Electroencephalography decoding model based on fusion deep graph convolutional neural network for spinal cord injury

Electroencephalography (EEG) signals can be used to measure neuronal activity in different regions of the brain through electrodes. To enhance the decoding of motor imagery (MI) EEG signals in spinal cord injury (SCI) patients, this study proposes a feature fusion graph convolutional neural network...

Full description

Saved in:
Bibliographic Details
Published inHealthcare and Rehabilitation Vol. 1; no. 3; p. 100039
Main Authors Lou, Tianwei, Zhang, Xinting, Jiang, Lei, Chen, Lei, Gao, Licai, Lun, Zhixiao, Li, Jincheng, Zhang, Yang, Xu, Fangzhou, Jung, Tzyy-Ping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) signals can be used to measure neuronal activity in different regions of the brain through electrodes. To enhance the decoding of motor imagery (MI) EEG signals in spinal cord injury (SCI) patients, this study proposes a feature fusion graph convolutional neural network (F-GCN) model that integrates wavelet-based time-frequency features and functional topological relationships among EEG electrodes, aiming to improve classification accuracy and provide guidance for rehabilitation. This study included 10 patients with spinal cord injuries as the experimental group, and 10 healthy individuals as the control group. After the experiment began, the subjects underwent 2-min recordings of their EEG signals in resting states with eyes open or closed, with records for each state repeated twice. The participants were then asked to imagine the movements of their left hand, and right hand. The entire process of MI consists of four task stages, with each stage containing three tasks. Each task randomly appears 10 times. Time–frequency features of MI-EEG signals were extracted using a continuous wavelet transform to enhance the effectiveness of decoding raw EEG signals. Functional and statistical analyses of brain regions during MI were conducted based on the extracted time–frequency features. Based on this, the motor intentions of patients with SCI were decoded using a GCN that integrates the functional topological relationships of the electrodes. The proposed network achieved a classification accuracy of 92.44 % for MI task recognition. Furthermore, the fusion of wavelet features demonstrated superior performance in classification and recognition. The results of this study confirm the efficacy of wavelet fusion in advancing MI feature decoding, enhancing the understanding of neurological conditions, such as SCI, and offering promising prospects for improving rehabilitation methods.
AbstractList Electroencephalography (EEG) signals can be used to measure neuronal activity in different regions of the brain through electrodes. To enhance the decoding of motor imagery (MI) EEG signals in spinal cord injury (SCI) patients, this study proposes a feature fusion graph convolutional neural network (F-GCN) model that integrates wavelet-based time-frequency features and functional topological relationships among EEG electrodes, aiming to improve classification accuracy and provide guidance for rehabilitation. This study included 10 patients with spinal cord injuries as the experimental group, and 10 healthy individuals as the control group. After the experiment began, the subjects underwent 2-min recordings of their EEG signals in resting states with eyes open or closed, with records for each state repeated twice. The participants were then asked to imagine the movements of their left hand, and right hand. The entire process of MI consists of four task stages, with each stage containing three tasks. Each task randomly appears 10 times. Time–frequency features of MI-EEG signals were extracted using a continuous wavelet transform to enhance the effectiveness of decoding raw EEG signals. Functional and statistical analyses of brain regions during MI were conducted based on the extracted time–frequency features. Based on this, the motor intentions of patients with SCI were decoded using a GCN that integrates the functional topological relationships of the electrodes. The proposed network achieved a classification accuracy of 92.44 % for MI task recognition. Furthermore, the fusion of wavelet features demonstrated superior performance in classification and recognition. The results of this study confirm the efficacy of wavelet fusion in advancing MI feature decoding, enhancing the understanding of neurological conditions, such as SCI, and offering promising prospects for improving rehabilitation methods.
