Electroencephalography decoding model based on fusion deep graph convolutional neural network for spinal cord injury
Electroencephalography (EEG) signals can be used to measure neuronal activity in different regions of the brain through electrodes. To enhance the decoding of motor imagery (MI) EEG signals in spinal cord injury (SCI) patients, this study proposes a feature fusion graph convolutional neural network...
Saved in:
Published in | Healthcare and Rehabilitation Vol. 1; no. 3; p. 100039 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalography (EEG) signals can be used to measure neuronal activity in different regions of the brain through electrodes.
To enhance the decoding of motor imagery (MI) EEG signals in spinal cord injury (SCI) patients, this study proposes a feature fusion graph convolutional neural network (F-GCN) model that integrates wavelet-based time-frequency features and functional topological relationships among EEG electrodes, aiming to improve classification accuracy and provide guidance for rehabilitation.
This study included 10 patients with spinal cord injuries as the experimental group, and 10 healthy individuals as the control group. After the experiment began, the subjects underwent 2-min recordings of their EEG signals in resting states with eyes open or closed, with records for each state repeated twice. The participants were then asked to imagine the movements of their left hand, and right hand. The entire process of MI consists of four task stages, with each stage containing three tasks. Each task randomly appears 10 times.
Time–frequency features of MI-EEG signals were extracted using a continuous wavelet transform to enhance the effectiveness of decoding raw EEG signals. Functional and statistical analyses of brain regions during MI were conducted based on the extracted time–frequency features. Based on this, the motor intentions of patients with SCI were decoded using a GCN that integrates the functional topological relationships of the electrodes.
The proposed network achieved a classification accuracy of 92.44 % for MI task recognition. Furthermore, the fusion of wavelet features demonstrated superior performance in classification and recognition.
The results of this study confirm the efficacy of wavelet fusion in advancing MI feature decoding, enhancing the understanding of neurological conditions, such as SCI, and offering promising prospects for improving rehabilitation methods. |
---|---|
AbstractList | Electroencephalography (EEG) signals can be used to measure neuronal activity in different regions of the brain through electrodes.
To enhance the decoding of motor imagery (MI) EEG signals in spinal cord injury (SCI) patients, this study proposes a feature fusion graph convolutional neural network (F-GCN) model that integrates wavelet-based time-frequency features and functional topological relationships among EEG electrodes, aiming to improve classification accuracy and provide guidance for rehabilitation.
This study included 10 patients with spinal cord injuries as the experimental group, and 10 healthy individuals as the control group. After the experiment began, the subjects underwent 2-min recordings of their EEG signals in resting states with eyes open or closed, with records for each state repeated twice. The participants were then asked to imagine the movements of their left hand, and right hand. The entire process of MI consists of four task stages, with each stage containing three tasks. Each task randomly appears 10 times.
Time–frequency features of MI-EEG signals were extracted using a continuous wavelet transform to enhance the effectiveness of decoding raw EEG signals. Functional and statistical analyses of brain regions during MI were conducted based on the extracted time–frequency features. Based on this, the motor intentions of patients with SCI were decoded using a GCN that integrates the functional topological relationships of the electrodes.
The proposed network achieved a classification accuracy of 92.44 % for MI task recognition. Furthermore, the fusion of wavelet features demonstrated superior performance in classification and recognition.
The results of this study confirm the efficacy of wavelet fusion in advancing MI feature decoding, enhancing the understanding of neurological conditions, such as SCI, and offering promising prospects for improving rehabilitation methods. |
ArticleNumber | 100039 |
Author | Lou, Tianwei Zhang, Yang Lun, Zhixiao Xu, Fangzhou Chen, Lei Zhang, Xinting Gao, Licai Jiang, Lei Jung, Tzyy-Ping Li, Jincheng |
