Iterative K-Line Meshing Non-Linear Least Squares Interpolation of Affectively Decorated Media Repositories

We present an algorithm that organizes a song repository upon recording a user’s memory experiences from previous music listening activities. Our method forms an affectively annotated network of songs. The network’s connections correspond to a person’s recorded memory experiences related to song pre...

Full description

Saved in:
Bibliographic Details
Published inOpen artificial intelligence journal Vol. 2; no. 1; pp. 46 - 61
Main Authors Toptsis, Anestis A., Dubitski, Alexander
Format Journal Article
LanguageEnglish
Published 05.12.2008
Online AccessGet full text
ISSN1874-0618
1874-0618
DOI10.2174/1874061800802010046

Cover

Abstract We present an algorithm that organizes a song repository upon recording a user’s memory experiences from previous music listening activities. Our method forms an affectively annotated network of songs. The network’s connections correspond to a person’s recorded memory experiences related to song preferences when the person is at different states of affective bias. Upon formation of this network, an intelligent affect-sensitive network navigation algorithm synthesizes playlists that conform to desired affective states. The method for the network formation is highly individualized, in the sense that it takes in account an individual’s music preferences which are typically subjective and may differ from user to user. Also, the method is content independent, in the sense that it does not rely or favor any particular music genre. In fact, the method is applicable to any type of media, not only songs. We implement our method and present evaluation results from the introspection of our algorithms’ execution and from feedback recorded during the evaluation by human test subjects. The evaluation results clearly indicate that the proposed method significantly outperforms the most typical paradigm of random song selection.
AbstractList We present an algorithm that organizes a song repository upon recording a user’s memory experiences from previous music listening activities. Our method forms an affectively annotated network of songs. The network’s connections correspond to a person’s recorded memory experiences related to song preferences when the person is at different states of affective bias. Upon formation of this network, an intelligent affect-sensitive network navigation algorithm synthesizes playlists that conform to desired affective states. The method for the network formation is highly individualized, in the sense that it takes in account an individual’s music preferences which are typically subjective and may differ from user to user. Also, the method is content independent, in the sense that it does not rely or favor any particular music genre. In fact, the method is applicable to any type of media, not only songs. We implement our method and present evaluation results from the introspection of our algorithms’ execution and from feedback recorded during the evaluation by human test subjects. The evaluation results clearly indicate that the proposed method significantly outperforms the most typical paradigm of random song selection.
Author Dubitski, Alexander
Toptsis, Anestis A.
Author_xml – sequence: 1
  givenname: Anestis A.
  surname: Toptsis
  fullname: Toptsis, Anestis A.
– sequence: 2
  givenname: Alexander
  surname: Dubitski
  fullname: Dubitski, Alexander
BookMark eNp9kNtKxDAURYOM4MzoF_iSH6jm1kzzOIy3YlXw8lzS5ESjtRmTKszf244-iIhPZ7NhLQ57hiZd6AChQ0qOGF2IY1osBJG0IKQgjFBChNxB07HNxnryI--hWUrPhEimBJ2il7KHqHv_Afgyq3wH-ArSk-8e8XXotoWOuAKdenz39q4jJFx2A7IO7UCFDgeHl86BGRXtBp-ACYMP7OCxXuNbWIfk-xA9pH2063Sb4OD7ztHD2en96iKrbs7L1bLKDOVKZpYp6fLG2FyzxlKmrRSKC6qoyBk3LleNgcaqRgqurCgarrWgVghmaM75gs-R-vKaGFKK4Grj--23fdS-rSmpx9XqP1YbWP6LXUf_quPmX-oTZApxWQ
CitedBy_id crossref_primary_10_1016_j_knosys_2022_108970
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.2174/1874061800802010046
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1874-0618
EndPage 61
ExternalDocumentID 10_2174_1874061800802010046
GroupedDBID 123
29N
2WC
AAYXX
ALMA_UNASSIGNED_HOLDINGS
C1A
CITATION
CS3
E3Z
EBS
EJD
JBO
M~E
OK1
OVT
ID FETCH-LOGICAL-c1396-d296f5bcd5a2bd12ad649341914523cf59bcebd9b6439d48b3aa41d442c153373
ISSN 1874-0618
IngestDate Tue Jul 01 03:56:32 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1396-d296f5bcd5a2bd12ad649341914523cf59bcebd9b6439d48b3aa41d442c153373
OpenAccessLink https://openartificialintelligencejournal.com/VOLUME/2/PAGE/46/PDF/
PageCount 16
ParticipantIDs crossref_citationtrail_10_2174_1874061800802010046
crossref_primary_10_2174_1874061800802010046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-05
PublicationDateYYYYMMDD 2008-12-05
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-05
  day: 05
PublicationDecade 2000
PublicationTitle Open artificial intelligence journal
PublicationYear 2008
SSID ssj0062941
Score 1.6794245
Snippet We present an algorithm that organizes a song repository upon recording a user’s memory experiences from previous music listening activities. Our method forms...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 46
Title Iterative K-Line Meshing Non-Linear Least Squares Interpolation of Affectively Decorated Media Repositories
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbcZOnSpi80bRJw6JYqtSiKEkcjSJA-nCUJkM3gS4BRQ3ZieWiHbv3fvSNpWUmFoOkiCIR4kH0fjnenu-8I-ZBKx4QUPBmySiac22GiWCWSgmlZVjo13E9RGJ-Lsyv-5Tq_Hgx-d6qWVo0-Mj97-0r-R6uwBnrFLtlHaLYVCgtwD_qFK2gYrv-k48-eEhlrf74m39BdHLuQUTqf135B3SKB6rI5vLhZYaNRSAAu5rPWURz5eg4QMfsBtscgIMAFxc83yjvnyymyiMRCw-jEYhEKkiNNI_vEtEvr2X1xn71eNMs48rhGRo_l4eho4z3raRMHZ7edNnfyEKWv6cg7prMsOM6JCNbU9axFe8v-glWwnTEVGU7hwNB-375j_ISpBpwjCFJ9o_AQOe962LTvnXJt7SFEPShm0iPkCdlmReG_9o9_nawPdMGkH4Da_phAXoVCPvUI6Tg4HU_lcoc8iyEGHQW8vCADV78kz9fjO2i05q_I9xY-NMCHRvjQDXyohw-N8KF34EPnFe3Ah7bwoR4-tAuf1-Tq9OTy-CyJszcSAzGBSCyTosq1sbli2qZMWcElcv-lPGeZqXKpjdNWavRoLS91phRPLefMYARRZG_IVj2v3VtCNddODWUmnILNmSiFtbJ0FZiBCralu4St_7CJicT0OB9lNnlAVbvkY7tpEXhZHnr83eMef0-ebiC-R7aa25XbB-ez0QceGn8AKXB-nA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+K-Line+Meshing+Non-Linear+Least+Squares+Interpolation+of+Affectively+Decorated+Media+Repositories&rft.jtitle=Open+artificial+intelligence+journal&rft.au=Toptsis%2C+Anestis+A.&rft.au=Dubitski%2C+Alexander&rft.date=2008-12-05&rft.issn=1874-0618&rft.eissn=1874-0618&rft.volume=2&rft.issue=1&rft.spage=46&rft.epage=61&rft_id=info:doi/10.2174%2F1874061800802010046&rft.externalDBID=n%2Fa&rft.externalDocID=10_2174_1874061800802010046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-0618&client=summon