Learning Switchable Priors for Neural Image Compression
Neural image compression (NIC) usually adopts a predefined family of probabilistic distributions as the prior of the latent variables, and meanwhile relies on entropy models to estimate the parameters for the probabilistic family. More complex probabilistic distributions may fit the latent variables...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1051-8215 1558-2205 |
DOI | 10.1109/TCSVT.2025.3577134 |
Cover
Abstract | Neural image compression (NIC) usually adopts a predefined family of probabilistic distributions as the prior of the latent variables, and meanwhile relies on entropy models to estimate the parameters for the probabilistic family. More complex probabilistic distributions may fit the latent variables more accurately, but also incur higher complexity of the entropy models, limiting their practical value. To address this dilemma, we propose a solution to decouple the entropy model complexity from the prior distributions. We use a finite set of trainable priors that correspond to samples of the parametric probabilistic distributions. We train the entropy model to predict the index of the appropriate prior within the set, rather than the specific parameters. Switching between the trained priors further enables us to embrace a skip mode into the prior set, which simply omits a latent variable during the entropy coding. To demonstrate the practical value of our solution, we present a lightweight NIC model, namely FastNIC, together with the learning of switchable priors. FastNIC obtains a better trade-off between compression efficiency and computational complexity for neural image compression. We also implanted the switchable priors into state-of-the-art NIC models and observed improved compression efficiency with a significant reduction of entropy coding complexity. |
---|---|
AbstractList | Neural image compression (NIC) usually adopts a predefined family of probabilistic distributions as the prior of the latent variables, and meanwhile relies on entropy models to estimate the parameters for the probabilistic family. More complex probabilistic distributions may fit the latent variables more accurately, but also incur higher complexity of the entropy models, limiting their practical value. To address this dilemma, we propose a solution to decouple the entropy model complexity from the prior distributions. We use a finite set of trainable priors that correspond to samples of the parametric probabilistic distributions. We train the entropy model to predict the index of the appropriate prior within the set, rather than the specific parameters. Switching between the trained priors further enables us to embrace a skip mode into the prior set, which simply omits a latent variable during the entropy coding. To demonstrate the practical value of our solution, we present a lightweight NIC model, namely FastNIC, together with the learning of switchable priors. FastNIC obtains a better trade-off between compression efficiency and computational complexity for neural image compression. We also implanted the switchable priors into state-of-the-art NIC models and observed improved compression efficiency with a significant reduction of entropy coding complexity. |
Author | Li, Li Zhang, Haotian Liu, Dong Li, Yuqi |
Author_xml | – sequence: 1 givenname: Haotian orcidid: 0009-0004-7193-9127 surname: Zhang fullname: Zhang, Haotian email: zhanghaotian@mail.ustc.edu.cn organization: MOE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Yuqi orcidid: 0000-0002-1138-6805 surname: Li fullname: Li, Yuqi email: lyq010303@mail.ustc.edu.cn organization: MOE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Li orcidid: 0000-0002-7163-6263 surname: Li fullname: Li, Li email: lil1@ustc.edu.cn organization: MOE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, China – sequence: 4 givenname: Dong orcidid: 0000-0001-9100-2906 surname: Liu fullname: Liu, Dong email: dongeliu@ustc.edu.cn organization: MOE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, China |