Author_xml | – sequence: 1 givenname: Tianwei surname: Lou fullname: Lou, Tianwei organization: Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Wenhuaxi Road, Jinan, Shandong, PR China – sequence: 2 givenname: Xinting surname: Zhang fullname: Zhang, Xinting organization: Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, PR China – sequence: 3 givenname: Lei surname: Jiang fullname: Jiang, Lei organization: Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Wenhuaxi Road, Jinan, Shandong, PR China – sequence: 4 givenname: Lei surname: Chen fullname: Chen, Lei organization: Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Wenhuaxi Road, Jinan, Shandong, PR China – sequence: 5 givenname: Licai surname: Gao fullname: Gao, Licai organization: International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China – sequence: 6 givenname: Zhixiao surname: Lun fullname: Lun, Zhixiao organization: International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China – sequence: 7 givenname: Jincheng surname: Li fullname: Li, Jincheng organization: International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China – sequence: 8 givenname: Yang surname: Zhang fullname: Zhang, Yang email: zhangyang982003@163.com organization: Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Wenhuaxi Road, Jinan, Shandong, PR China – sequence: 9 givenname: Fangzhou surname: Xu fullname: Xu, Fangzhou email: xfz@qlu.edu.cn organization: International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China – sequence: 10 givenname: Tzyy-Ping orcidid: 0000-0002-8377-2166 surname: Jung fullname: Jung, Tzyy-Ping email: tpjung@ucsd.edu organization: Swartz Center for Computational Neuroscience, Institute of Neural Computation, University of California San Diego, La Jolla, CA, USA |
BookMark | eNp9kMtOwzAQRb0oEqX0A9j5B1LsOK-KFarKQ6rEBtaW4xm3Lqkd2UlR_p6kZc3qah5nNDp3ZOa8Q0IeOFtxxovH4-qgwyplaT7WjIn1jMwFy1lScMFvyTJGW7O8XPMyzdI56bYN6i54dBrbg2r8Pqj2MFBA7cG6PT15wIbWKiJQ76jpox0DEFt6WaXau7Nv-m5sq4Y67MMluh8fvqnxgcbWThPtA1Drjn0Y7smNUU3E5V8uyNfL9nPzluw-Xt83z7tEc1GuE11VmGJlUqWgFjo3dWU0Y0pALrioTcEZFCjApCWgKqGqIStYhlml0AArxILw610dfIwBjWyDPakwSM7kZEse5WhLTrbk1dbIPF0ZHB87WwwyajvZARtGUxK8_Yf-BexZek0 |
Cites_doi | 10.3390/s19132854 10.3389/fnhum.2021.651349 10.1109/ACCESS.2020.2996685 10.1609/aaai.v32i1.11496 10.1186/s12938-018-0534-0 10.1109/ACCESS.2021.3091399 10.1109/IJCNN52387.2021.9534286 10.1109/ICASSP39728.2021.9414274 10.1371/journal.pone.0188293 10.1038/s41582-020-00436-x 10.1007/s12652-020-02837-8 10.1016/j.bspc.2020.102124 10.1080/00207450701242826 10.1186/s13063-018-3108-3 10.1088/1742-6596/1907/1/012045 10.1109/TNSRE.2021.3123969 10.1109/ACCESS.2019.2953972 10.1109/CSPA.2019.8696054 10.1109/ACCESS.2019.2915614 10.1109/TNNLS.2018.2789927 10.1007/s00429-013-0634-3 10.1007/978-981-15-0029-9_48 10.1145/3292500.3330925 10.1007/978-3-031-02444-3_20 10.1038/s41597-020-0535-2 10.3390/ijerph18189589 10.1088/1741-2552/aace8c 10.1016/j.neunet.2020.12.013 10.1109/ICDH52753.2021.00053 10.1109/EMBC.2017.8037480 10.1016/j.bspc.2021.102648 10.1016/j.bbe.2020.02.002 10.1089/neu.2020.7473 10.1016/j.neucom.2019.08.037 10.1007/978-981-33-6862-0_14 10.1002/hbm.23730 10.1109/TNSRE.2019.2953121 10.1038/s41598-021-99114-1 10.1109/TNSRE.2021.3049133 10.1109/BIBM52615.2021.9669572 10.1371/journal.pone.0121896 10.3390/ijms25042224 10.1038/s41586-021-03506-2 10.1371/journal.pone.0230184 10.3390/bioengineering10030372 |
ContentType | Journal Article |
Copyright | 2025 Shandong University |
Copyright_xml | – notice: 2025 Shandong University |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.hcr.2025.100039 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 10_1016_j_hcr_2025_100039 S3050613125000282 |
GroupedDBID | 6I. AAFTH AALRI AAXUO AAYWO ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS FDB M41 M~E ROL AAYXX CITATION |
ID | FETCH-LOGICAL-c1379-c88e2e8f2aadb3c5fb8fc00a3d5313bf610d6e3df27dea7d8bd4604e48aefd063 |
ISSN | 3050-6131 |
IngestDate | Wed Aug 27 16:26:53 EDT 2025 Sat Aug 23 17:12:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | CNN F-GCN Electroencephalogram ERS Fusion wavelet LDA SVM Spinal cord injury Combined graph convolution network RNN GFT MI EC EMG PSD CSP CWT EEG C2CM BCI EO Motor imagery coif4 tSCI AR GCN ERD db4 SCI CapsNet sym4 LOSO-CV |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1379-c88e2e8f2aadb3c5fb8fc00a3d5313bf610d6e3df27dea7d8bd4604e48aefd063 |
ORCID | 0000-0002-8377-2166 |
OpenAccessLink | https://dx.doi.org/10.1016/j.hcr.2025.100039 |
