MTADA: A Multi-task Adversarial Domain Adaptation Network for EEG-based Cross-subject Emotion Recognition

In electroencephalogram (EEG)-based emotion recognition, the applicability of most current models is limited by inter-subject variability and emotion complexity. This study proposes a multi-task adversarial domain adaptation (MTADA) network to enhance cross-subject emotion recognition performance. T...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing pp. 1 - 15
Main Authors Qiu, Lina, Ying, Zuorui, Song, Xianyue, Feng, Weisen, Zhou, Chengju, Pan, Jiahui
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In electroencephalogram (EEG)-based emotion recognition, the applicability of most current models is limited by inter-subject variability and emotion complexity. This study proposes a multi-task adversarial domain adaptation (MTADA) network to enhance cross-subject emotion recognition performance. The model first employs a domain matching strategy to select the source domain that best matches the target domain. Then, adversarial domain adaptation is used to learn the difference between source and target domains, and a fine-grained joint domain discriminator is constructed to align them by incorporating category information. At the same time, a multi-task learning mechanism is utilized to learn the intrinsic relationships between different emotions and predict multiple emotions simultaneously. We conducted comprehensive experiments on two public datasets, DEAP and FACED. On DEAP, the average accuracies for valence, arousal and dominance are 76.39%, 69.74% and 68.26%, respectively. On FACED, the average accuracies for valence and arousal are 78.90% and 77.95%. When using the subject from DEAP as the source domain to predict the subjects in FACED, the accuracies for valence and arousal are 61.07% and 60.82%. These results show that our MTADA model improves cross-subject emotion recognition and outperforms most state-of-the-art methods, which may provide new approach for EEG-based emotion brain-computer interface systems.
AbstractList In electroencephalogram (EEG)-based emotion recognition, the applicability of most current models is limited by inter-subject variability and emotion complexity. This study proposes a multi-task adversarial domain adaptation (MTADA) network to enhance cross-subject emotion recognition performance. The model first employs a domain matching strategy to select the source domain that best matches the target domain. Then, adversarial domain adaptation is used to learn the difference between source and target domains, and a fine-grained joint domain discriminator is constructed to align them by incorporating category information. At the same time, a multi-task learning mechanism is utilized to learn the intrinsic relationships between different emotions and predict multiple emotions simultaneously. We conducted comprehensive experiments on two public datasets, DEAP and FACED. On DEAP, the average accuracies for valence, arousal and dominance are 76.39%, 69.74% and 68.26%, respectively. On FACED, the average accuracies for valence and arousal are 78.90% and 77.95%. When using the subject from DEAP as the source domain to predict the subjects in FACED, the accuracies for valence and arousal are 61.07% and 60.82%. These results show that our MTADA model improves cross-subject emotion recognition and outperforms most state-of-the-art methods, which may provide new approach for EEG-based emotion brain-computer interface systems.
Author Pan, Jiahui
Feng, Weisen
Ying, Zuorui
Song, Xianyue
Qiu, Lina
Zhou, Chengju
Author_xml – sequence: 1
  givenname: Lina
  surname: Qiu
  fullname: Qiu, Lina
  email: lina.qiu@scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Foshan, China
– sequence: 2
  givenname: Zuorui
  surname: Ying
  fullname: Ying, Zuorui
  email: 854535913@qq.com
  organization: School of Artificial Intelligence, South China Normal University, Foshan, China
– sequence: 3
  givenname: Xianyue
  surname: Song
  fullname: Song, Xianyue
  email: 2909255488@qq.com
  organization: School of Artificial Intelligence, South China Normal University, Foshan, China