ArticleNumber 100039
Author Lou, Tianwei
Zhang, Yang
Lun, Zhixiao
Xu, Fangzhou
Chen, Lei
Zhang, Xinting
Gao, Licai
Jiang, Lei
Jung, Tzyy-Ping
Li, Jincheng
Author_xml – sequence: 1
  givenname: Tianwei
  surname: Lou
  fullname: Lou, Tianwei
  organization: Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Wenhuaxi Road, Jinan, Shandong, PR China
– sequence: 2
  givenname: Xinting
  surname: Zhang
  fullname: Zhang, Xinting
  organization: Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, PR China
– sequence: 3
  givenname: Lei
  surname: Jiang
  fullname: Jiang, Lei
  organization: Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Wenhuaxi Road, Jinan, Shandong, PR China
– sequence: 4
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  organization: Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Wenhuaxi Road, Jinan, Shandong, PR China
– sequence: 5
  givenname: Licai
  surname: Gao
  fullname: Gao, Licai
  organization: International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
– sequence: 6
  givenname: Zhixiao
  surname: Lun
  fullname: Lun, Zhixiao
  organization: International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
– sequence: 7
  givenname: Jincheng
  surname: Li
  fullname: Li, Jincheng
  organization: International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
– sequence: 8
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
  email: zhangyang982003@163.com
  organization: Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Wenhuaxi Road, Jinan, Shandong, PR China
– sequence: 9
  givenname: Fangzhou
  surname: Xu
  fullname: Xu, Fangzhou
  email: xfz@qlu.edu.cn
  organization: International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
– sequence: 10
  givenname: Tzyy-Ping
  orcidid: 0000-0002-8377-2166
  surname: Jung
  fullname: Jung, Tzyy-Ping
  email: tpjung@ucsd.edu
  organization: Swartz Center for Computational Neuroscience, Institute of Neural Computation, University of California San Diego, La Jolla, CA, USA
BookMark eNp9kMtOwzAQRb0oEqX0A9j5B1LsOK-KFarKQ6rEBtaW4xm3Lqkd2UlR_p6kZc3qah5nNDp3ZOa8Q0IeOFtxxovH4-qgwyplaT7WjIn1jMwFy1lScMFvyTJGW7O8XPMyzdI56bYN6i54dBrbg2r8Pqj2MFBA7cG6PT15wIbWKiJQ76jpox0DEFt6WaXau7Nv-m5sq4Y67MMluh8fvqnxgcbWThPtA1Drjn0Y7smNUU3E5V8uyNfL9nPzluw-Xt83z7tEc1GuE11VmGJlUqWgFjo3dWU0Y0pALrioTcEZFCjApCWgKqGqIStYhlml0AArxILw610dfIwBjWyDPakwSM7kZEse5WhLTrbk1dbIPF0ZHB87WwwyajvZARtGUxK8_Yf-BexZek0
Cites_doi 10.3390/s19132854
10.3389/fnhum.2021.651349
10.1109/ACCESS.2020.2996685
10.1609/aaai.v32i1.11496
10.1186/s12938-018-0534-0
10.1109/ACCESS.2021.3091399
10.1109/IJCNN52387.2021.9534286
10.1109/ICASSP39728.2021.9414274
10.1371/journal.pone.0188293
10.1038/s41582-020-00436-x
10.1007/s12652-020-02837-8
10.1016/j.bspc.2020.102124
10.1080/00207450701242826
10.1186/s13063-018-3108-3
10.1088/1742-6596/1907/1/012045
10.1109/TNSRE.2021.3123969
10.1109/ACCESS.2019.2953972
10.1109/CSPA.2019.8696054
10.1109/ACCESS.2019.2915614
10.1109/TNNLS.2018.2789927
10.1007/s00429-013-0634-3
10.1007/978-981-15-0029-9_48
10.1145/3292500.3330925
10.1007/978-3-031-02444-3_20
10.1038/s41597-020-0535-2
10.3390/ijerph18189589
10.1088/1741-2552/aace8c
10.1016/j.neunet.2020.12.013
10.1109/ICDH52753.2021.00053
10.1109/EMBC.2017.8037480
10.1016/j.bspc.2021.102648
10.1016/j.bbe.2020.02.002
10.1089/neu.2020.7473
10.1016/j.neucom.2019.08.037
10.1007/978-981-33-6862-0_14
10.1002/hbm.23730
10.1109/TNSRE.2019.2953121
10.1038/s41598-021-99114-1
10.1109/TNSRE.2021.3049133
10.1109/BIBM52615.2021.9669572
10.1371/journal.pone.0121896
10.3390/ijms25042224
10.1038/s41586-021-03506-2
10.1371/journal.pone.0230184
10.3390/bioengineering10030372
ContentType Journal Article
Copyright 2025 Shandong University
Copyright_xml – notice: 2025 Shandong University
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.hcr.2025.100039
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 10_1016_j_hcr_2025_100039
S3050613125000282
GroupedDBID 6I.
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
FDB
M41
M~E
ROL
AAYXX
CITATION
ID FETCH-LOGICAL-c1379-c88e2e8f2aadb3c5fb8fc00a3d5313bf610d6e3df27dea7d8bd4604e48aefd063
ISSN 3050-6131
IngestDate Wed Aug 27 16:26:53 EDT 2025
Sat Aug 23 17:12:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords CNN
F-GCN
Electroencephalogram
ERS
Fusion wavelet
LDA
SVM
Spinal cord injury
Combined graph convolution network
RNN
GFT
MI
EC
EMG
PSD
CSP
CWT
EEG
C2CM
BCI
EO
Motor imagery
coif4
tSCI
AR
GCN
ERD
db4
SCI
CapsNet
sym4
LOSO-CV
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1379-c88e2e8f2aadb3c5fb8fc00a3d5313bf610d6e3df27dea7d8bd4604e48aefd063
ORCID 0000-0002-8377-2166
OpenAccessLink https://dx.doi.org/10.1016/j.hcr.2025.100039
ParticipantIDs crossref_primary_10_1016_j_hcr_2025_100039
elsevier_sciencedirect_doi_10_1016_j_hcr_2025_100039
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Healthcare and Rehabilitation
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Rong, Miao (bib40) 2021; 10
Zhang, Chen, Tang, Zhang (bib46) 2021; 15
Cheng, Li, Li, Yu (bib43) 2019; 7
Chen, Wang, Wang, Yi, Qi (bib15) 2019; 7
Tariq, Trivailo, Simic (bib31) 2020; 15
Janapati R, Dalal V, Govardhan N, Sengupta R. Signal Processing Algorithms Based on Evolutionary Optimization Techniques in the BCI: A Review. In: Smys S, Tavares J.M.R.S., Bestak R., Shi F., eds. Computational Vision and Bio-Inspired Computing. Springer, Singapore; 2021:165-174.
Mohamed, Yusoff, Selman, Malik (bib37) 2014; 4
Chiang W-L, Liu X, Si S, Li Y, Bengio S, Hsieh C-J. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2019:257-266.
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (bib23) 2018; 15
Zhang D, Yao L, Zhang X, et al. Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2018;32(1).
Herbert, Tran, Craig, Boord, Middleton, Siddall (bib7) 2007; 117
Omidvar, Zahedi, Bakhshi (bib10) 2021; 12
Schirrmeister, Springenberg, Fiederer (bib22) 2017; 38
Zhang Y, Qiu S, Wei W, Ma X, He H. Filter Bank Adversarial Domain Adaptation For Motor Imagery Brain Computer Interface. In: 2021 International Joint Conference on Neural Networks (IJCNN); 2021:1-7.
Xu, Miao, Sun (bib49) 2021; 11
Zhang, Robinson, Lee, Guan (bib28) 2021; 136
Katthi JR, Ganapathy S. Deep Multiway Canonical Correlation Analysis for Multi-Subject EEG Normalization. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2021:1245-1249.
Willett, Avansino, Hochberg, Henderson, Shenoy (bib17) 2021; 593
.
Clifton L, Clifton DA. The correlation between baseline score and post-intervention score, and its implications for statistical analysis. Trials. 2019;20(1):43.
Anila Glory H, Vigneswaran C, Shankar Sriram VS. Identification of Suitable Basis Wavelet Function for Epileptic Seizure Detection Using EEG Signals. In: First International Conference on Sustainable Technologies for Computational Intelligence; 2020:607–621.
Fouad, Popovich, Kopp, Schwab (bib1) 2020; 17
Mohseni Salehi SS, Moghadamfalahi M, Quivira F, Piers A, Nezamfar H, Erdogmus D. Decoding complex imagery hand gestures. In: Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine Biology Society(EMBC); 2017:2968-2971.
Chiarion, Sparacino, Antonacci, Faes, Mesin (bib35) 2023; 10
Lee J, Choi JW, Jo S. Subject-Independent Motor Imagery EEG Classification Based on Graph Convolutional Network. In: Wallraven C, Liu Q, Nagahara H, eds. Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13189. Cham, Switzerland: Springer; 2022:268-281
Sakhavi, Guan, Yan (bib25) 2018; 29
Gupta, Pachori (bib39) 2020; 62
Sreeja, Samanta (bib18) 2019; 368
Zhen, Lu, Yang, Chang (bib19) 2019
Kirshblum, Snider, Eren, Guest (bib4) 2021; 38
Xu, Rong, Leng (bib50) 2021; 29
Yong, Menon (bib11) 2015; 10
Suwannarat, Pan-Ngum, Israsena (bib14) 2018; 17
Hermosilla, Codorniú, Baracaldo (bib8) 2021; 9
Ha, Jeong (bib20) 2019; 19
Inanici, Brighton, Samejima, Hofstetter, Moritz (bib5) 2021; 29
Di, Biswal (bib29) 2015; 220
Keelawat P, Thammasan N, Kijsirikul B, Numao M. Subject-independent emotion recognition during music listening based on EEG using deep convolutional neural networks. In: 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA); 2019:21-26.
Pfurtscheller G. EEG event-related desynchronization (ERD) and event related synchronization (ERS). In: Niedermeyer E., Lopes da Silva F.H., eds. Electroencephalography: basic principles, clinical applications and related fields. 4th ed. Baltimore, MD:Williams and Wilkins; 1999: 958-967.
Moro, Corbella, Ionta, Ferrari, Scandola (bib6) 2021; 18
Calderone, Cardile, De Luca, Quartarone, Corallo, Calabrò (bib2) 2024; 25
Ma, Qiu, Wei, Wang, He (bib26) 2020; 28
Li, Cheng, Guo (bib34) 2021; 1907
Subasi, Tuncer, Dogan, Tanko, Sakoglu (bib38) 2021; 68
Wirawan, Wardoyo, Lelono (bib32) 2022; 12
Masum M, Shahriar H, Haddad HM, Song W. A statistical summary analysis of window-based extracted features for EEG signal classification. In: Proceedings of the 2021 IEEE International Conference on Digital Health (ICDH); 2021:293-298.
Ma, Qiu, He (bib16) 2020; 7
Khosla, Khandnor, Chand (bib36) 2020; 40
Di, Biswal (bib3) 2015; 220
Molla, Shiam, Islam, Tanaka (bib52) 2020; 8
Zhang, Yong, Menon (bib13) 2017; 12
Zou, Zhang, Sun (bib21) 2018; 28
Wang D, Lei C, Zhang X, et al. Identification of Depression with a Semi-supervised GCN based on EEG Data. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2021:2338-2345.
Kirshblum (10.1016/j.hcr.2025.100039_bib4) 2021; 38
Moro (10.1016/j.hcr.2025.100039_bib6) 2021; 18
Mohamed (10.1016/j.hcr.2025.100039_bib37) 2014; 4
Willett (10.1016/j.hcr.2025.100039_bib17) 2021; 593
Fouad (10.1016/j.hcr.2025.100039_bib1) 2020; 17
Li (10.1016/j.hcr.2025.100039_bib34) 2021; 1907
10.1016/j.hcr.2025.100039_bib27
Sreeja (10.1016/j.hcr.2025.100039_bib18) 2019; 368
10.1016/j.hcr.2025.100039_bib24
Chen (10.1016/j.hcr.2025.100039_bib15) 2019; 7
Zhang (10.1016/j.hcr.2025.100039_bib46) 2021; 15
Chiarion (10.1016/j.hcr.2025.100039_bib35) 2023; 10
Khosla (10.1016/j.hcr.2025.100039_bib36) 2020; 40
Subasi (10.1016/j.hcr.2025.100039_bib38) 2021; 68
Hermosilla (10.1016/j.hcr.2025.100039_bib8) 2021; 9
10.1016/j.hcr.2025.100039_bib33
Lawhern (10.1016/j.hcr.2025.100039_bib23) 2018; 15
10.1016/j.hcr.2025.100039_bib30
10.1016/j.hcr.2025.100039_bib9
Suwannarat (10.1016/j.hcr.2025.100039_bib14) 2018; 17
Omidvar (10.1016/j.hcr.2025.100039_bib10) 2021; 12
Xu (10.1016/j.hcr.2025.100039_bib40) 2021; 10
Calderone (10.1016/j.hcr.2025.100039_bib2) 2024; 25
Cheng (10.1016/j.hcr.2025.100039_bib43) 2019; 7
Gupta (10.1016/j.hcr.2025.100039_bib39) 2020; 62
Ha (10.1016/j.hcr.2025.100039_bib20) 2019; 19
10.1016/j.hcr.2025.100039_bib44
10.1016/j.hcr.2025.100039_bib42
Ma (10.1016/j.hcr.2025.100039_bib16) 2020; 7
10.1016/j.hcr.2025.100039_bib41
Molla (10.1016/j.hcr.2025.100039_bib52) 2020; 8
Herbert (10.1016/j.hcr.2025.100039_bib7) 2007; 117
Zou (10.1016/j.hcr.2025.100039_bib21) 2018; 28
Schirrmeister (10.1016/j.hcr.2025.100039_bib22) 2017; 38
Wirawan (10.1016/j.hcr.2025.100039_bib32) 2022; 12
Ma (10.1016/j.hcr.2025.100039_bib26) 2020; 28
10.1016/j.hcr.2025.100039_bib48
10.1016/j.hcr.2025.100039_bib47
10.1016/j.hcr.2025.100039_bib45
Yong (10.1016/j.hcr.2025.100039_bib11) 2015; 10
Tariq (10.1016/j.hcr.2025.100039_bib31) 2020; 15
Xu (10.1016/j.hcr.2025.100039_bib50) 2021; 29
Di (10.1016/j.hcr.2025.100039_bib29) 2015; 220
Xu (10.1016/j.hcr.2025.100039_bib49) 2021; 11
10.1016/j.hcr.2025.100039_bib51
Zhang (10.1016/j.hcr.2025.100039_bib28) 2021; 136
Zhang (10.1016/j.hcr.2025.100039_bib13) 2017; 12
Lu (10.1016/j.hcr.2025.100039_bib19) 2019
10.1016/j.hcr.2025.100039_bib12
Di (10.1016/j.hcr.2025.100039_bib3) 2015; 220
Inanici (10.1016/j.hcr.2025.100039_bib5) 2021; 29
Sakhavi (10.1016/j.hcr.2025.100039_bib25) 2018; 29
References_xml – reference: Masum M, Shahriar H, Haddad HM, Song W. A statistical summary analysis of window-based extracted features for EEG signal classification. In: Proceedings of the 2021 IEEE International Conference on Digital Health (ICDH); 2021:293-298.
– volume: 15
  year: 2020
  ident: bib31
  article-title: Mu-Beta event-related (de)synchronization and EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI
  publication-title: PLoS One
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: bib22
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum Brain Mapp.
– volume: 117
  start-page: 1731
  year: 2007
  end-page: 1746
  ident: bib7
  article-title: Altered brain wave activity in persons with chronic spinal cord injury
  publication-title: Int J Neurosci.
– reference: Clifton L, Clifton DA. The correlation between baseline score and post-intervention score, and its implications for statistical analysis. Trials. 2019;20(1):43.
– reference: Katthi JR, Ganapathy S. Deep Multiway Canonical Correlation Analysis for Multi-Subject EEG Normalization. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2021:1245-1249.
– reference: Janapati R, Dalal V, Govardhan N, Sengupta R. Signal Processing Algorithms Based on Evolutionary Optimization Techniques in the BCI: A Review. In: Smys S, Tavares J.M.R.S., Bestak R., Shi F., eds. Computational Vision and Bio-Inspired Computing. Springer, Singapore; 2021:165-174.
– volume: 19
  start-page: 2854
  year: 2019
  ident: bib20
  article-title: Motor imagery EEG classification using capsule networks
  publication-title: Sensors (Basel)
– volume: 593
  start-page: 249
  year: 2021
  end-page: 254
  ident: bib17
  article-title: High-performance brain-to-text communication via handwriting
  publication-title: Nature.