ParticipantIDs | crossref_primary_10_1016_j_hcr_2025_100039 elsevier_sciencedirect_doi_10_1016_j_hcr_2025_100039 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Healthcare and Rehabilitation |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Rong, Miao (bib40) 2021; 10 Zhang, Chen, Tang, Zhang (bib46) 2021; 15 Cheng, Li, Li, Yu (bib43) 2019; 7 Chen, Wang, Wang, Yi, Qi (bib15) 2019; 7 Tariq, Trivailo, Simic (bib31) 2020; 15 Janapati R, Dalal V, Govardhan N, Sengupta R. Signal Processing Algorithms Based on Evolutionary Optimization Techniques in the BCI: A Review. In: Smys S, Tavares J.M.R.S., Bestak R., Shi F., eds. Computational Vision and Bio-Inspired Computing. Springer, Singapore; 2021:165-174. Mohamed, Yusoff, Selman, Malik (bib37) 2014; 4 Chiang W-L, Liu X, Si S, Li Y, Bengio S, Hsieh C-J. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2019:257-266. Lawhern, Solon, Waytowich, Gordon, Hung, Lance (bib23) 2018; 15 Zhang D, Yao L, Zhang X, et al. Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2018;32(1). Herbert, Tran, Craig, Boord, Middleton, Siddall (bib7) 2007; 117 Omidvar, Zahedi, Bakhshi (bib10) 2021; 12 Schirrmeister, Springenberg, Fiederer (bib22) 2017; 38 Zhang Y, Qiu S, Wei W, Ma X, He H. Filter Bank Adversarial Domain Adaptation For Motor Imagery Brain Computer Interface. In: 2021 International Joint Conference on Neural Networks (IJCNN); 2021:1-7. Xu, Miao, Sun (bib49) 2021; 11 Zhang, Robinson, Lee, Guan (bib28) 2021; 136 Katthi JR, Ganapathy S. Deep Multiway Canonical Correlation Analysis for Multi-Subject EEG Normalization. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2021:1245-1249. Willett, Avansino, Hochberg, Henderson, Shenoy (bib17) 2021; 593 . Clifton L, Clifton DA. The correlation between baseline score and post-intervention score, and its implications for statistical analysis. Trials. 2019;20(1):43. Anila Glory H, Vigneswaran C, Shankar Sriram VS. Identification of Suitable Basis Wavelet Function for Epileptic Seizure Detection Using EEG Signals. In: First International Conference on Sustainable Technologies for Computational Intelligence; 2020:607–621. Fouad, Popovich, Kopp, Schwab (bib1) 2020; 17 Mohseni Salehi SS, Moghadamfalahi M, Quivira F, Piers A, Nezamfar H, Erdogmus D. Decoding complex imagery hand gestures. In: Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine Biology Society(EMBC); 2017:2968-2971. Chiarion, Sparacino, Antonacci, Faes, Mesin (bib35) 2023; 10 Lee J, Choi JW, Jo S. Subject-Independent Motor Imagery EEG Classification Based on Graph Convolutional Network. In: Wallraven C, Liu Q, Nagahara H, eds. Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13189. Cham, Switzerland: Springer; 2022:268-281 Sakhavi, Guan, Yan (bib25) 2018; 29 Gupta, Pachori (bib39) 2020; 62 Sreeja, Samanta (bib18) 2019; 368 Zhen, Lu, Yang, Chang (bib19) 2019 Kirshblum, Snider, Eren, Guest (bib4) 2021; 38 Xu, Rong, Leng (bib50) 2021; 29 Yong, Menon (bib11) 2015; 10 Suwannarat, Pan-Ngum, Israsena (bib14) 2018; 17 Hermosilla, Codorniú, Baracaldo (bib8) 2021; 9 Ha, Jeong (bib20) 2019; 19 Inanici, Brighton, Samejima, Hofstetter, Moritz (bib5) 2021; 29 Di, Biswal (bib29) 2015; 220 Keelawat P, Thammasan N, Kijsirikul B, Numao M. Subject-independent emotion recognition during music listening based on EEG using deep convolutional neural networks. In: 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA); 2019:21-26. Pfurtscheller G. EEG event-related desynchronization (ERD) and event related synchronization (ERS). In: Niedermeyer E., Lopes da Silva F.H., eds. Electroencephalography: basic principles, clinical applications and related fields. 4th ed. Baltimore, MD:Williams and Wilkins; 1999: 958-967. Moro, Corbella, Ionta, Ferrari, Scandola (bib6) 2021; 18 Calderone, Cardile, De Luca, Quartarone, Corallo, Calabrò (bib2) 2024; 25 Ma, Qiu, Wei, Wang, He (bib26) 2020; 28 Li, Cheng, Guo (bib34) 2021; 1907 Subasi, Tuncer, Dogan, Tanko, Sakoglu (bib38) 2021; 68 Wirawan, Wardoyo, Lelono (bib32) 2022; 12 Masum M, Shahriar H, Haddad HM, Song W. A statistical summary analysis of window-based extracted features for EEG signal classification. In: Proceedings of the 2021 IEEE International Conference on Digital Health (ICDH); 2021:293-298. Ma, Qiu, He (bib16) 2020; 7 Khosla, Khandnor, Chand (bib36) 2020; 40 Di, Biswal (bib3) 2015; 220 Molla, Shiam, Islam, Tanaka (bib52) 2020; 8 Zhang, Yong, Menon (bib13) 2017; 12 Zou, Zhang, Sun (bib21) 2018; 28 Wang D, Lei C, Zhang X, et al. Identification of Depression with a Semi-supervised GCN based on EEG Data. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2021:2338-2345. Kirshblum (10.1016/j.hcr.2025.100039_bib4) 2021; 38 Moro (10.1016/j.hcr.2025.100039_bib6) 2021; 18 Mohamed (10.1016/j.hcr.2025.100039_bib37) 2014; 4 Willett (10.1016/j.hcr.2025.100039_bib17) 2021; 593 Fouad (10.1016/j.hcr.2025.100039_bib1) 2020; 17 Li (10.1016/j.hcr.2025.100039_bib34) 2021; 1907 10.1016/j.hcr.2025.100039_bib27 Sreeja (10.1016/j.hcr.2025.100039_bib18) 2019; 368 10.1016/j.hcr.2025.100039_bib24 Chen (10.1016/j.hcr.2025.100039_bib15) 2019; 7 Zhang (10.1016/j.hcr.2025.100039_bib46) 2021; 15 Chiarion (10.1016/j.hcr.2025.100039_bib35) 2023; 10 Khosla (10.1016/j.hcr.2025.100039_bib36) 2020; 40 Subasi (10.1016/j.hcr.2025.100039_bib38) 2021; 68 Hermosilla (10.1016/j.hcr.2025.100039_bib8) 2021; 9 10.1016/j.hcr.2025.100039_bib33 Lawhern (10.1016/j.hcr.2025.100039_bib23) 2018; 15 10.1016/j.hcr.2025.100039_bib30 10.1016/j.hcr.2025.100039_bib9 Suwannarat (10.1016/j.hcr.2025.100039_bib14) 2018; 17 Omidvar (10.1016/j.hcr.2025.100039_bib10) 2021; 12 Xu (10.1016/j.hcr.2025.100039_bib40) 2021; 10 Calderone (10.1016/j.hcr.2025.100039_bib2) 2024; 25 Cheng (10.1016/j.hcr.2025.100039_bib43) 2019; 7 Gupta (10.1016/j.hcr.2025.100039_bib39) 2020; 62 Ha (10.1016/j.hcr.2025.100039_bib20) 2019; 19 10.1016/j.hcr.2025.100039_bib44 10.1016/j.hcr.2025.100039_bib42 Ma (10.1016/j.hcr.2025.100039_bib16) 2020; 7 10.1016/j.hcr.2025.100039_bib41 Molla (10.1016/j.hcr.2025.100039_bib52) 2020; 8 Herbert (10.1016/j.hcr.2025.100039_bib7) 2007; 117 Zou (10.1016/j.hcr.2025.100039_bib21) 2018; 28 Schirrmeister (10.1016/j.hcr.2025.100039_bib22) 2017; 38 Wirawan (10.1016/j.hcr.2025.100039_bib32) 2022; 12 Ma (10.1016/j.hcr.2025.100039_bib26) 2020; 28 10.1016/j.hcr.2025.100039_bib48 10.1016/j.hcr.2025.100039_bib47 10.1016/j.hcr.2025.100039_bib45 Yong (10.1016/j.hcr.2025.100039_bib11) 2015; 10 Tariq (10.1016/j.hcr.2025.100039_bib31) 2020; 15 Xu (10.1016/j.hcr.2025.100039_bib50) 2021; 29 Di (10.1016/j.hcr.2025.100039_bib29) 2015; 220 Xu (10.1016/j.hcr.2025.100039_bib49) 2021; 11 10.1016/j.hcr.2025.100039_bib51 Zhang (10.1016/j.hcr.2025.100039_bib28) 2021; 136 Zhang (10.1016/j.hcr.2025.100039_bib13) 2017; 12 Lu (10.1016/j.hcr.2025.100039_bib19) 2019 10.1016/j.hcr.2025.100039_bib12 Di (10.1016/j.hcr.2025.100039_bib3) 2015; 220 Inanici (10.1016/j.hcr.2025.100039_bib5) 2021; 29 Sakhavi (10.1016/j.hcr.2025.100039_bib25) 2018; 29 |
References_xml | – reference: Masum M, Shahriar H, Haddad HM, Song W. A statistical summary analysis of window-based extracted features for EEG signal classification. In: Proceedings of the 2021 IEEE International Conference on Digital Health (ICDH); 2021:293-298. – volume: 15 year: 2020 ident: bib31 article-title: Mu-Beta event-related (de)synchronization and EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI publication-title: PLoS One – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: bib22 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum Brain Mapp. – volume: 117 start-page: 1731 year: 2007 end-page: 1746 ident: bib7 article-title: Altered brain wave activity in persons with chronic spinal cord injury publication-title: Int J Neurosci. – reference: Clifton L, Clifton DA. The correlation between baseline score and post-intervention score, and its implications for statistical analysis. Trials. 2019;20(1):43. – reference: Katthi JR, Ganapathy S. Deep Multiway Canonical Correlation Analysis for Multi-Subject EEG Normalization. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2021:1245-1249. – reference: Janapati R, Dalal V, Govardhan N, Sengupta R. Signal Processing Algorithms Based on Evolutionary Optimization Techniques in the BCI: A Review. In: Smys S, Tavares J.M.R.S., Bestak R., Shi F., eds. Computational Vision and Bio-Inspired Computing. Springer, Singapore; 2021:165-174. – volume: 19 start-page: 2854 year: 2019 ident: bib20 article-title: Motor imagery EEG classification using capsule networks publication-title: Sensors (Basel) – volume: 593 start-page: 249 year: 2021 end-page: 254 ident: bib17 article-title: High-performance brain-to-text communication via handwriting publication-title: Nature. – reference: Lee J, Choi JW, Jo S. Subject-Independent Motor Imagery EEG Classification Based on Graph Convolutional Network. In: Wallraven C, Liu Q, Nagahara H, eds. Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13189. Cham, Switzerland: Springer; 2022:268-281 – volume: 15 year: 2021 ident: bib46 article-title: Children ASD evaluation through joint analysis of EEG and eye-tracking recordings with graph convolution network publication-title: Front Hum Neurosci – volume: 40 start-page: 649 year: 2020 end-page: 690 ident: bib36 article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals publication-title: Biocybern Biomed Eng – reference: Chiang W-L, Liu X, Si S, Li Y, Bengio S, Hsieh C-J. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2019:257-266. – volume: 68 start-page: 102648 year: 2021 ident: bib38 article-title: EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier publication-title: Biomed Signal Process Control – reference: Mohseni Salehi SS, Moghadamfalahi M, Quivira F, Piers A, Nezamfar H, Erdogmus D. Decoding complex imagery hand gestures. In: Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine Biology Society(EMBC); 2017:2968-2971. – reference: Zhang Y, Qiu S, Wei W, Ma X, He H. Filter Bank Adversarial Domain Adaptation For Motor Imagery Brain Computer Interface. In: 2021 International Joint Conference on Neural Networks (IJCNN); 2021:1-7. – volume: 7 start-page: 59631 year: 2019 end-page: 59639 ident: bib15 article-title: Recognizing Motor Imagery Between Hand and Forearm in the Same Limb in a Hybrid Brain Computer Interface Paradigm: An Online Study publication-title: IEEE Access – volume: 136 start-page: 1 year: 2021 end-page: 10 ident: bib28 article-title: Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network publication-title: Neural Netw – volume: 38 start-page: 1267 year: 2021 end-page: 1284 ident: bib4 article-title: Characterizing natural recovery after traumatic spinal cord injury publication-title: J Neurotrauma – volume: 9 start-page: 98275 year: 2021 end-page: 98286 ident: bib8 article-title: Shallow convolutional network excel for classifying motor imagery EEG in BCI applications publication-title: IEEE Access – volume: 18 start-page: 9589 year: 2021 ident: bib6 article-title: Cognitive Training Improves Disconnected Limbs’ Mental Representation and Peripersonal Space after Spinal Cord Injury publication-title: Int J Environ Res Public Health – volume: 10 year: 2015 ident: bib11 article-title: EEG classification of different imaginary movements within the same limb publication-title: PLoS One. – volume: 7 start-page: 191 year: 2020 ident: bib16 article-title: Multi-channel EEG recording during motor imagery of different joints from the same limb publication-title: Sci Data. – start-page: 3 year: 2019 end-page: 7 ident: bib19 article-title: Research on Motor Imagery EEG Signal Classification on Multi-Features Fusion. publication-title: SmartTech Innovations – volume: 28 start-page: 297 year: 2020 end-page: 306 ident: bib26 article-title: Deep channel-correlation network for motor imagery decoding from the same limb publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 4 start-page: 234 year: 2014 end-page: 238 ident: bib37 article-title: Enhancing EEG signals in brain computer interface using wavelet transform publication-title: Int J Inf Electron Eng – volume: 12 start-page: 1508 year: 2022 end-page: 1519 ident: bib32 article-title: The challenges of emotion recognition methods based on electroencephalogram signals: a literature review publication-title: J Int J Electr Comput Eng – volume: 29 start-page: 5619 year: 2018 end-page: 5629 ident: bib25 article-title: Learning temporal information for brain-computer interface using convolutional neural networks publication-title: IEEE Trans Neural Netw Learn Syst – volume: 12 year: 2017 ident: bib13 article-title: Evaluating the versatility of EEG models generated from motor imagery tasks: An exploratory investigation on upper-limb elbow-centered motor imagery tasks publication-title: PLoS One – volume: 28 start-page: 22 year: 2018 end-page: 28 ident: bib21 article-title: A method for extraction of motor imagery EEG features based on local mean decomposition and multiscale entropy publication-title: Chin High Technol Lett – reference: Pfurtscheller G. EEG event-related desynchronization (ERD) and event related synchronization (ERS). In: Niedermeyer E., Lopes da Silva F.H., eds. Electroencephalography: basic principles, clinical applications and related fields. 4th ed. Baltimore, MD:Williams and Wilkins; 1999: 958-967. – volume: 12 start-page: 10395 year: 2021 end-page: 10403 ident: bib10 article-title: EEG signal processing for epilepsy seizure detection using 5-level Db4 discrete wavelet transform, GA-based feature selection and ANN/SVM classifiers publication-title: J Ambient Intell Humaniz Comput – volume: 220 start-page: 37 year: 2015 end-page: 46 ident: bib29 article-title: Dynamic brain functional connectivity modulated by resting-state networks publication-title: Brain Struct Funct – volume: 10 start-page: 112 year: 2021 ident: bib40 article-title: Representation learning for motor imagery recognition with deep neural network publication-title: Electronics (Basel) – volume: 62 year: 2020 ident: bib39 article-title: Classification of focal EEG signals using FBSE based flexible time-frequency coverage wavelet transform publication-title: Biomed Signal Process Control – volume: 25 start-page: 2224 year: 2024 ident: bib2 article-title: Brain plasticity in patients with spinal cord injuries: a systematic review publication-title: Int J Mol Sci. – volume: 17 start-page: 103 year: 2018 ident: bib14 article-title: Comparison of EEG measurement of upper limb movement in motor imagery training system publication-title: Biomed Eng Online – volume: 10 start-page: 372 year: 2023 ident: bib35 article-title: Connectivity analysis in EEG data: a tutorial review of the state of the art and emerging trends publication-title: Bioengineering (Basel). – reference: Keelawat P, Thammasan N, Kijsirikul B, Numao M. Subject-independent emotion recognition during music listening based on EEG using deep convolutional neural networks. In: 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA); 2019:21-26. – volume: 1907 year: 2021 ident: bib34 article-title: A review of EEG acquisition, processing and application publication-title: J Phys Conf Ser – volume: 29 start-page: 310 year: 2021 end-page: 319 ident: bib5 article-title: Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 29 start-page: 2417 year: 2021 end-page: 2424 ident: bib50 article-title: Classification of left-versus right-hand motor imagery in stroke patients using supplementary data generated by cycleGAN publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 17 start-page: 53 year: 2020 end-page: 62 ident: bib1 article-title: J Nature Reviews publication-title: Nat Rev Neurol. – volume: 368 start-page: 133 year: 2019 end-page: 145 ident: bib18 article-title: Classification of multiclass motor imagery EEG signal using sparsity approach publication-title: Neurocomputing (Amst). – volume: 8 start-page: 98255 year: 2020 end-page: 98265 ident: bib52 article-title: Discriminative feature selection-based motor imagery classification using EEG signal publication-title: IEEE Access – volume: 7 start-page: 174465 year: 2019 end-page: 174481 ident: bib43 article-title: The optimal wavelet basis function selection in feature extraction of motor imagery electroencephalogram based on wavelet packet transformation publication-title: IEEE Access – reference: . – reference: Anila Glory H, Vigneswaran C, Shankar Sriram VS. Identification of Suitable Basis Wavelet Function for Epileptic Seizure Detection Using EEG Signals. In: First International Conference on Sustainable Technologies for Computational Intelligence; 2020:607–621. – reference: Wang D, Lei C, Zhang X, et al. Identification of Depression with a Semi-supervised GCN based on EEG Data. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2021:2338-2345. – volume: 220 start-page: 37 year: 2015 end-page: 46 ident: bib3 article-title: Dynamic brain functional connectivity modulated by resting-state networks publication-title: Brain Struct Funct – volume: 11 start-page: 19783 year: 2021 ident: bib49 article-title: A transfer learning framework based on motor imagery rehabilitation for stroke publication-title: Sci Rep – volume: 15 year: 2018 ident: bib23 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J Neural Eng – reference: Zhang D, Yao L, Zhang X, et al. Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2018;32(1). – volume: 19 start-page: 2854 issue: 13 year: 2019 ident: 10.1016/j.hcr.2025.100039_bib20 article-title: Motor imagery EEG classification using capsule networks publication-title: Sensors (Basel) doi: 10.3390/s19132854 – volume: 15 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib46 article-title: Children ASD evaluation through joint analysis of EEG and eye-tracking recordings with graph convolution network publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2021.651349 – volume: 8 start-page: 98255 year: 2020 ident: 10.1016/j.hcr.2025.100039_bib52 article-title: Discriminative feature selection-based motor imagery classification using EEG signal publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2996685 – ident: 10.1016/j.hcr.2025.100039_bib24 doi: 10.1609/aaai.v32i1.11496 – volume: 17 start-page: 103 issue: 1 year: 2018 ident: 10.1016/j.hcr.2025.100039_bib14 article-title: Comparison of EEG measurement of upper limb movement in motor imagery training system publication-title: Biomed Eng Online doi: 10.1186/s12938-018-0534-0 – volume: 9 start-page: 98275 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib8 article-title: Shallow convolutional network excel for classifying motor imagery EEG in BCI applications publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3091399 – ident: 10.1016/j.hcr.2025.100039_bib27 doi: 10.1109/IJCNN52387.2021.9534286 – ident: 10.1016/j.hcr.2025.100039_bib41 doi: 10.1109/ICASSP39728.2021.9414274 – volume: 12 issue: 11 year: 2017 ident: 10.1016/j.hcr.2025.100039_bib13 article-title: Evaluating the versatility of EEG models generated from motor imagery tasks: An exploratory investigation on upper-limb elbow-centered motor imagery tasks publication-title: PLoS One doi: 10.1371/journal.pone.0188293 – volume: 17 start-page: 53 issue: 1 year: 2020 ident: 10.1016/j.hcr.2025.100039_bib1 article-title: The neuroanatomical–functional paradox in spinal cord injury. publication-title: Nat Rev Neurol. doi: 10.1038/s41582-020-00436-x – volume: 12 start-page: 10395 issue: 11 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib10 article-title: EEG signal processing for epilepsy seizure detection using 5-level Db4 discrete wavelet transform, GA-based feature selection and ANN/SVM classifiers publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02837-8 – volume: 62 year: 2020 ident: 10.1016/j.hcr.2025.100039_bib39 article-title: Classification of focal EEG signals using FBSE based flexible time-frequency coverage wavelet transform publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102124 – volume: 117 start-page: 1731 issue: 12 year: 2007 ident: 10.1016/j.hcr.2025.100039_bib7 article-title: Altered brain wave activity in persons with chronic spinal cord injury publication-title: Int J Neurosci. doi: 10.1080/00207450701242826 – ident: 10.1016/j.hcr.2025.100039_bib48 doi: 10.1186/s13063-018-3108-3 – volume: 1907 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib34 article-title: A review of EEG acquisition, processing and application publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1907/1/012045 – volume: 10 start-page: 112 issue: 2 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib40 article-title: Representation learning for motor imagery recognition with deep neural network publication-title: Electronics (Basel) – volume: 29 start-page: 2417 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib50 article-title: Classification of left-versus right-hand motor imagery in stroke patients using supplementary data generated by cycleGAN publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2021.3123969 – volume: 7 start-page: 174465 year: 2019 ident: 10.1016/j.hcr.2025.100039_bib43 article-title: The optimal wavelet basis function selection in feature extraction of motor imagery electroencephalogram based on wavelet packet transformation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953972 – ident: 10.1016/j.hcr.2025.100039_bib51 doi: 10.1109/CSPA.2019.8696054 – volume: 7 start-page: 59631 year: 2019 ident: 10.1016/j.hcr.2025.100039_bib15 article-title: Recognizing Motor Imagery Between Hand and Forearm in the Same Limb in a Hybrid Brain Computer Interface Paradigm: An Online Study publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2915614 – volume: 29 start-page: 5619 issue: 11 year: 2018 ident: 10.1016/j.hcr.2025.100039_bib25 article-title: Learning temporal information for brain-computer interface using convolutional neural networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2789927 – volume: 220 start-page: 37 issue: 1 year: 2015 ident: 10.1016/j.hcr.2025.100039_bib29 article-title: Dynamic brain functional connectivity modulated by resting-state networks publication-title: Brain Struct Funct doi: 10.1007/s00429-013-0634-3 – ident: 10.1016/j.hcr.2025.100039_bib30 – ident: 10.1016/j.hcr.2025.100039_bib42 doi: 10.1007/978-981-15-0029-9_48 – volume: 28 start-page: 22 issue: 1 year: 2018 ident: 10.1016/j.hcr.2025.100039_bib21 article-title: A method for extraction of motor imagery EEG features based on local mean decomposition and multiscale entropy publication-title: Chinese High Technology Letters – ident: 10.1016/j.hcr.2025.100039_bib44 doi: 10.1145/3292500.3330925 – volume: 12 start-page: 1508 issue: 2 year: 2022 ident: 10.1016/j.hcr.2025.100039_bib32 article-title: The challenges of emotion recognition methods based on electroencephalogram signals: a literature review publication-title: Int J Electr Comput Eng – ident: 10.1016/j.hcr.2025.100039_bib47 doi: 10.1007/978-3-031-02444-3_20 – volume: 7 start-page: 191 issue: 1 year: 2020 ident: 10.1016/j.hcr.2025.100039_bib16 article-title: Multi-channel EEG recording during motor imagery of different joints from the same limb publication-title: Sci Data. doi: 10.1038/s41597-020-0535-2 – volume: 18 start-page: 9589 issue: 18 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib6 article-title: Cognitive Training Improves Disconnected Limbs’ Mental Representation and Peripersonal Space after Spinal Cord Injury publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph18189589 – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.hcr.2025.100039_bib23 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J Neural Eng doi: 10.1088/1741-2552/aace8c – volume: 136 start-page: 1 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib28 article-title: Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network publication-title: Neural Netw doi: 10.1016/j.neunet.2020.12.013 – ident: 10.1016/j.hcr.2025.100039_bib33 doi: 10.1109/ICDH52753.2021.00053 – ident: 10.1016/j.hcr.2025.100039_bib12 doi: 10.1109/EMBC.2017.8037480 – volume: 68 start-page: 102648 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib38 article-title: EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102648 – start-page: 3 issue: 3 year: 2019 ident: 10.1016/j.hcr.2025.100039_bib19 article-title: Research on Motor Imagery EEG Signal Classification on Multi-Features Fusion. publication-title: SmartTech Innovations – volume: 40 start-page: 649 issue: 2 year: 2020 ident: 10.1016/j.hcr.2025.100039_bib36 article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2020.02.002 – volume: 38 start-page: 1267 issue: 9 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib4 article-title: Characterizing natural recovery after traumatic spinal cord injury publication-title: J Neurotrauma doi: 10.1089/neu.2020.7473 – volume: 368 start-page: 133 year: 2019 ident: 10.1016/j.hcr.2025.100039_bib18 article-title: Classification of multiclass motor imagery EEG signal using sparsity approach publication-title: Neurocomputing (Amst). doi: 10.1016/j.neucom.2019.08.037 – ident: 10.1016/j.hcr.2025.100039_bib9 doi: 10.1007/978-981-33-6862-0_14 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.hcr.2025.100039_bib22 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum Brain Mapp. doi: 10.1002/hbm.23730 – volume: 28 start-page: 297 issue: 1 year: 2020 ident: 10.1016/j.hcr.2025.100039_bib26 article-title: Deep channel-correlation network for motor imagery decoding from the same limb publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2019.2953121 – volume: 220 start-page: 37 issue: 1 year: 2015 ident: 10.1016/j.hcr.2025.100039_bib3 article-title: Dynamic brain functional connectivity modulated by resting-state networks publication-title: Brain Struct Funct doi: 10.1007/s00429-013-0634-3 – volume: 11 start-page: 19783 issue: 1 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib49 article-title: A transfer learning framework based on motor imagery rehabilitation for stroke publication-title: Sci Rep doi: 10.1038/s41598-021-99114-1 – volume: 29 start-page: 310 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib5 article-title: Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2021.3049133 – ident: 10.1016/j.hcr.2025.100039_bib45 doi: 10.1109/BIBM52615.2021.9669572 – volume: 10 issue: 4 year: 2015 ident: 10.1016/j.hcr.2025.100039_bib11 article-title: EEG classification of different imaginary movements within the same limb publication-title: PLoS One. doi: 10.1371/journal.pone.0121896 – volume: 25 start-page: 2224 issue: 4 year: 2024 ident: 10.1016/j.hcr.2025.100039_bib2 article-title: Brain plasticity in patients with spinal cord injuries: a systematic review publication-title: Int J Mol Sci. doi: 10.3390/ijms25042224 – volume: 593 start-page: 249 issue: 7858 year: 2021 ident: 10.1016/j.hcr.2025.100039_bib17 article-title: High-performance brain-to-text communication via handwriting publication-title: Nature. doi: 10.1038/s41586-021-03506-2 – volume: 15 issue: 3 year: 2020 ident: 10.1016/j.hcr.2025.100039_bib31 article-title: Mu-Beta event-related (de)synchronization and EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI publication-title: PLoS One doi: 10.1371/journal.pone.0230184 – volume: 10 start-page: 372 issue: 3 year: 2023 ident: 10.1016/j.hcr.2025.100039_bib35 article-title: Connectivity analysis in EEG data: a tutorial review of the state of the art and emerging trends publication-title: Bioengineering (Basel). doi: 10.3390/bioengineering10030372 – volume: 4 start-page: 234 issue: 3 year: 2014 ident: 10.1016/j.hcr.2025.100039_bib37 article-title: Enhancing EEG signals in brain computer interface using wavelet transform publication-title: Int J Inf Electron Eng |
SSID | ssib057917242 |
Score | 2.2962456 |
Snippet | Electroencephalography (EEG) signals can be used to measure neuronal activity in different regions of the brain through electrodes.
To enhance the decoding of... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 100039 |
SubjectTerms | Combined graph convolution network Electroencephalogram Fusion wavelet Motor imagery Spinal cord injury |
Title | Electroencephalography decoding model based on fusion deep graph convolutional neural network for spinal cord injury |
URI | https://dx.doi.org/10.1016/j.hcr.2025.100039 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7c5NJLSWlD82jZQ041MsqunscSXExIekrAN7FPYh9kk9gUegj0n3d2dleWUweSXCSzXo_Wmk_zWM2DkDNpQCkZwRMruUgyVReJTKVKUlML0B_MMuT09a9icptdTvPpYPC3n12ykiP1Z2deyVu4CmPAV5cl-wrOdkRhAD4Df-EIHIbji3g89j1s3MO5vBOx-vRQg0uJuSrY5mboFJV2LwXs2m2NwddmOcSpGHMeVgiscrUt8YSR4RiA-LDErlnORR3O2vl6O4F6sgke83mO_arfXajPYu1BIdrfZvbfRvV0hr0qukieWRi_2sy9CBkkcShsUrC8C2gNsgykivNSg8CPgreHL94ToueYMbxTvvuthvnoTrlariwfbeZu19J-ouO6yMMY1DZvgETjSDSexDuyz8DTcE0wrh_HUSTlJbizDFswdX8hvhvHKMEnC9lt3fQslpsD8iG4GvSHx81HMjDtJ7LajRkaMUMRMxQxQxct9ZihDjMUp9ItzFCPGRowQwEz1GOGOsxQj5nP5Pbn-OZikoTOG4k652WdqKoyzFSWCaElV7mVlVVpKrgGkc2lBZtbF4Zry0ptRKkrqbMizUxWCWM1WL2HZK9dtOYLcesDMqByOZi6rLTS1iWv00pJLbK8Lo7I93jHmqUvsNI8y6QjksV72gQL0Vt-DQDk-Z8dv-YaJ-T9BsGnZG91vzZfwfBcyW8IjX_LLooZ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electroencephalography+decoding+model+based+on+fusion+deep+graph+convolutional+neural+network+for+spinal+cord+injury&rft.jtitle=Healthcare+and+Rehabilitation&rft.au=Lou%2C+Tianwei&rft.au=Zhang%2C+Xinting&rft.au=Jiang%2C+Lei&rft.au=Chen%2C+Lei&rft.date=2025-07-01&rft.issn=3050-6131&rft.volume=1&rft.issue=3&rft.spage=100039&rft_id=info:doi/10.1016%2Fj.hcr.2025.100039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_hcr_2025_100039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3050-6131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3050-6131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3050-6131&client=summon |