Multimodal Wearable Based Automated Driver Inattention State Assessment Using Multi Devices and Novel Cross-Modal Attention Framework
Driver inattention detection remains a critical challenge in driver's well being, requiring robust systems that can distinguish stress-induced mental load during naturalistic driving. Current approaches face limitations in multiple wearable based data fusion and real-time biosignals assessment....
Saved in:
Published in | IEEE sensors letters pp. 1 - 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Driver inattention detection remains a critical challenge in driver's well being, requiring robust systems that can distinguish stress-induced mental load during naturalistic driving. Current approaches face limitations in multiple wearable based data fusion and real-time biosignals assessment. This study proposes a novel cross-squeeze-and-excitation convolution neural network (crSE-CNN) framework to process simultaneously acquired multiple wearable from 15 participants in controlled driving scenarios. The multimodal signals are applied to multi-stage attention mechanisms (ECG <inline-formula><tex-math notation="LaTeX">\leftrightarrow</tex-math></inline-formula> EDA, ECG <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math></inline-formula> EDA, EDA <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math></inline-formula> ECG) with 1D-CNN blocks, optimized for 10-second signal segments. The proposed approach is able to classify drive inattention state. It is observed that ECG <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math></inline-formula> EDA attention achieves 76.54% average accuracy using Leave-One-Subject-Out Cross-Validation, outperforming unimodal approaches by 12.4% and bidirectional attention by 4.8%. Feature visualizations confirm enhanced pattern discrimination in inattention conditions. This work advances driver health monitoring systems through effective wearable integration and adaptive feature weighting, with potential for edge deployment and clinical stress assessment applications |
---|---|
AbstractList | Driver inattention detection remains a critical challenge in driver's well being, requiring robust systems that can distinguish stress-induced mental load during naturalistic driving. Current approaches face limitations in multiple wearable based data fusion and real-time biosignals assessment. This study proposes a novel cross-squeeze-and-excitation convolution neural network (crSE-CNN) framework to process simultaneously acquired multiple wearable from 15 participants in controlled driving scenarios. The multimodal signals are applied to multi-stage attention mechanisms (ECG <inline-formula><tex-math notation="LaTeX">\leftrightarrow</tex-math></inline-formula> EDA, ECG <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math></inline-formula> EDA, EDA <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math></inline-formula> ECG) with 1D-CNN blocks, optimized for 10-second signal segments. The proposed approach is able to classify drive inattention state. It is observed that ECG <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math></inline-formula> EDA attention achieves 76.54% average accuracy using Leave-One-Subject-Out Cross-Validation, outperforming unimodal approaches by 12.4% and bidirectional attention by 4.8%. Feature visualizations confirm enhanced pattern discrimination in inattention conditions. This work advances driver health monitoring systems through effective wearable integration and adaptive feature weighting, with potential for edge deployment and clinical stress assessment applications |
Author | Singh, Ankit Pawar, Digvijay S. Ganapathy, Nagarajan Pavan, Kaveti |
Author_xml | – sequence: 1 givenname: Kaveti orcidid: 0009-0008-5252-9199 surname: Pavan fullname: Pavan, Kaveti email: bm23resch01001@iith.ac.in organization: Department of Biomedical Engineering, Indian institute of technology, Hyderabad, Telangana, India – sequence: 2 givenname: Ankit orcidid: 0000-0002-7143-8283 surname: Singh fullname: Singh, Ankit email: ce22resch01008@iith.ac.in organization: Department of Civil Engineering, Indian institute of technology, Hyderabad, Telangana, India – sequence: 3 givenname: Digvijay S. orcidid: 0000-0003-4228-3283 surname: Pawar fullname: Pawar, Digvijay S. email: dspawar@ce.iith.ac.in organization: Department of Civil Engineering, Indian institute of technology, Hyderabad, Telangana, India – sequence: 4 givenname: Nagarajan orcidid: 0000-0002-3743-5388 surname: Ganapathy fullname: Ganapathy, Nagarajan email: gnagarajan@bme.iith.ac.in organization: Department of Biomedical Engineering, Indian institute of technology, Hyderabad, Telangana, India |
BookMark | eNpNkMtOwzAQRS1UJErpDyAW_oGUsZ04yTL0AZVaWJSKZeTaExTIA9luER_Af5M-BMxmRnN174zOJek1bYOEXDMYMQbp7WI1fVyNOPBoJKJUSgZnpM_DOApYGPPev_mCDJ17AwCW8BgE9Mn3clv5sm6NqugLKqs2FdI75dDQbOvbWvlumthyh5bOG-U9Nr5sG7rynUIz59C5utvRtSubV3pIoxPclRodVY2hj-0OKzq2rXPB8nAm-w2ZWVXjZ2vfr8h5oSqHw1MfkPVs-jx-CBZP9_Nxtgg0E9IHKkVWCNRQICYQmYSj5Ghi1AL0RhqRRDqRIaSSy1ALbSAqItFpTBmhdCIGhB9z9f4fi0X-Ycta2a-cQb5nmR9Y5nuW-YllZ7o5mkpE_DN0lfI0FD-FM3UX |
CODEN | ISLECD |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LSENS.2025.3596610 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2475-1472 |
EndPage | 4 |
ExternalDocumentID | 10_1109_LSENS_2025_3596610 11119294 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION EJD RIG |
ID | FETCH-LOGICAL-c136t-a9e1f3ec0fee805d82e62ed7ec30cb6d385c864096264c3cd05f5330c1ad3ac83 |
IEDL.DBID | RIE |
ISSN | 2475-1472 |
IngestDate | Thu Aug 14 00:01:39 EDT 2025 Wed Aug 13 06:23:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c136t-a9e1f3ec0fee805d82e62ed7ec30cb6d385c864096264c3cd05f5330c1ad3ac83 |
ORCID | 0000-0002-3743-5388 0000-0002-7143-8283 0000-0003-4228-3283 0009-0008-5252-9199 |
PageCount | 4 |
ParticipantIDs | ieee_primary_11119294 crossref_primary_10_1109_LSENS_2025_3596610 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationTitle | IEEE sensors letters |
PublicationTitleAbbrev | LSENS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001827030 |
Score | 2.2788708 |
Snippet | Driver inattention detection remains a critical challenge in driver's well being, requiring robust systems that can distinguish stress-induced mental load... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Biomedical monitoring Cross squeeze-and-Excitation driver inattention detection Electrocardiography Feature extraction Frequency modulation inattention monitoring Monitoring multimodal physiological signals Vehicles Wearable devices wearable sensors Wireless communication Wireless sensor networks |
Title | Multimodal Wearable Based Automated Driver Inattention State Assessment Using Multi Devices and Novel Cross-Modal Attention Framework |
URI | https://ieeexplore.ieee.org/document/11119294 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT4MwGG_cTl58xBnnKz14M2xAHytH3CPTKJe5uBuB9uOiglnAg3f_b9sC22Ji4q0BWkq_D74Hv99XhG4EgO8pP3CoVgiHcpo5gbY8DvhuxlKeyiCzKN-Iz5f0YcVWDVndcmEAwILPYGCa9l--KmRlUmVD83prc047qKMjt5qstU2oCN9ob0uMcYPh42IaLXQI6LMBYdqtNyzZHeOzs5uKNSazQxS106gxJK-DqkwH8utXhcZ_z_MIHTRuJQ5rPThGe5CfoG_Lrn0vlD7zojXasKTwnTZbCodVWWhfVbcma4PMwPe5KbRpoY_YOqA43NTsxBZXgO1oeAL224KTXOGo-IQ3PDbP6jzZ24SbQWYt6quHlrPp83juNNsuONIjvHSSALyMgHQzAOEyJXzgPqgRSOLKlCsimBRcx4U6FqKSSOWyzGBUpZcokkhBTlE3L3I4Q1gkTPcTwFmQ0XTEEu2PEuCZLxOPgkr66LaVR_xRV9eIbVTiBrGVXmykFzfS66OeWevtlc0yn_9x_ALtm-51wuQSdct1BVfahSjTa6s6PzHKxxI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLagDLBwiCLK6YENJSRx7Dpj6aEW2ixtRbcosV8WIEFVysDO_8Z2krZCQmKzcjiO30ve4e97RuiOA3iu9ALLVwph-cxPrUBZHgs8J6UJS0SQGpRvyIZz_2lBFxVZ3XBhAMCAz8DWTbOWL3Ox0qmyB_15K3Pu76I9ZfipW9K1NikV7mn9rakxTvAwnvbDqQoCPWoTqhx7zZPdMj9b-6kYczI4QmE9kBJF8mqvisQWX79qNP57pMfosHIscafUhBO0A9kp-jb82vdcqjMvSqc1Two_KsMlcWdV5MpbVa3eUmMz8CjTpTYN-BEbFxR31lU7sUEWYNMb7oH5u-A4kzjMP-ENd_W7WhPzmM66k0GN-2qi-aA_6w6tauMFS7iEFVYcgJsSEE4KwB0quQfMA9kGQRyRMEk4FZypyFBFQ74gQjo01ShV4caSxIKTM9TI8gzOEeYxVfdxYDRI_aRNY-WREmCpJ2LXBxm30H0tj-ijrK8RmbjECSIjvUhLL6qk10JNPdebK6tpvvjj-C3aH84m42g8Cp8v0YHuqkyfXKFGsVzBtXIoiuTGqNEPvEvKWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Wearable+Based+Automated+Driver+Inattention+State+Assessment+Using+Multi+Devices+and+Novel+Cross-Modal+Attention+Framework&rft.jtitle=IEEE+sensors+letters&rft.au=Pavan%2C+Kaveti&rft.au=Singh%2C+Ankit&rft.au=Pawar%2C+Digvijay+S.&rft.au=Ganapathy%2C+Nagarajan&rft.date=2025&rft.issn=2475-1472&rft.eissn=2475-1472&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FLSENS.2025.3596610&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSENS_2025_3596610 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1472&client=summon |