– sequence: 4
  givenname: Weisen
  surname: Feng
  fullname: Feng, Weisen
  email: fws0104@163.com
  organization: School of Artificial Intelligence, South China Normal University, Foshan, China
– sequence: 5
  givenname: Chengju
  surname: Zhou
  fullname: Zhou, Chengju
  email: cjzhou@scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Foshan, China
– sequence: 6
  givenname: Jiahui
  surname: Pan
  fullname: Pan, Jiahui
  email: panjiahui@m.scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Foshan, China
BookMark eNpNkF9LwzAUxYNMcM59AfEhX6Cz6U2XxbfStVPYFGQ-lzS9lexPM5JO8dvbbgO9L_dwOedw-d2SQWMbJOSehRPGQvm4TvI8nURhFE8gljEDcUWGTHIZQMjjwT99Q8beb8JuAGAaiSExq3UyT55oQlfHXWuCVvktTaovdF45o3Z0bvfKNN1JHVrVGtvQV2y_rdvS2jqaZYugVB4rmjrrfeCP5QZ1S7O9PXnfUdvPxvT6jlzXaudxfNkj8pFn6_Q5WL4tXtJkGWgG07ZrQ4hUiVDGQiNOuahrJjhXSvJZxTSCBsCy0lgLiIRglUAmpJaaK1nOYhiR6Nyr-48c1sXBmb1yPwULi55XceJV9LyKC68u9HAOGUT8C3T2WcQBfgH55Wm7
CODEN ITACBQ
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAFFC.2025.3595137
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 15
ExternalDocumentID 10_1109_TAFFC_2025_3595137
11108243
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
O9-
OCL
PQQKQ
RIA
RIE
5VS
AAYXX
AGSQL
CITATION
EJD
M43
RIG
RNI
RZB
ID FETCH-LOGICAL-c136t-bae32abe3b57cee647ff1744aa948d1ce3c33ebdcef732771d7e179c9c4a9b853
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Wed Aug 06 19:15:15 EDT 2025
Wed Aug 13 06:23:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c136t-bae32abe3b57cee647ff1744aa948d1ce3c33ebdcef732771d7e179c9c4a9b853
PageCount 15
ParticipantIDs ieee_primary_11108243
crossref_primary_10_1109_TAFFC_2025_3595137
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev TAFFC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000333627
Score 2.3533976
Snippet In electroencephalogram (EEG)-based emotion recognition, the applicability of most current models is limited by inter-subject variability and emotion...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Adaptation models
Affective computing
Brain modeling
Computational modeling
Cross-subject
Domain adaptation
Electroencephalogram(EEG)
Electroencephalography
Emotion recognition
Feature extraction
Multi-task learning
Multitasking
Training
Title MTADA: A Multi-task Adversarial Domain Adaptation Network for EEG-based Cross-subject Emotion Recognition
URI https://ieeexplore.ieee.org/document/11108243
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na4MwFA9rT7vss2PdFznsNmLVpMbsJq2uDNrDaKE3SWKEUqZl1cv--iVRtzIY7CbRQMx7yfvI--UHwKOXB5hgKvXu57rIXHmOGMk9pIgr8gzrqMhyRs4XwWxFXtfjdQtWt1gYpZQtPlOOebRn-Vkpa5MqG3mmZt0nuAd6OnJrwFrfCRUXY70Z0w4Y47LRMkqSiQ4B_bFj4Kee4To_MD4HbCrWmCSnYNENo6kh2Tp1JRz5-euGxn-P8wyctG4ljBo9OAdHqrgApx1lA2xX8CXYzJfRNHqGEbTIW1Tx_RZaUuY9N6oIp-U73xS6ie-aQ3q4aArFofZuYRy_IGP3MjgxP4j2tTB5HBg3ZEDwrStHKosBWCXxcjJDLdsCkh4OKt1bYZ8LhcWYassZEJrnOlwhnDMSZp5UWGKsRCZVTrFPqZdRpVezZJJwJrTVvwL9oizUNYBcv2OuIiLk2mERmOWhYTIPdcQqDdJ2CJ46MaS75lKN1AYjLkut0FIjtLQV2hAMzBT_fNnO7s0f7bfg2HRv8iR3oF991Opeew6VeLAa8wUyzcAi
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8QwEB5ED3rxLb7NQU-StW2y21bwUPbh-tg9yAreapKmIGJ3cbuI_hf_ir_NSdquIngUvJW0FJL5Oq_OzAdw6KYNxpmvUPs5DjUjz2nIU5dq7sg0YRgVWc7IXr_RveWXd_W7GXif9sJorW3xma6ZS_svPxmqiUmVnbimZt3jFVf1lX59wQhtfHbRQnEeeV6nPWh2aUkiQJXLGjmVQjNPSM1k3UeD0OB-mqIXzoUIeZC4SjPFmJaJ0qnPPN93E18jSFWouAhlYEghUMPPoaNR94r2sGkKx2EM1b9fteI44ckg6nSaGHR69ZppeHUNu_o3c_eNv8War84SfFQbL6pWHmuTXNbU24-ZkP_2ZJZhsXScSVQgfQVmdLYKSxUpBSl11Bo89AZRKzolEbG9xTQX40diaafHwnxspDV8Eg8ZLolRUYZA-kUpPEH_nbTb59RY9oQ0zYHS8USaTBVpF3RH5KYquBpm63D7JxvegNlsmOlNIALvhY7mMhDokkkWpoHhag8wJleml3gLjiuxx6NibEhswy0njC1IYgOSuATJFqwbkX49WUpz-5f1A5jvDnrX8fVF_2oHFsyriqzQLszmzxO9h35SLvctWgnc_zUIPgEcYSDa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MTADA%3A+A+Multi-task+Adversarial+Domain+Adaptation+Network+for+EEG-based+Cross-subject+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Qiu%2C+Lina&rft.au=Ying%2C+Zuorui&rft.au=Song%2C+Xianyue&rft.au=Feng%2C+Weisen&rft.date=2025&rft.pub=IEEE&rft.eissn=1949-3045&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTAFFC.2025.3595137&rft.externalDocID=11108243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon