Multimodal Wearable Based Automated Driver Inattention State Assessment Using Multi Devices and Novel Cross-Modal Attention Framework

Driver inattention detection remains a critical challenge in driver's well being, requiring robust systems that can distinguish stress-induced mental load during naturalistic driving. Current approaches face limitations in multiple wearable based data fusion and real-time biosignals assessment....

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors letters pp. 1 - 4
Main Authors Pavan, Kaveti, Singh, Ankit, Pawar, Digvijay S., Ganapathy, Nagarajan
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Driver inattention detection remains a critical challenge in driver's well being, requiring robust systems that can distinguish stress-induced mental load during naturalistic driving. Current approaches face limitations in multiple wearable based data fusion and real-time biosignals assessment. This study proposes a novel cross-squeeze-and-excitation convolution neural network (crSE-CNN) framework to process simultaneously acquired multiple wearable from 15 participants in controlled driving scenarios. The multimodal signals are applied to multi-stage attention mechanisms (ECG <inline-formula><tex-math notation="LaTeX">\leftrightarrow</tex-math></inline-formula> EDA, ECG <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math></inline-formula> EDA, EDA <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math></inline-formula> ECG) with 1D-CNN blocks, optimized for 10-second signal segments. The proposed approach is able to classify drive inattention state. It is observed that ECG <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math></inline-formula> EDA attention achieves 76.54% average accuracy using Leave-One-Subject-Out Cross-Validation, outperforming unimodal approaches by 12.4% and bidirectional attention by 4.8%. Feature visualizations confirm enhanced pattern discrimination in inattention conditions. This work advances driver health monitoring systems through effective wearable integration and adaptive feature weighting, with potential for edge deployment and clinical stress assessment applications
AbstractList Driver inattention detection remains a critical challenge in driver's well being, requiring robust systems that can distinguish stress-induced mental load during naturalistic driving. Current approaches face limitations in multiple wearable based data fusion and real-time biosignals assessment. This study proposes a novel cross-squeeze-and-excitation convolution neural network (crSE-CNN) framework to process simultaneously acquired multiple wearable from 15 participants in controlled driving scenarios. The multimodal signals are applied to multi-stage attention mechanisms (ECG <inline-formula><tex-math notation="LaTeX">\leftrightarrow</tex-math></inline-formula> EDA, ECG <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math></inline-formula> EDA, EDA <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math></inline-formula> ECG) with 1D-CNN blocks, optimized for 10-second signal segments. The proposed approach is able to classify drive inattention state. It is observed that ECG <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math></inline-formula> EDA attention achieves 76.54% average accuracy using Leave-One-Subject-Out Cross-Validation, outperforming unimodal approaches by 12.4% and bidirectional attention by 4.8%. Feature visualizations confirm enhanced pattern discrimination in inattention conditions. This work advances driver health monitoring systems through effective wearable integration and adaptive feature weighting, with potential for edge deployment and clinical stress assessment applications
Author Singh, Ankit
Pawar, Digvijay S.
Ganapathy, Nagarajan
Pavan, Kaveti
Author_xml – sequence: 1
  givenname: Kaveti
  orcidid: 0009-0008-5252-9199
  surname: Pavan
  fullname: Pavan, Kaveti
  email: bm23resch01001@iith.ac.in
  organization: Department of Biomedical Engineering, Indian institute of technology, Hyderabad, Telangana, India
– sequence: 2
  givenname: Ankit
  orcidid: 0000-0002-7143-8283
  surname: Singh
  fullname: Singh, Ankit
  email: ce22resch01008@iith.ac.in
  organization: Department of Civil Engineering, Indian institute of technology, Hyderabad, Telangana, India
– sequence: 3
  givenname: Digvijay S.
  orcidid: 0000-0003-4228-3283
  surname: Pawar
  fullname: Pawar, Digvijay S.
  email: dspawar@ce.iith.ac.in
  organization: Department of Civil Engineering, Indian institute of technology, Hyderabad, Telangana, India
– sequence: 4
  givenname: Nagarajan
  orcidid: 0000-0002-3743-5388
  surname: Ganapathy
  fullname: Ganapathy, Nagarajan
  email: gnagarajan@bme.iith.ac.in
  organization: Department of Biomedical Engineering, Indian institute of technology, Hyderabad, Telangana, India
BookMark eNpNkMtOwzAQRS1UJErpDyAW_oGUsZ04yTL0AZVaWJSKZeTaExTIA9luER_Af5M-BMxmRnN174zOJek1bYOEXDMYMQbp7WI1fVyNOPBoJKJUSgZnpM_DOApYGPPev_mCDJ17AwCW8BgE9Mn3clv5sm6NqugLKqs2FdI75dDQbOvbWvlumthyh5bOG-U9Nr5sG7rynUIz59C5utvRtSubV3pIoxPclRodVY2hj-0OKzq2rXPB8nAm-w2ZWVXjZ2vfr8h5oSqHw1MfkPVs-jx-CBZP9_Nxtgg0E9IHKkVWCNRQICYQmYSj5Ghi1AL0RhqRRDqRIaSSy1ALbSAqItFpTBmhdCIGhB9z9f4fi0X-Ycta2a-cQb5nmR9Y5nuW-YllZ7o5mkpE_DN0lfI0FD-FM3UX
CODEN ISLECD
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LSENS.2025.3596610
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1472
EndPage 4
ExternalDocumentID 10_1109_LSENS_2025_3596610
11119294
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
EJD
RIG
ID FETCH-LOGICAL-c136t-a9e1f3ec0fee805d82e62ed7ec30cb6d385c864096264c3cd05f5330c1ad3ac83
IEDL.DBID RIE
ISSN 2475-1472
IngestDate Thu Aug 14 00:01:39 EDT 2025
Wed Aug 13 06:23:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c136t-a9e1f3ec0fee805d82e62ed7ec30cb6d385c864096264c3cd05f5330c1ad3ac83
ORCID 0000-0002-3743-5388
0000-0002-7143-8283
0000-0003-4228-3283
0009-0008-5252-9199
PageCount 4
ParticipantIDs ieee_primary_11119294
crossref_primary_10_1109_LSENS_2025_3596610
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE sensors letters
PublicationTitleAbbrev LSENS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001827030
Score 2.2788708
Snippet Driver inattention detection remains a critical challenge in driver's well being, requiring robust systems that can distinguish stress-induced mental load...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Biomedical monitoring
Cross squeeze-and-Excitation
driver inattention detection
Electrocardiography
Feature extraction
Frequency modulation
inattention monitoring
Monitoring
multimodal physiological signals
Vehicles
Wearable devices
wearable sensors
Wireless communication
Wireless sensor networks
Title Multimodal Wearable Based Automated Driver Inattention State Assessment Using Multi Devices and Novel Cross-Modal Attention Framework
URI https://ieeexplore.ieee.org/document/11119294
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT4MwGG_cTl58xBnnKz14M2xAHytH3CPTKJe5uBuB9uOiglnAg3f_b9sC22Ji4q0BWkq_D74Hv99XhG4EgO8pP3CoVgiHcpo5gbY8DvhuxlKeyiCzKN-Iz5f0YcVWDVndcmEAwILPYGCa9l--KmRlUmVD83prc047qKMjt5qstU2oCN9ob0uMcYPh42IaLXQI6LMBYdqtNyzZHeOzs5uKNSazQxS106gxJK-DqkwH8utXhcZ_z_MIHTRuJQ5rPThGe5CfoG_Lrn0vlD7zojXasKTwnTZbCodVWWhfVbcma4PMwPe5KbRpoY_YOqA43NTsxBZXgO1oeAL224KTXOGo-IQ3PDbP6jzZ24SbQWYt6quHlrPp83juNNsuONIjvHSSALyMgHQzAOEyJXzgPqgRSOLKlCsimBRcx4U6FqKSSOWyzGBUpZcokkhBTlE3L3I4Q1gkTPcTwFmQ0XTEEu2PEuCZLxOPgkr66LaVR_xRV9eIbVTiBrGVXmykFzfS66OeWevtlc0yn_9x_ALtm-51wuQSdct1BVfahSjTa6s6PzHKxxI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLagDLBwiCLK6YENJSRx7Dpj6aEW2ixtRbcosV8WIEFVysDO_8Z2krZCQmKzcjiO30ve4e97RuiOA3iu9ALLVwph-cxPrUBZHgs8J6UJS0SQGpRvyIZz_2lBFxVZ3XBhAMCAz8DWTbOWL3Ox0qmyB_15K3Pu76I9ZfipW9K1NikV7mn9rakxTvAwnvbDqQoCPWoTqhx7zZPdMj9b-6kYczI4QmE9kBJF8mqvisQWX79qNP57pMfosHIscafUhBO0A9kp-jb82vdcqjMvSqc1Two_KsMlcWdV5MpbVa3eUmMz8CjTpTYN-BEbFxR31lU7sUEWYNMb7oH5u-A4kzjMP-ENd_W7WhPzmM66k0GN-2qi-aA_6w6tauMFS7iEFVYcgJsSEE4KwB0quQfMA9kGQRyRMEk4FZypyFBFQ74gQjo01ShV4caSxIKTM9TI8gzOEeYxVfdxYDRI_aRNY-WREmCpJ2LXBxm30H0tj-ijrK8RmbjECSIjvUhLL6qk10JNPdebK6tpvvjj-C3aH84m42g8Cp8v0YHuqkyfXKFGsVzBtXIoiuTGqNEPvEvKWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Wearable+Based+Automated+Driver+Inattention+State+Assessment+Using+Multi+Devices+and+Novel+Cross-Modal+Attention+Framework&rft.jtitle=IEEE+sensors+letters&rft.au=Pavan%2C+Kaveti&rft.au=Singh%2C+Ankit&rft.au=Pawar%2C+Digvijay+S.&rft.au=Ganapathy%2C+Nagarajan&rft.date=2025&rft.issn=2475-1472&rft.eissn=2475-1472&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FLSENS.2025.3596610&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSENS_2025_3596610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1472&client=summon