BookMark | eNpFj11LwzAYhYNMcJv-AfGif6D1fZOmSS6lqBsMFVa9LVnydla6diQT8d-7L_DqHDg8B54JG_VDT4zdImSIYO6rcvlRZRy4zIRUCkV-wcYopU45Bznad5CYao7yik1i_ALAXOdqzNSCbOjbfp0sf9qd-7SrjpK30A4hJs0Qkhf6DrZL5hu7pqQcNttAMbZDf80uG9tFujnnlL0_PVblLF28Ps_Lh0XqUBS7VIoCJCjhnfPG54jSNwV5zXNrtGkUeCuAaw3opOeGXCHJKG0EuRU2Wosp46dfF4YYAzX1NrQbG35rhPqgXh_V64N6fVbfQ3cnqCWifwCBH-c_vJdWuw |
CODEN | ITCTEM |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TCSVT.2025.3577134 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TCSVT_2025_3577134 11027134 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62021001 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 ICLAB IFJZH VH1 |
ID | FETCH-LOGICAL-c136t-53605073dccd9d4115df6ed824a989f70da3028801c5d29ec65e97893ecb1f883 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Wed Sep 10 05:27:23 EDT 2025 Wed Aug 27 01:42:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c136t-53605073dccd9d4115df6ed824a989f70da3028801c5d29ec65e97893ecb1f883 |
ORCID | 0000-0002-1138-6805 0009-0004-7193-9127 0000-0002-7163-6263 0000-0001-9100-2906 |
PageCount | 1 |
ParticipantIDs | ieee_primary_11027134 crossref_primary_10_1109_TCSVT_2025_3577134 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0014847 |
Score | 2.4550488 |
Snippet | Neural image compression (NIC) usually adopts a predefined family of probabilistic distributions as the prior of the latent variables, and meanwhile relies on... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 1 |
SubjectTerms | Computational modeling Context modeling Decoding Entropy Entropy coding Entropy model Image coding Integrated circuit modeling neural image compression probabilistic distributions Probabilistic logic switchable priors Switches Training |
Title | Learning Switchable Priors for Neural Image Compression |
URI | https://ieeexplore.ieee.org/document/11027134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT3rwWbG-yMGbbJom2XT3KMVSBYvQVnoLzT6kiGmpKYK_3plNqlUQvIWQXZbZyX7f7LwArlSQIHJMDdOxESxGys-k7XBmI4JoS_1yyKP7MEj64_h-widVsrrLhTHGuOAz49Oj8-XruVrRVVkLoSqk3Mca1FDPymStL5dBLFw3MeQLbSYQyNYZMoFsjbrDpxHagiH3I96hGX6g0EZbFYcqvT0YrNdTBpO8-Ksi89XHr1KN_17wPuxW_NK7KRXiALZMfgg7G1UHj6BT1VR99obvM9w0Sp7yHpez-fLNQwrrUb0OnOLuFY8aj86LMlQ2b8C4dzvq9lnVP4GpdpQUjEdoq-AvrJXSUsfI_bRNjBZhPJUCdyTQ0wjpBWKU4jqURiXcoFEpI6OythUiOoZ6Ps_NCXhSKoFQZ6yyMhbKEm_IpLChlhRJrppwvZZnuijLZKTOvAhk6qSfkvTTSvpNaJCsvr-sxHT6x_sz2Kbh5c3HOdSL5cpcIBcoskunA59bPa7K |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7ofFAfvE6c1z74Jum6tumSRxmOTbchrJO9lTUXGWIns0Pw13uSdjoFwbdSyiF8SfN9JzkXgCvhRcgcE0VkqBgJUfITrpuU6MBQtDb9csyNbn8QdUbh3ZiOy2R1mwujlLLBZ8o1j_YuX87EwhyV1ZGqfJP7uA4bSPwhLdK1vi4NQmb7iaFiaBCGVLbMkfF4PW4NH2P0Bn3qBrRpbPzgoZXGKpZX2rswWI6oCCd5dhd56oqPX8Ua_z3kPdgpFaZzUyyJfVhT2QFsr9QdPIRmWVX1yRm-T3HaTPqU8zCfzuZvDopYx1TsQBPdF9xsHLNjFMGyWRVG7du41SFlBwUiGkGUExqgt4I_sRRCchmi-pM6UpL54YQznBNPTgIUGMhSgkqfKxFRhW4lD5RIG5qx4Agq2SxTx-BwLhiSndJC85AJbZRDypn2JTex5KIG10s8k9eiUEZiHQyPJxb9xKCflOjXoGqw-v6yhOnkj_eXsNmJ-72k1x3cn8KWMVWcg5xBJZ8v1Dkqgzy9sOvhE7bLshc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Switchable+Priors+for+Neural+Image+Compression&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhang%2C+Haotian&rft.au=Li%2C+Yuqi&rft.au=Li%2C+Li&rft.au=Liu%2C+Dong&rft.date=2025&rft.pub=IEEE&rft.issn=1051-8215&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCSVT.2025.3577134&rft.externalDocID=11027134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |