Automatic and Efficient Framework for Identifying Multiple Neurological Disorders From EEG Signals
The burden of neurological disorders is huge on global health and recognized as major causes of death and disability worldwide. There are more than 600 neurological diseases, but there is no unique automatic standard detection system yet to identify multiple neurological disorders using a single fra...
Saved in:
Published in | IEEE transactions on technology and society Vol. 4; no. 1; pp. 76 - 86 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The burden of neurological disorders is huge on global health and recognized as major causes of death and disability worldwide. There are more than 600 neurological diseases, but there is no unique automatic standard detection system yet to identify multiple neurological disorders using a single framework. Hence, this study aims to develop a common computer-aided diagnosis (CAD) system for automatic detection of multiple neurological disorders from EEG signals. In this study, we introduce a new single framework for automatic identification of four common neurological disorders, namely autism, epilepsy, parkinson's disease, and schizophrenia, from EEG data. The proposed framework is designed based on convolutional neural network (CNN) and spectrogram images of EEG signal for classifying four neurological disorders from healthy subjects (five classes). In the proposed design, firstly, the EEG signals are pre-processed for removing artifacts and noises and then converted into two-dimensional time-frequency-based spectrogram images using short-time Fourier transform. Afterwards, a CNN model is designed to perform five-class classification using those spectrogram images. The proposed method achieves much better performance in both efficiency and accuracy compared to two other popular CNN models: AlexNet and ResNet50. In addition, the performance of the proposed model is also evaluated on binary classification (disease vs. healthy) which also outperforms the state-of-the-art results for tested datasets. The obtained results recommend that our proposed framework will be helpful for developing a CAD system to assist the clinicians and experts in the automatic diagnosis process. |
---|---|
AbstractList | The burden of neurological disorders is huge on global health and recognized as major causes of death and disability worldwide. There are more than 600 neurological diseases, but there is no unique automatic standard detection system yet to identify multiple neurological disorders using a single framework. Hence, this study aims to develop a common computer-aided diagnosis (CAD) system for automatic detection of multiple neurological disorders from EEG signals. In this study, we introduce a new single framework for automatic identification of four common neurological disorders, namely autism, epilepsy, parkinson's disease, and schizophrenia, from EEG data. The proposed framework is designed based on convolutional neural network (CNN) and spectrogram images of EEG signal for classifying four neurological disorders from healthy subjects (five classes). In the proposed design, firstly, the EEG signals are pre-processed for removing artifacts and noises and then converted into two-dimensional time-frequency-based spectrogram images using short-time Fourier transform. Afterwards, a CNN model is designed to perform five-class classification using those spectrogram images. The proposed method achieves much better performance in both efficiency and accuracy compared to two other popular CNN models: AlexNet and ResNet50. In addition, the performance of the proposed model is also evaluated on binary classification (disease vs. healthy) which also outperforms the state-of-the-art results for tested datasets. The obtained results recommend that our proposed framework will be helpful for developing a CAD system to assist the clinicians and experts in the automatic diagnosis process. |
