 ssj0002169523 ssj0000502025 ssj0009609 |
Score | 1.6266028 |
Snippet | The subject of this paper are electronic properties of isolated quantum dots as well as transport properties of quantum dots coupled to two electronic... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 249 |
SubjectTerms | co‐tunneling Quantum dots transport |
Title | Electronic structure and transport properties of quantum dots |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fandp.20045160502 |
Volume | 516 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJSQW3ojykgcWhrR52I49MFTQqkKiQohK3aL4tQBtaZuFX48vr4YOIMFo5ZzIZ_v83eX8HULXqeZUQFwDuMw9ImzgSRUxz2iiYj9UJLRwUfhxxIZj8jChk8ZdmIIfog64wc7I7TVs8FQuu2vSUOdo53yTUGnWpzmfJKRsAS56DuswCzzxywsQ6zat22HABG0YbyBgq4rsRdwn5Z9NJ9jd_OC3k6yJbPOjabCHVDWoIiPltZOtZEd9bvA9_m_U-2i3RK64Vyy1A7RlpodoO88gVcsjdNuvC-rggpQ2WxjsXoRXFX86nkPkfwEUrnhm8UfmZjV7x84vXh6j8aD_cjf0ytoMnnIuGfO04KkmzlKGMhbGgQYLvPzOeYqkoTrWSqfW8khzE2tNOaBGFgQOrGgS-kT50QlqTWdTc4qwwzCRMKlQlgni0KMMrBBURURZ7qdStFG30nOiSuJyqJ_xlhSUy2ECSkkaSmmjm7rHvCDt-EGW5Pr-VTDpje6foA15Jezsb93O0U6R-sO8ILhALTcd5tKhmpW8ytftF1Hd5bc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ05T8MwFICtqgjBwo0opwcWhrQ5bCceGKoeKtBWCLVStyjxsQBt6bHw6_HL1dIBJBit2In8fL338vw9hG4jGVAOfg1gmVuEa8eKhccsJYnwbVcQV8NF4V6fdYbkcURHJdTI78KkfIjC4QYrI9mvYYGDQ7q2ooYaSzsBTkKqWZsCUHILEnsDQL_54haOFnhkZ1cgVmValF2Hcbq2fQOCLU-z5wU2yf5tmoq1zS9-O8vWddvkcGrvI5l3K41Jea0uF3FVfG4QH__Z7wO0lymvuJ7OtkNUUuMjtJ0EkYr5MbpvFTl1cMqlXc4UNi_Cixyhjqfg_J8BxRVPNP5YmoFdvmNjGs9P0LDdGjQ6VpaewRLGKmOW5EEkidks3djnyugNGtD8xn7yYkWlL4WMtA48GShfShqA4sgcx-grkrg2EbZ3isrjyVidIWzUGI-riAvNODEKZOxozqnwiNCBHcW8gmq5oEORscshhcZbmFKX3RCEEq4JpYLuihbTlNvxQ12SCPzXimG933yGMoSWsPO_NbtBO51Brxt2H_pPF2g3jQRiluNcorIZGnVllJxFfJ1M4i_RbunT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQEYiFN6I8PbAwpM3DduKBoaKtyquqEJW6RYkfC9CWtln49fjyaugAEoxWzol8ts_fXc7fIXQVyYByiGsAl7lFuHasWHjMUpII33YFcTVcFH7qs96Q3I_oqHIXJuOHKANusDNSew0bfCp1c0kaahztlG8SKs3aFPgk1wmzOZRvaD-7ZZwFHtn5DYhlm5Zt12GcVqw3MLAVVfa8wCb5r00j2Fz94rejrApt07Opu4NEMaosJeW1kSzihvhcIXz837B30XYOXXErW2t7aE2N99FGmkIq5gfoplNW1MEZK20yU9i8CC8KAnU8hdD_DDhc8UTjj8RMa_KOjWM8P0TDbufltmflxRksYXwyZkkeRJIYU-nGPlcGNWgg5jfekxcrKn0pZKR14MlA-VLSAGAjcxyDViRxbSJs7wjVxpOxOkbYgBiPq4gLzTgx8DF2NOdUeETowI5iXkfNQs-hyJnLoYDGW5hxLrshKCWsKKWOrsse04y14wdZkur7V8Gw1W8PoA2JJezkb90u0eag3Q0f7_oPp2grSwNiluOcoZqZGXVuEM4ivkiX8BcUyeiC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+structure+and+transport+properties+of+quantum+dots&rft.jtitle=Annalen+der+Physik&rft.au=Tews%2C+M.&rft.date=2004-06-11&rft.issn=0003-3804&rft.eissn=1521-3889&rft.volume=516&rft.issue=5&rft.spage=249&rft.epage=304&rft_id=info:doi/10.1002%2Fandp.20045160502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_andp_20045160502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-3804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-3804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-3804&client=summon |