– reference: Lee J, Choi JW, Jo S. Subject-Independent Motor Imagery EEG Classification Based on Graph Convolutional Network. In: Wallraven C, Liu Q, Nagahara H, eds. Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13189. Cham, Switzerland: Springer; 2022:268-281
– volume: 15
  year: 2021
  ident: bib46
  article-title: Children ASD evaluation through joint analysis of EEG and eye-tracking recordings with graph convolution network
  publication-title: Front Hum Neurosci
– volume: 40
  start-page: 649
  year: 2020
  end-page: 690
  ident: bib36
  article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals
  publication-title: Biocybern Biomed Eng
– reference: Chiang W-L, Liu X, Si S, Li Y, Bengio S, Hsieh C-J. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2019:257-266.
– volume: 68
  start-page: 102648
  year: 2021
  ident: bib38
  article-title: EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier
  publication-title: Biomed Signal Process Control
– reference: Mohseni Salehi SS, Moghadamfalahi M, Quivira F, Piers A, Nezamfar H, Erdogmus D. Decoding complex imagery hand gestures. In: Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine Biology Society(EMBC); 2017:2968-2971.
– reference: Zhang Y, Qiu S, Wei W, Ma X, He H. Filter Bank Adversarial Domain Adaptation For Motor Imagery Brain Computer Interface. In: 2021 International Joint Conference on Neural Networks (IJCNN); 2021:1-7.
– volume: 7
  start-page: 59631
  year: 2019
  end-page: 59639
  ident: bib15
  article-title: Recognizing Motor Imagery Between Hand and Forearm in the Same Limb in a Hybrid Brain Computer Interface Paradigm: An Online Study
  publication-title: IEEE Access
– volume: 136
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib28
  article-title: Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network
  publication-title: Neural Netw
– volume: 38
  start-page: 1267
  year: 2021
  end-page: 1284
  ident: bib4
  article-title: Characterizing natural recovery after traumatic spinal cord injury
  publication-title: J Neurotrauma
– volume: 9
  start-page: 98275
  year: 2021
  end-page: 98286
  ident: bib8
  article-title: Shallow convolutional network excel for classifying motor imagery EEG in BCI applications
  publication-title: IEEE Access
– volume: 18
  start-page: 9589
  year: 2021
  ident: bib6
  article-title: Cognitive Training Improves Disconnected Limbs’ Mental Representation and Peripersonal Space after Spinal Cord Injury
  publication-title: Int J Environ Res Public Health
– volume: 10
  year: 2015
  ident: bib11
  article-title: EEG classification of different imaginary movements within the same limb
  publication-title: PLoS One.
– volume: 7
  start-page: 191
  year: 2020
  ident: bib16
  article-title: Multi-channel EEG recording during motor imagery of different joints from the same limb
  publication-title: Sci Data.
– start-page: 3
  year: 2019
  end-page: 7
  ident: bib19
  article-title: Research on Motor Imagery EEG Signal Classification on Multi-Features Fusion.
  publication-title: SmartTech Innovations
– volume: 28
  start-page: 297
  year: 2020
  end-page: 306
  ident: bib26
  article-title: Deep channel-correlation network for motor imagery decoding from the same limb
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 4
  start-page: 234
  year: 2014
  end-page: 238
  ident: bib37
  article-title: Enhancing EEG signals in brain computer interface using wavelet transform
  publication-title: Int J Inf Electron Eng
– volume: 12
  start-page: 1508
  year: 2022
  end-page: 1519
  ident: bib32
  article-title: The challenges of emotion recognition methods based on electroencephalogram signals: a literature review
  publication-title: J Int J Electr Comput Eng
– volume: 29
  start-page: 5619
  year: 2018
  end-page: 5629
  ident: bib25
  article-title: Learning temporal information for brain-computer interface using convolutional neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 12
  year: 2017
  ident: bib13
  article-title: Evaluating the versatility of EEG models generated from motor imagery tasks: An exploratory investigation on upper-limb elbow-centered motor imagery tasks
  publication-title: PLoS One
– volume: 28
  start-page: 22
  year: 2018
  end-page: 28
  ident: bib21
  article-title: A method for extraction of motor imagery EEG features based on local mean decomposition and multiscale entropy
  publication-title: Chin High Technol Lett
– reference: Pfurtscheller G. EEG event-related desynchronization (ERD) and event related synchronization (ERS). In: Niedermeyer E., Lopes da Silva F.H., eds. Electroencephalography: basic principles, clinical applications and related fields. 4th ed. Baltimore, MD:Williams and Wilkins; 1999: 958-967.
– volume: 12
  start-page: 10395
  year: 2021
  end-page: 10403
  ident: bib10
  article-title: EEG signal processing for epilepsy seizure detection using 5-level Db4 discrete wavelet transform, GA-based feature selection and ANN/SVM classifiers
  publication-title: J Ambient Intell Humaniz Comput
– volume: 220
  start-page: 37
  year: 2015
  end-page: 46
  ident: bib29
  article-title: Dynamic brain functional connectivity modulated by resting-state networks
  publication-title: Brain Struct Funct
– volume: 10
  start-page: 112
  year: 2021
  ident: bib40
  article-title: Representation learning for motor imagery recognition with deep neural network
  publication-title: Electronics (Basel)
– volume: 62
  year: 2020
  ident: bib39
  article-title: Classification of focal EEG signals using FBSE based flexible time-frequency coverage wavelet transform
  publication-title: Biomed Signal Process Control
– volume: 25
  start-page: 2224
  year: 2024
  ident: bib2
  article-title: Brain plasticity in patients with spinal cord injuries: a systematic review
  publication-title: Int J Mol Sci.
– volume: 17
  start-page: 103
  year: 2018
  ident: bib14
  article-title: Comparison of EEG measurement of upper limb movement in motor imagery training system
  publication-title: Biomed Eng Online
– volume: 10
  start-page: 372
  year: 2023
  ident: bib35
  article-title: Connectivity analysis in EEG data: a tutorial review of the state of the art and emerging trends
  publication-title: Bioengineering (Basel).
– reference: Keelawat P, Thammasan N, Kijsirikul B, Numao M. Subject-independent emotion recognition during music listening based on EEG using deep convolutional neural networks. In: 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA); 2019:21-26.
– volume: 1907
  year: 2021
  ident: bib34
  article-title: A review of EEG acquisition, processing and application
  publication-title: J Phys Conf Ser
– volume: 29
  start-page: 310
  year: 2021
  end-page: 319
  ident: bib5
  article-title: Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 29
  start-page: 2417
  year: 2021
  end-page: 2424
  ident: bib50
  article-title: Classification of left-versus right-hand motor imagery in stroke patients using supplementary data generated by cycleGAN
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 17
  start-page: 53
  year: 2020
  end-page: 62
  ident: bib1
  article-title: J Nature Reviews
  publication-title: Nat Rev Neurol.
– volume: 368
  start-page: 133
  year: 2019
  end-page: 145
  ident: bib18
  article-title: Classification of multiclass motor imagery EEG signal using sparsity approach
  publication-title: Neurocomputing (Amst).
– volume: 8
  start-page: 98255
  year: 2020
  end-page: 98265
  ident: bib52
  article-title: Discriminative feature selection-based motor imagery classification using EEG signal
  publication-title: IEEE Access
– volume: 7
  start-page: 174465
  year: 2019
  end-page: 174481
  ident: bib43
  article-title: The optimal wavelet basis function selection in feature extraction of motor imagery electroencephalogram based on wavelet packet transformation
  publication-title: IEEE Access
– reference: .
– reference: Anila Glory H, Vigneswaran C, Shankar Sriram VS. Identification of Suitable Basis Wavelet Function for Epileptic Seizure Detection Using EEG Signals. In: First International Conference on Sustainable Technologies for Computational Intelligence; 2020:607–621.
– reference: Wang D, Lei C, Zhang X, et al. Identification of Depression with a Semi-supervised GCN based on EEG Data. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2021:2338-2345.
– volume: 220
  start-page: 37
  year: 2015
  end-page: 46
  ident: bib3
  article-title: Dynamic brain functional connectivity modulated by resting-state networks
  publication-title: Brain Struct Funct
– volume: 11
  start-page: 19783
  year: 2021
  ident: bib49
  article-title: A transfer learning framework based on motor imagery rehabilitation for stroke
  publication-title: Sci Rep
– volume: 15
  year: 2018
  ident: bib23
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J Neural Eng
– reference: Zhang D, Yao L, Zhang X, et al. Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2018;32(1).
– volume: 19
  start-page: 2854
  issue: 13
  year: 2019
  ident: 10.1016/j.hcr.2025.100039_bib20
  article-title: Motor imagery EEG classification using capsule networks
  publication-title: Sensors (Basel)
  doi: 10.3390/s19132854
– volume: 15
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib46
  article-title: Children ASD evaluation through joint analysis of EEG and eye-tracking recordings with graph convolution network
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2021.651349
– volume: 8
  start-page: 98255
  year: 2020
  ident: 10.1016/j.hcr.2025.100039_bib52
  article-title: Discriminative feature selection-based motor imagery classification using EEG signal
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2996685
– ident: 10.1016/j.hcr.2025.100039_bib24
  doi: 10.1609/aaai.v32i1.11496
– volume: 17
  start-page: 103
  issue: 1
  year: 2018
  ident: 10.1016/j.hcr.2025.100039_bib14
  article-title: Comparison of EEG measurement of upper limb movement in motor imagery training system
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-018-0534-0
– volume: 9
  start-page: 98275
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib8
  article-title: Shallow convolutional network excel for classifying motor imagery EEG in BCI applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3091399
– ident: 10.1016/j.hcr.2025.100039_bib27
  doi: 10.1109/IJCNN52387.2021.9534286
– ident: 10.1016/j.hcr.2025.100039_bib41
  doi: 10.1109/ICASSP39728.2021.9414274
– volume: 12
  issue: 11
  year: 2017
  ident: 10.1016/j.hcr.2025.100039_bib13
  article-title: Evaluating the versatility of EEG models generated from motor imagery tasks: An exploratory investigation on upper-limb elbow-centered motor imagery tasks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0188293
– volume: 17
  start-page: 53
  issue: 1
  year: 2020
  ident: 10.1016/j.hcr.2025.100039_bib1
  article-title: The neuroanatomical–functional paradox in spinal cord injury.
  publication-title: Nat Rev Neurol.
  doi: 10.1038/s41582-020-00436-x
– volume: 12
  start-page: 10395
  issue: 11
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib10
  article-title: EEG signal processing for epilepsy seizure detection using 5-level Db4 discrete wavelet transform, GA-based feature selection and ANN/SVM classifiers
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02837-8
– volume: 62
  year: 2020
  ident: 10.1016/j.hcr.2025.100039_bib39
  article-title: Classification of focal EEG signals using FBSE based flexible time-frequency coverage wavelet transform
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102124
– volume: 117
  start-page: 1731
  issue: 12
  year: 2007
  ident: 10.1016/j.hcr.2025.100039_bib7
  article-title: Altered brain wave activity in persons with chronic spinal cord injury
  publication-title: Int J Neurosci.
  doi: 10.1080/00207450701242826
– ident: 10.1016/j.hcr.2025.100039_bib48
  doi: 10.1186/s13063-018-3108-3
– volume: 1907
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib34
  article-title: A review of EEG acquisition, processing and application
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1907/1/012045
– volume: 10
  start-page: 112
  issue: 2
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib40
  article-title: Representation learning for motor imagery recognition with deep neural network
  publication-title: Electronics (Basel)
– volume: 29
  start-page: 2417
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib50
  article-title: Classification of left-versus right-hand motor imagery in stroke patients using supplementary data generated by cycleGAN
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2021.3123969
– volume: 7
  start-page: 174465
  year: 2019
  ident: 10.1016/j.hcr.2025.100039_bib43
  article-title: The optimal wavelet basis function selection in feature extraction of motor imagery electroencephalogram based on wavelet packet transformation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953972
– ident: 10.1016/j.hcr.2025.100039_bib51
  doi: 10.1109/CSPA.2019.8696054
– volume: 7
  start-page: 59631
  year: 2019
  ident: 10.1016/j.hcr.2025.100039_bib15
  article-title: Recognizing Motor Imagery Between Hand and Forearm in the Same Limb in a Hybrid Brain Computer Interface Paradigm: An Online Study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915614
– volume: 29
  start-page: 5619
  issue: 11
  year: 2018
  ident: 10.1016/j.hcr.2025.100039_bib25
  article-title: Learning temporal information for brain-computer interface using convolutional neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2789927
– volume: 220
  start-page: 37
  issue: 1
  year: 2015
  ident: 10.1016/j.hcr.2025.100039_bib29
  article-title: Dynamic brain functional connectivity modulated by resting-state networks
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-013-0634-3
– ident: 10.1016/j.hcr.2025.100039_bib30
– ident: 10.1016/j.hcr.2025.100039_bib42
  doi: 10.1007/978-981-15-0029-9_48
– volume: 28
  start-page: 22
  issue: 1
  year: 2018
  ident: 10.1016/j.hcr.2025.100039_bib21
  article-title: A method for extraction of motor imagery EEG features based on local mean decomposition and multiscale entropy
  publication-title: Chinese High Technology Letters
– ident: 10.1016/j.hcr.2025.100039_bib44
  doi: 10.1145/3292500.3330925
– volume: 12
  start-page: 1508
  issue: 2
  year: 2022
  ident: 10.1016/j.hcr.2025.100039_bib32
  article-title: The challenges of emotion recognition methods based on electroencephalogram signals: a literature review
  publication-title: Int J Electr Comput Eng
– ident: 10.1016/j.hcr.2025.100039_bib47
  doi: 10.1007/978-3-031-02444-3_20
– volume: 7
  start-page: 191
  issue: 1
  year: 2020
  ident: 10.1016/j.hcr.2025.100039_bib16
  article-title: Multi-channel EEG recording during motor imagery of different joints from the same limb
  publication-title: Sci Data.
  doi: 10.1038/s41597-020-0535-2
– volume: 18
  start-page: 9589
  issue: 18
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib6
  article-title: Cognitive Training Improves Disconnected Limbs’ Mental Representation and Peripersonal Space after Spinal Cord Injury
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph18189589
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.hcr.2025.100039_bib23
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aace8c
– volume: 136
  start-page: 1
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib28
  article-title: Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.12.013
– ident: 10.1016/j.hcr.2025.100039_bib33
  doi: 10.1109/ICDH52753.2021.00053
– ident: 10.1016/j.hcr.2025.100039_bib12
  doi: 10.1109/EMBC.2017.8037480
– volume: 68
  start-page: 102648
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib38
  article-title: EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102648
– start-page: 3
  issue: 3
  year: 2019
  ident: 10.1016/j.hcr.2025.100039_bib19
  article-title: Research on Motor Imagery EEG Signal Classification on Multi-Features Fusion.
  publication-title: SmartTech Innovations
– volume: 40
  start-page: 649
  issue: 2
  year: 2020
  ident: 10.1016/j.hcr.2025.100039_bib36
  article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2020.02.002
– volume: 38
  start-page: 1267
  issue: 9
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib4
  article-title: Characterizing natural recovery after traumatic spinal cord injury
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2020.7473
– volume: 368
  start-page: 133
  year: 2019
  ident: 10.1016/j.hcr.2025.100039_bib18
  article-title: Classification of multiclass motor imagery EEG signal using sparsity approach
  publication-title: Neurocomputing (Amst).
  doi: 10.1016/j.neucom.2019.08.037
– ident: 10.1016/j.hcr.2025.100039_bib9
  doi: 10.1007/978-981-33-6862-0_14
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.hcr.2025.100039_bib22
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum Brain Mapp.
  doi: 10.1002/hbm.23730
– volume: 28
  start-page: 297
  issue: 1
  year: 2020
  ident: 10.1016/j.hcr.2025.100039_bib26
  article-title: Deep channel-correlation network for motor imagery decoding from the same limb
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2019.2953121
– volume: 220
  start-page: 37
  issue: 1
  year: 2015
  ident: 10.1016/j.hcr.2025.100039_bib3
  article-title: Dynamic brain functional connectivity modulated by resting-state networks
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-013-0634-3
– volume: 11
  start-page: 19783
  issue: 1
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib49
  article-title: A transfer learning framework based on motor imagery rehabilitation for stroke
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-99114-1
– volume: 29
  start-page: 310
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib5
  article-title: Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2021.3049133
– ident: 10.1016/j.hcr.2025.100039_bib45
  doi: 10.1109/BIBM52615.2021.9669572
– volume: 10
  issue: 4
  year: 2015
  ident: 10.1016/j.hcr.2025.100039_bib11
  article-title: EEG classification of different imaginary movements within the same limb
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0121896
– volume: 25
  start-page: 2224
  issue: 4
  year: 2024
  ident: 10.1016/j.hcr.2025.100039_bib2
  article-title: Brain plasticity in patients with spinal cord injuries: a systematic review
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms25042224
– volume: 593
  start-page: 249
  issue: 7858
  year: 2021
  ident: 10.1016/j.hcr.2025.100039_bib17
  article-title: High-performance brain-to-text communication via handwriting
  publication-title: Nature.
  doi: 10.1038/s41586-021-03506-2
– volume: 15
  issue: 3
  year: 2020
  ident: 10.1016/j.hcr.2025.100039_bib31
  article-title: Mu-Beta event-related (de)synchronization and EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0230184
– volume: 10
  start-page: 372
  issue: 3
  year: 2023
  ident: 10.1016/j.hcr.2025.100039_bib35
  article-title: Connectivity analysis in EEG data: a tutorial review of the state of the art and emerging trends
  publication-title: Bioengineering (Basel).
  doi: 10.3390/bioengineering10030372
– volume: 4
  start-page: 234
  issue: 3
  year: 2014
  ident: 10.1016/j.hcr.2025.100039_bib37
  article-title: Enhancing EEG signals in brain computer interface using wavelet transform
  publication-title: Int J Inf Electron Eng
SSID ssib057917242
Score 2.2962456
Snippet Electroencephalography (EEG) signals can be used to measure neuronal activity in different regions of the brain through electrodes. To enhance the decoding of...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 100039
SubjectTerms Combined graph convolution network
Electroencephalogram
Fusion wavelet
Motor imagery
Spinal cord injury
Title Electroencephalography decoding model based on fusion deep graph convolutional neural network for spinal cord injury
URI https://dx.doi.org/10.1016/j.hcr.2025.100039
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7c5NJLSWlD82jZQ041MsqunscSXExIekrAN7FPYh9kk9gUegj0n3d2dleWUweSXCSzXo_Wmk_zWM2DkDNpQCkZwRMruUgyVReJTKVKUlML0B_MMuT09a9icptdTvPpYPC3n12ykiP1Z2deyVu4CmPAV5cl-wrOdkRhAD4Df-EIHIbji3g89j1s3MO5vBOx-vRQg0uJuSrY5mboFJV2LwXs2m2NwddmOcSpGHMeVgiscrUt8YSR4RiA-LDErlnORR3O2vl6O4F6sgke83mO_arfXajPYu1BIdrfZvbfRvV0hr0qukieWRi_2sy9CBkkcShsUrC8C2gNsgykivNSg8CPgreHL94ToueYMbxTvvuthvnoTrlariwfbeZu19J-ouO6yMMY1DZvgETjSDSexDuyz8DTcE0wrh_HUSTlJbizDFswdX8hvhvHKMEnC9lt3fQslpsD8iG4GvSHx81HMjDtJ7LajRkaMUMRMxQxQxct9ZihDjMUp9ItzFCPGRowQwEz1GOGOsxQj5nP5Pbn-OZikoTOG4k652WdqKoyzFSWCaElV7mVlVVpKrgGkc2lBZtbF4Zry0ptRKkrqbMizUxWCWM1WL2HZK9dtOYLcesDMqByOZi6rLTS1iWv00pJLbK8Lo7I93jHmqUvsNI8y6QjksV72gQL0Vt-DQDk-Z8dv-YaJ-T9BsGnZG91vzZfwfBcyW8IjX_LLooZ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electroencephalography+decoding+model+based+on+fusion+deep+graph+convolutional+neural+network+for+spinal+cord+injury&rft.jtitle=Healthcare+and+Rehabilitation&rft.au=Lou%2C+Tianwei&rft.au=Zhang%2C+Xinting&rft.au=Jiang%2C+Lei&rft.au=Chen%2C+Lei&rft.date=2025-07-01&rft.issn=3050-6131&rft.volume=1&rft.issue=3&rft.spage=100039&rft_id=info:doi/10.1016%2Fj.hcr.2025.100039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_hcr_2025_100039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3050-6131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3050-6131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3050-6131&client=summon