Relational reinforcement learning and recurrent neural network with state classification to solve joint attention

Joint attention is an important non verbal communication learned by humans in a period of childhood. One learning method has been explored to provide this learning ability in robots is known as reinforcement learning. However, the use of this method using a Markov Decision Process model has problems...

Full description

Saved in:
Bibliographic Details
Published inThe 2011 International Joint Conference on Neural Networks pp. 1222 - 1229
Main Authors da Silva, R. R., Romero, R. A. F.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Joint attention is an important non verbal communication learned by humans in a period of childhood. One learning method has been explored to provide this learning ability in robots is known as reinforcement learning. However, the use of this method using a Markov Decision Process model has problems. In this article, we have enhanced our robotic architecture, which is inspired on behavior analysis, to provide to the robot or agent, the capacity of joint attention using combination of relational reinforcement learning and recurrent neural network with state classification. We have incorporated this improvement as learning mechanism in our architecture to simulate joint attention. Then, a set of empirical evaluations has been conducted in the social interactive simulator for performing the task of joint attention. The performance of this algorithm have been compared with the Q-Learning algorithm, contingency learning algorithm and ETG algorithm. The experimental results show that this new method is better than other algorithms evaluated by us for joint attention problem.
AbstractList Joint attention is an important non verbal communication learned by humans in a period of childhood. One learning method has been explored to provide this learning ability in robots is known as reinforcement learning. However, the use of this method using a Markov Decision Process model has problems. In this article, we have enhanced our robotic architecture, which is inspired on behavior analysis, to provide to the robot or agent, the capacity of joint attention using combination of relational reinforcement learning and recurrent neural network with state classification. We have incorporated this improvement as learning mechanism in our architecture to simulate joint attention. Then, a set of empirical evaluations has been conducted in the social interactive simulator for performing the task of joint attention. The performance of this algorithm have been compared with the Q-Learning algorithm, contingency learning algorithm and ETG algorithm. The experimental results show that this new method is better than other algorithms evaluated by us for joint attention problem.
Author da Silva, R. R.
Romero, R. A. F.
Author_xml – sequence: 1
  givenname: R. R.
  surname: da Silva
  fullname: da Silva, R. R.
  email: ramos@icmc.usp.br
  organization: Dept. of Mech. & Autom. Eng., Univ. of Sao Paulo, Sao Carlos, Brazil
– sequence: 2
  givenname: R. A. F.
  surname: Romero
  fullname: Romero, R. A. F.
  email: rafrance@icmc.usp.br
  organization: Dept. of Mech. & Autom. Eng., Univ. of Sao Paulo, Sao Carlos, Brazil
BookMark eNo1kN1OAjEUhKtiIiAvoDd9gcW2pz_bS0P8wRBMjF6TWg5aXFrtFolv76p4dZL5ZiaZMyC9mCIScsbZmHNmL6Z3k_l8LBjnY80AQMMBGVlTcymktBq0OiR9wTWvpGTmiAz-gTK9fwAWTsigbdeMCbAW-uTjARtXQoquoRlDXKXscYOx0AZdjiG-UBeXHfLbnH_kiNvceSOWXcpvdBfKK22LK0h949o2rIL_7aMl0TY1n0jXKXQ5V0oX78ApOV65psXR_g7J0_XV4-S2mt3fTCeXs8pzsKUSBlDUIOVSaKGcNr72XDGpJPPOaAAjl455lMo8G1NLqWuuVO1AGNetQxiS87_egIiL9xw2Ln8t9q-DbwNRYYo
CitedBy_id crossref_primary_10_1155_2013_581846
crossref_primary_10_3389_fpsyg_2018_00005
crossref_primary_10_1007_s00521_022_07628_0
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IJCNN.2011.6033363
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424496365
1424496365
9781424496372
1424496373
EISSN 2161-4407
EndPage 1229
ExternalDocumentID 6033363
Genre orig-research
GroupedDBID 29I
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-c139t-273e28344d2625a67c8c1504540ca763374da0ce457b77844681558a327a002e3
IEDL.DBID RIE
ISBN 1424496357
9781424496358
ISSN 2161-4393
IngestDate Wed Jun 26 19:27:27 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c139t-273e28344d2625a67c8c1504540ca763374da0ce457b77844681558a327a002e3
PageCount 8
ParticipantIDs ieee_primary_6033363
PublicationCentury 2000
PublicationDate 2011-July
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-July
PublicationDecade 2010
PublicationTitle The 2011 International Joint Conference on Neural Networks
PublicationTitleAbbrev IJCNN
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023993
ssj0000669433
Score 1.5137963
Snippet Joint attention is an important non verbal communication learned by humans in a period of childhood. One learning method has been explored to provide this...
SourceID ieee
SourceType Publisher
StartPage 1222
SubjectTerms Computer architecture
Humans
Joints
Learning
Learning systems
Robot kinematics
Title Relational reinforcement learning and recurrent neural network with state classification to solve joint attention
URI https://ieeexplore.ieee.org/document/6033363
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhJm9qJ7cwVVanUioFK3SrbcREPJVClHfj13DkPBGJgy_vhOHefz_d9R8iN3XBjQicCnsZhAFZSBToSLBiNNEvB3RjheWvzhZguo9kqXrXIbcOFcc755DM3wEU_l5_mdoehsqEIOeeCt0lbJknJ1WriKeA6k4g3Vhgpmzi7zADRBOB0eU3qSlCArdZ6qtZVzaYJk-H9bLxYlNKe1e1-1F3xbmfSJfP6gctsk9fBrjAD-_lLy_G_b3RI-t8EP_rQuK4j0nLZMenWFR5o9cP3yEedK6ff6NZ5kVXr44m0qjbxRHWWwi5byjxRlMeEY7MyuZxilJd6zhK1CNMxL8lfjxY5hV6_d_Qlf4bzUOXT5132yXJy9zieBlWRhsACeCyQ2uMYFutIGQyltJBWWQCZKOxnNRgvLqNUh9ZFsTRSKhh9KoAwSnMmNXwmx09IJ8szd0oos4xHIuVKIUgLnYkTrTdiYwxHkX55RnrYguv3UodjXTXe-d-bL8hBGf_F1NpL0im2O3cFAKIw177nfAGX1r4u
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbWonTjJXVG1pI4ZW6lbZjot4KIEqZeDXc-c8EIiBLe-H49x9Pt_3HSE3es2Vco1weOK7DljJ0JGeYE6_L1kC7kYJy1ubxWK08CZLf9kgtzUXxhhjk89MFxftXH6S6S2GynrC5ZwLvkN2fcQVBVurjqiA84w8XtthJG3i_DIDTOOA2-UVrStCCbZK7alcDys-jRv1xpNBHBfinuUNf1ResY5n2CKz6pGLfJOX7jZXXf35S83xv-90QDrfFD_6UDuvQ9Iw6RFpVTUeaPnLt8l7lS0nX-nGWJlVbSOKtKw38UhlmsAuXQg9URTIhGPTIr2cYpyXWtYS1QjUMTPJXo_mGYV-_2Hoc_YE56HOp8287JDF8G4-GDllmQZHA3zMkdxjGJbrSBgMpqQIdKgBZqK0n5ZgvnjgJdLVxvMDFQQhjD9DADGh5CyQ8JkMPybNNEvNCaFMM-6JhIchwjTXKD-Sci3WSnGU6Q9OSRtbcPVWKHGsysY7-3vzNdkbzWfT1XQc35-T_SIajIm2F6SZb7bmEuBErq5sL_oCv5nBew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+2011+International+Joint+Conference+on+Neural+Networks&rft.atitle=Relational+reinforcement+learning+and+recurrent+neural+network+with+state+classification+to+solve+joint+attention&rft.au=da+Silva%2C+R.+R.&rft.au=Romero%2C+R.+A.+F.&rft.date=2011-07-01&rft.pub=IEEE&rft.isbn=9781424496358&rft.issn=2161-4393&rft.eissn=2161-4407&rft.spage=1222&rft.epage=1229&rft_id=info:doi/10.1109%2FIJCNN.2011.6033363&rft.externalDocID=6033363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-4393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-4393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-4393&client=summon