Author | Siuly, Siuly Tawhid, Md. Nurul Ahad Wang, Kate Wang, Hua |
Author_xml | – sequence: 1 givenname: Md. Nurul Ahad orcidid: 0000-0002-6100-4895 surname: Tawhid fullname: Tawhid, Md. Nurul Ahad email: md.tawhid1@live.vu.edu.au organization: Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC, Australia – sequence: 2 givenname: Siuly orcidid: 0000-0003-2491-0546 surname: Siuly fullname: Siuly, Siuly email: siuly.siuly@vu.edu.au organization: Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC, Australia – sequence: 3 givenname: Kate surname: Wang fullname: Wang, Kate email: hua.wang@vu.edu.au organization: Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC, Australia – sequence: 4 givenname: Hua orcidid: 0000-0002-8465-0996 surname: Wang fullname: Wang, Hua email: kate.wang@rmit.edu.au organization: School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia |
BookMark | eNp9kD1PwzAQhi0EEqV0Z2CwxJzij8Rxxqq0pVKBoWW2bMeuXJK4OIlQ_z2u2qFiYLrT6X1Od88duG58YwB4wGiMMSqeN5v1mCBCx5TQIiPsCgwIo3nCUpxdX_S3YNS2O4QQyTDmmA-AmvSdr2XnNJRNCWfWOu1M08F5kLX58eELWh_gsowzZw-u2cK3vurcvjLw3fTBV37rtKzgi2t9KE1oI-lrOJst4NptG1m19-DGxmJG5zoEn_PZZvqarD4Wy-lklWhMc56UlFtKS8PTLNUos5ZxxZTWOc1YiuJISaYwTbOCRkCV1lJNlFKoLArMOKND8HTauw_-uzdtJ3a-D8cLBMkLginBKY8pdkrp4Ns2GCu06-L_vumCdJXASByViqhUHJWKs9IIoj_gPrhahsN_yOMJccaYi3jUz2lKfwEHmINr |
CODEN | ITTSCY |
CitedBy_id | crossref_primary_10_1016_j_neuri_2025_100196 crossref_primary_10_1016_j_ins_2023_119788 crossref_primary_10_1109_ACCESS_2024_3520861 crossref_primary_10_1016_j_bspc_2024_107380 crossref_primary_10_4108_eetsis_5366 crossref_primary_10_1007_s10548_025_01106_1 crossref_primary_10_1016_j_bspc_2023_105245 crossref_primary_10_3390_app14010273 crossref_primary_10_4108_eetsis_v10i3_3063 crossref_primary_10_4108_eetsis_v10i3_3184 crossref_primary_10_1007_s12015_024_10791_7 crossref_primary_10_1109_ACCESS_2024_3450970 crossref_primary_10_1007_s11280_024_01275_2 crossref_primary_10_1109_ACCESS_2025_3532515 crossref_primary_10_1016_j_compbiomed_2024_108075 crossref_primary_10_4108_eetsis_4788 crossref_primary_10_1016_j_cosrev_2025_100730 crossref_primary_10_1038_s41598_024_57001_5 crossref_primary_10_1109_JIOT_2023_3292232 crossref_primary_10_3390_brainsci14100987 crossref_primary_10_4108_eetsis_7635 crossref_primary_10_3390_s24237488 crossref_primary_10_1016_j_health_2023_100211 crossref_primary_10_4108_eetsis_7517 crossref_primary_10_1109_TNSRE_2023_3347032 crossref_primary_10_1007_s41019_024_00260_z crossref_primary_10_4108_eetsis_5056 crossref_primary_10_1109_TCDS_2024_3386364 crossref_primary_10_1109_TIM_2024_3351248 |
Cites_doi | 10.1109/MSP.2008.4408441 10.1371/journal.pone.0188629 10.1016/j.compbiomed.2022.105311 10.1109/TIM.2022.3217515 10.1109/TNSRE.2020.3022715 10.1016/j.cmpb.2016.01.017 10.1109/TMI.2016.2528162 10.1111/j.1741-1130.2007.00143.x 10.1109/ACCESS.2019.2960848 10.18280/ts.370209 10.1371/journal.pone.0253094 10.1007/978-3-031-15512-3_13 10.1109/IEMBS.2008.4649350 10.1016/j.apacoust.2021.107941 10.1109/CVPR.2016.90 10.3390/s20092505 10.1016/j.bbe.2017.08.006 10.1016/j.neucom.2016.08.050 10.1016/j.neunet.2019.12.006 10.1109/TCSS.2021.3135425 10.1007/978-3-319-59421-7_2 10.3390/s19050987 10.1007/978-3-319-47653-7 10.1049/el.2020.2646 10.1016/j.bspc.2020.102223 10.5555/2999134.2999257 10.3389/fnins.2022.957181 10.1016/j.parkreldis.2020.08.001 10.1016/j.nicl.2014.12.005 10.3390/app9142870 10.1049/iet-smt.2018.5358 10.1007/s11633-019-1197-4 10.1007/978-3-030-90888-1_16 10.1016/S1474-4422(19)30411-9 10.1109/TNSRE.2020.3013429 10.1007/s10489-022-03252-6 10.1371/journal.pone.0277555 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 8FD F28 FR3 |
DOI | 10.1109/TTS.2023.3239526 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 2637-6415 |
EndPage | 86 |
ExternalDocumentID | 10_1109_TTS_2023_3239526 10025834 |
Genre | orig-research |
GrantInformation_xml | – fundername: Australian Research Council Linkage Project grantid: LP170100934 funderid: 10.13039/501100000923 |
GroupedDBID | 0R~ 97E AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX CITATION 8FD F28 FR3 |
ID | FETCH-LOGICAL-c1378-d38f33de8454c05ff68b6bcc7356404c0ba6b134593c13bdff3c2bbb0d9916863 |
IEDL.DBID | RIE |
ISSN | 2637-6415 |
IngestDate | Mon Jun 30 05:23:52 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 Tue Jul 01 02:56:05 EDT 2025 Wed Aug 27 02:17:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1378-d38f33de8454c05ff68b6bcc7356404c0ba6b134593c13bdff3c2bbb0d9916863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2491-0546 0000-0002-8465-0996 0000-0002-6100-4895 |
PQID | 2792132148 |
PQPubID | 5075779 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TTS_2023_3239526 crossref_primary_10_1109_TTS_2023_3239526 proquest_journals_2792132148 ieee_primary_10025834 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-March |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-March |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on technology and society |
PublicationTitleAbbrev | TTS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 Pereira (ref28) 2019 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 Alhaddad (ref27) 2012; 4 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 (ref3) 2021 ref29 ref8 ref7 ref9 ref4 ref6 ref5 ref40 |
References_xml | – ident: ref7 doi: 10.1109/MSP.2008.4408441 – ident: ref30 doi: 10.1371/journal.pone.0188629 – ident: ref36 doi: 10.1016/j.compbiomed.2022.105311 – ident: ref37 doi: 10.1109/TIM.2022.3217515 – ident: ref11 doi: 10.1109/TNSRE.2020.3022715 – ident: ref35 doi: 10.1016/j.cmpb.2016.01.017 – ident: ref26 doi: 10.1109/TMI.2016.2528162 – ident: ref1 doi: 10.1111/j.1741-1130.2007.00143.x – ident: ref21 doi: 10.1109/ACCESS.2019.2960848 – ident: ref22 doi: 10.18280/ts.370209 – ident: ref23 doi: 10.1371/journal.pone.0253094 – ident: ref12 doi: 10.1007/978-3-031-15512-3_13 – ident: ref14 doi: 10.1109/IEMBS.2008.4649350 – ident: ref32 doi: 10.1016/j.apacoust.2021.107941 – ident: ref34 doi: 10.1109/CVPR.2016.90 – ident: ref19 doi: 10.3390/s20092505 – ident: ref18 doi: 10.1016/j.bbe.2017.08.006 – ident: ref8 doi: 10.1016/j.neucom.2016.08.050 – ident: ref16 doi: 10.1016/j.neunet.2019.12.006 – ident: ref13 doi: 10.1109/TCSS.2021.3135425 – volume-title: Resting-state interictal EEG recordings of refractory epilepsy patients year: 2019 ident: ref28 – ident: ref20 doi: 10.1007/978-3-319-59421-7_2 – ident: ref31 doi: 10.3390/s19050987 – ident: ref5 doi: 10.1007/978-3-319-47653-7 – ident: ref9 doi: 10.1049/el.2020.2646 – ident: ref17 doi: 10.1016/j.bspc.2020.102223 – ident: ref33 doi: 10.5555/2999134.2999257 – ident: ref38 doi: 10.3389/fnins.2022.957181 – ident: ref29 doi: 10.1016/j.parkreldis.2020.08.001 – ident: ref15 doi: 10.1016/j.nicl.2014.12.005 – ident: ref39 doi: 10.3390/app9142870 – volume: 4 start-page: 45 issue: 2 year: 2012 ident: ref27 article-title: Diagnosis autism by fisher linear discriminant analysis FLDA via EEG publication-title: Int. J. Bio-Sci. Bio-Technol. – ident: ref4 doi: 10.1049/iet-smt.2018.5358 – ident: ref6 doi: 10.1007/s11633-019-1197-4 – ident: ref24 doi: 10.1007/978-3-030-90888-1_16 – ident: ref2 doi: 10.1016/S1474-4422(19)30411-9 – volume-title: Mental health year: 2021 ident: ref3 – ident: ref10 doi: 10.1109/TNSRE.2020.3013429 – ident: ref40 doi: 10.1007/s10489-022-03252-6 – ident: ref25 doi: 10.1371/journal.pone.0277555 |
SSID | ssj0002511818 |
Score | 2.21258 |
Snippet | The burden of neurological disorders is huge on global health and recognized as major causes of death and disability worldwide. There are more than 600... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 76 |
SubjectTerms | Artificial neural networks Autism Autism spectrum disorder Automatic programming Brain modeling cNN Computer aided diagnosis Convolutional neural networks Diagnosis eEG Electroencephalography Epilepsy Feature extraction Fourier transforms Medical imaging Mental disorders Neurological diseases neurological disorder Neurological disorders Parkinson's disease Public health Schizophrenia Signal classification Spectrogram time-frequency spectrogram image |
Title | Automatic and Efficient Framework for Identifying Multiple Neurological Disorders From EEG Signals |
URI | https://ieeexplore.ieee.org/document/10025834 https://www.proquest.com/docview/2792132148 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwFMCD28mLHzhxOiUHLx7atctH0-OQziFsl22wW2m-RNROXHvxrzdJ0zEUxVsJeSXk5eMlee_3ALiVqECcKx6ImIkAE0ECpkQcFAlCOFUUE4cUms3pdIUf12Ttg9VdLIxSyjmfqdB-urd8uRG1vSobWlwoYQh3QMec3Jpgrd2FirOVY9Y-RUbpcLlchDY7eIhGKCUWn7C39bhcKj8WYLerTI7BvG1P40zyEtYVD8XnN1Tjvxt8Ao68fQnHzYA4BQeqPAN8XFcbx2aFRSlh5rARRhJOWtcsaGxX2ATtusAnOPOOhtDRO_wCCVtW59ZIbt5glj3AxfOTRTD3wGqSLe-ngU-uYLSCzMlRIqYRkophgkVEtKaMUy5EggjFkSniBeUxwiRFRoBLrZEYcc4jaS1KRtE56JabUl0AaEpJIpPCLH4aR0KmJFVRLDTTnI0KKvtg2PZ7Ljx53CbAeM3dCSRKc6Op3Goq95rqg7udxHtD3fijbs92_F69ps_7YNDqNvfzcptbXGJsczOxy1_ErsCh_XvjZjYA3eqjVtfG7qj4jRtvXz0M1hA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEIAtKAMsPEQRhQIeWBiSJrWdOGOFUgq0XZpK3az4EYSABNFm4ddjO0lVgUBskeVTLJ8fZ_vuOwCuJUoR54o7wqfCwUQQhyrhO2mIEI5UgIlFCk2mwWiOHxZkUQer21gYpZR1PlOu-bRv-bIQpbkq6xlcKKEIb4MdvfETvwrXWl-pWGvZp81jpBf1kmTmmvzgLuqjiBiAwsbmY7Op_FiC7b4yPADTpkWVO8mLW664Kz6_wRr_3eRDsF9bmHBQDYkjsKXyY8AH5aqwdFaY5hLGFhyhJeGwcc6C2nqFVdiuDX2Ck9rVEFp-R71EwobWudSSxRuM4zs4e34yEOY2mA_j5Hbk1OkVtF6QPjtKRDOEpKKYYOGRLAsoD7gQISIB9nQRTwPuI0wipAW4zDIk-pxzTxqbkgboBLTyIlenAOpSEsow1ctfhj0hIxIpzxcZzTjtp4HsgF7T70zU7HGTAuOV2TOIFzGtKWY0xWpNdcDNWuK94m78UbdtOn6jXtXnHdBtdMvqmblkBpjom-xM9OwXsSuwO0omYza-nz6egz3zp8rprAtaq49SXWgrZMUv7dj7ApA52Vk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+and+Efficient+Framework+for+Identifying+Multiple+Neurological+Disorders+From+EEG+Signals&rft.jtitle=IEEE+transactions+on+technology+and+society&rft.au=Tawhid%2C+Md.+Nurul+Ahad&rft.au=Siuly%2C+Siuly&rft.au=Wang%2C+Kate&rft.au=Wang%2C+Hua&rft.date=2023-03-01&rft.pub=IEEE&rft.eissn=2637-6415&rft.volume=4&rft.issue=1&rft.spage=76&rft.epage=86&rft_id=info:doi/10.1109%2FTTS.2023.3239526&rft.externalDocID=10025834 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6415&client=summon |