Learning Switchable Priors for Neural Image Compression

Neural image compression (NIC) usually adopts a predefined family of probabilistic distributions as the prior of the latent variables, and meanwhile relies on entropy models to estimate the parameters for the probabilistic family. More complex probabilistic distributions may fit the latent variables...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology p. 1
Main Authors Zhang, Haotian, Li, Yuqi, Li, Li, Liu, Dong
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2025.3577134

Cover

Abstract Neural image compression (NIC) usually adopts a predefined family of probabilistic distributions as the prior of the latent variables, and meanwhile relies on entropy models to estimate the parameters for the probabilistic family. More complex probabilistic distributions may fit the latent variables more accurately, but also incur higher complexity of the entropy models, limiting their practical value. To address this dilemma, we propose a solution to decouple the entropy model complexity from the prior distributions. We use a finite set of trainable priors that correspond to samples of the parametric probabilistic distributions. We train the entropy model to predict the index of the appropriate prior within the set, rather than the specific parameters. Switching between the trained priors further enables us to embrace a skip mode into the prior set, which simply omits a latent variable during the entropy coding. To demonstrate the practical value of our solution, we present a lightweight NIC model, namely FastNIC, together with the learning of switchable priors. FastNIC obtains a better trade-off between compression efficiency and computational complexity for neural image compression. We also implanted the switchable priors into state-of-the-art NIC models and observed improved compression efficiency with a significant reduction of entropy coding complexity.
AbstractList Neural image compression (NIC) usually adopts a predefined family of probabilistic distributions as the prior of the latent variables, and meanwhile relies on entropy models to estimate the parameters for the probabilistic family. More complex probabilistic distributions may fit the latent variables more accurately, but also incur higher complexity of the entropy models, limiting their practical value. To address this dilemma, we propose a solution to decouple the entropy model complexity from the prior distributions. We use a finite set of trainable priors that correspond to samples of the parametric probabilistic distributions. We train the entropy model to predict the index of the appropriate prior within the set, rather than the specific parameters. Switching between the trained priors further enables us to embrace a skip mode into the prior set, which simply omits a latent variable during the entropy coding. To demonstrate the practical value of our solution, we present a lightweight NIC model, namely FastNIC, together with the learning of switchable priors. FastNIC obtains a better trade-off between compression efficiency and computational complexity for neural image compression. We also implanted the switchable priors into state-of-the-art NIC models and observed improved compression efficiency with a significant reduction of entropy coding complexity.
Author Li, Li
Zhang, Haotian
Liu, Dong
Li, Yuqi
Author_xml – sequence: 1
  givenname: Haotian
  orcidid: 0009-0004-7193-9127
  surname: Zhang
  fullname: Zhang, Haotian
  email: zhanghaotian@mail.ustc.edu.cn
  organization: MOE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Yuqi
  orcidid: 0000-0002-1138-6805
  surname: Li
  fullname: Li, Yuqi
  email: lyq010303@mail.ustc.edu.cn
  organization: MOE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Li
  orcidid: 0000-0002-7163-6263
  surname: Li
  fullname: Li, Li
  email: lil1@ustc.edu.cn
  organization: MOE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Dong
  orcidid: 0000-0001-9100-2906
  surname: Liu
  fullname: Liu, Dong
  email: dongeliu@ustc.edu.cn
  organization: MOE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, China
BookMark eNpFj11LwzAYhYNMcJv-AfGif6D1fZOmSS6lqBsMFVa9LVnydla6diQT8d-7L_DqHDg8B54JG_VDT4zdImSIYO6rcvlRZRy4zIRUCkV-wcYopU45Bznad5CYao7yik1i_ALAXOdqzNSCbOjbfp0sf9qd-7SrjpK30A4hJs0Qkhf6DrZL5hu7pqQcNttAMbZDf80uG9tFujnnlL0_PVblLF28Ps_Lh0XqUBS7VIoCJCjhnfPG54jSNwV5zXNrtGkUeCuAaw3opOeGXCHJKG0EuRU2Wosp46dfF4YYAzX1NrQbG35rhPqgXh_V64N6fVbfQ3cnqCWifwCBH-c_vJdWuw
CODEN ITCTEM
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCSVT.2025.3577134
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1
ExternalDocumentID 10_1109_TCSVT_2025_3577134
11027134
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62021001
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
VH1
ID FETCH-LOGICAL-c136t-53605073dccd9d4115df6ed824a989f70da3028801c5d29ec65e97893ecb1f883
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Wed Sep 10 05:27:23 EDT 2025
Wed Aug 27 01:42:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c136t-53605073dccd9d4115df6ed824a989f70da3028801c5d29ec65e97893ecb1f883
ORCID 0000-0002-1138-6805
0009-0004-7193-9127
0000-0002-7163-6263
0000-0001-9100-2906
PageCount 1
ParticipantIDs ieee_primary_11027134
crossref_primary_10_1109_TCSVT_2025_3577134
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014847
Score 2.4550488
Snippet Neural image compression (NIC) usually adopts a predefined family of probabilistic distributions as the prior of the latent variables, and meanwhile relies on...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Computational modeling
Context modeling
Decoding
Entropy
Entropy coding
Entropy model
Image coding
Integrated circuit modeling
neural image compression
probabilistic distributions
Probabilistic logic
switchable priors
Switches
Training
Title Learning Switchable Priors for Neural Image Compression
URI https://ieeexplore.ieee.org/document/11027134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT3rwWbG-yMGbbJom2XT3KMVSBYvQVnoLzT6kiGmpKYK_3plNqlUQvIWQXZbZyX7f7LwArlSQIHJMDdOxESxGys-k7XBmI4JoS_1yyKP7MEj64_h-widVsrrLhTHGuOAz49Oj8-XruVrRVVkLoSqk3Mca1FDPymStL5dBLFw3MeQLbSYQyNYZMoFsjbrDpxHagiH3I96hGX6g0EZbFYcqvT0YrNdTBpO8-Ksi89XHr1KN_17wPuxW_NK7KRXiALZMfgg7G1UHj6BT1VR99obvM9w0Sp7yHpez-fLNQwrrUb0OnOLuFY8aj86LMlQ2b8C4dzvq9lnVP4GpdpQUjEdoq-AvrJXSUsfI_bRNjBZhPJUCdyTQ0wjpBWKU4jqURiXcoFEpI6OythUiOoZ6Ps_NCXhSKoFQZ6yyMhbKEm_IpLChlhRJrppwvZZnuijLZKTOvAhk6qSfkvTTSvpNaJCsvr-sxHT6x_sz2Kbh5c3HOdSL5cpcIBcoskunA59bPa7K
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7ofFAfvE6c1z74Jum6tumSRxmOTbchrJO9lTUXGWIns0Pw13uSdjoFwbdSyiF8SfN9JzkXgCvhRcgcE0VkqBgJUfITrpuU6MBQtDb9csyNbn8QdUbh3ZiOy2R1mwujlLLBZ8o1j_YuX87EwhyV1ZGqfJP7uA4bSPwhLdK1vi4NQmb7iaFiaBCGVLbMkfF4PW4NH2P0Bn3qBrRpbPzgoZXGKpZX2rswWI6oCCd5dhd56oqPX8Ua_z3kPdgpFaZzUyyJfVhT2QFsr9QdPIRmWVX1yRm-T3HaTPqU8zCfzuZvDopYx1TsQBPdF9xsHLNjFMGyWRVG7du41SFlBwUiGkGUExqgt4I_sRRCchmi-pM6UpL54YQznBNPTgIUGMhSgkqfKxFRhW4lD5RIG5qx4Agq2SxTx-BwLhiSndJC85AJbZRDypn2JTex5KIG10s8k9eiUEZiHQyPJxb9xKCflOjXoGqw-v6yhOnkj_eXsNmJ-72k1x3cn8KWMVWcg5xBJZ8v1Dkqgzy9sOvhE7bLshc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Switchable+Priors+for+Neural+Image+Compression&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhang%2C+Haotian&rft.au=Li%2C+Yuqi&rft.au=Li%2C+Li&rft.au=Liu%2C+Dong&rft.date=2025&rft.pub=IEEE&rft.issn=1051-8215&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCSVT.2025.3577134&rft.externalDocID=11027134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon