Collaborative Inference in RIS-Assisted MEC Networks under Computing Backlog Constraints
In this paper, we analyze collaborative inference in a mobile edge computing (MEC) network aided by a reconfigurable intelligent surface (RIS). In particular, we consider multiple user equipments (UEs) with collaborative inference tasks that require the execution of deep neural networks. The goal is...
Saved in:
Published in | IEEE transactions on communications p. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0090-6778 1558-0857 |
DOI | 10.1109/TCOMM.2025.3564727 |
Cover
Abstract | In this paper, we analyze collaborative inference in a mobile edge computing (MEC) network aided by a reconfigurable intelligent surface (RIS). In particular, we consider multiple user equipments (UEs) with collaborative inference tasks that require the execution of deep neural networks. The goal is to minimize the long-term average energy consumption subject to a long-term average computing queue backlog constraint. We first transform the considered problem into a Lyapunov optimization problem and then propose a deep reinforcement learning (DRL)-based algorithm to solve it. An optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal RIS coefficients, while the UEs' deep neural network (DNN) partition decisions and computational resource allocations at the MEC server are obtained from the DRL-based algorithm. Via numerical results, it is shown that the proposed algorithm solves the problem efficiently, and the introduced RIS improves the long-term average energy consumption significantly. Furthermore, it is demonstrated that system parameters (such as communication bandwidth and the maximum CPU frequency at the MEC server) can have significant impact on the energy consumption and computing backlog levels. |
---|---|
AbstractList | In this paper, we analyze collaborative inference in a mobile edge computing (MEC) network aided by a reconfigurable intelligent surface (RIS). In particular, we consider multiple user equipments (UEs) with collaborative inference tasks that require the execution of deep neural networks. The goal is to minimize the long-term average energy consumption subject to a long-term average computing queue backlog constraint. We first transform the considered problem into a Lyapunov optimization problem and then propose a deep reinforcement learning (DRL)-based algorithm to solve it. An optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal RIS coefficients, while the UEs' deep neural network (DNN) partition decisions and computational resource allocations at the MEC server are obtained from the DRL-based algorithm. Via numerical results, it is shown that the proposed algorithm solves the problem efficiently, and the introduced RIS improves the long-term average energy consumption significantly. Furthermore, it is demonstrated that system parameters (such as communication bandwidth and the maximum CPU frequency at the MEC server) can have significant impact on the energy consumption and computing backlog levels. |
Author | Gursoy, M. Cenk Yang, Yang |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0009-0006-0703-3798 surname: Yang fullname: Yang, Yang email: yyang82@syr.edu organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA – sequence: 2 givenname: M. Cenk orcidid: 0000-0002-7352-1013 surname: Gursoy fullname: Gursoy, M. Cenk email: mcgursoy@syr.edu organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA |
BookMark | eNpNkNFKwzAYhYNMcJu-gHiRF-hMmqRJL2eZOtgc6ATvSpr8HXVdMpJO8e3t3C68OnDgOxy-ERo47wChW0omlJL8fl2slstJSlIxYSLjMpUXaEiFUAlRQg7QkJCcJJmU6gqNYvwkhHDC2BB9FL5tdeWD7povwHNXQwBnADcOv87fkmmMTezA4uWswC_QffuwjfjgLARc-N3-0DVugx-02bZ-0zcudkE3rovX6LLWbYSbc47R--NsXTwni9XTvJguEkNZ1iVMqlxyyWpquKyJ4TmTXPXnRJoZDmBtmoFgQlZWW8oNsarPqkp1lVMrFBuj9LRrgo8xQF3uQ7PT4aekpDy6Kf_clEc35dlND92doAYA_gG5VEQw9guyQGLK |
CODEN | IECMBT |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TCOMM.2025.3564727 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0857 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TCOMM_2025_3564727 10978053 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: CNS 2221875 funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IES IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 ZCA 3EH 5VS AAYXX ABFSI ACKIV AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 IAAWW IBMZZ ICLAB IFJZH RIG VH1 ZCG |
ID | FETCH-LOGICAL-c136t-37897473f1c47f0c493748040526c4eedd26e5357bdad14c0d8ad1bb2ab91d583 |
IEDL.DBID | RIE |
ISSN | 0090-6778 |
IngestDate | Tue Aug 05 12:08:49 EDT 2025 Wed Aug 27 02:03:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c136t-37897473f1c47f0c493748040526c4eedd26e5357bdad14c0d8ad1bb2ab91d583 |
ORCID | 0000-0002-7352-1013 0009-0006-0703-3798 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_TCOMM_2025_3564727 ieee_primary_10978053 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on communications |
PublicationTitleAbbrev | TCOMM |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0004033 |
Score | 2.4607418 |
Snippet | In this paper, we analyze collaborative inference in a mobile edge computing (MEC) network aided by a reconfigurable intelligent surface (RIS). In particular,... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Collaboration collaborative inference Computational modeling deep reinforcement learning edge computing Energy consumption Optimization Partitioning algorithms Queueing analysis reconfigurable intelligent surface (RIS) Reconfigurable intelligent surfaces Servers Wireless communication |
Title | Collaborative Inference in RIS-Assisted MEC Networks under Computing Backlog Constraints |
URI | https://ieeexplore.ieee.org/document/10978053 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3rwWbG-2IM3SZpkd_M4amhphVTQFnoL2UdBCmlpUw_-end2E1oFwVNCSMIy3ySzszvfNwg90KDgnCXSETEVDmWcOLxIIkd_XFInHJHyDYs_G4fDKX2ZsVlNVjdcGKWUKT5TLpyavXy5FFtYKuvBbmmsvaaFWtrPLFlrR4L0SC05CfXsUdwwZLykN0lfs0znggFzCQO99OhHFNprq2KiyuAEjZvx2GKShbutuCu-fkk1_nvAp-i4nl_iJ-sQZ-hAlefoaE918ALN0h32nwqPGsof_ijx2-jd0YgB9hJn_RSPbZn4BgPZbI1tEwj9GvxciIUeJ4aOn6bPRLXpoOmgP0mHTt1gwRE-CSv9c4khnSBzX9Bo7gmagBiNtiQLQkF19JRBqBhhEZeF9KnwZKyPnGt8E1-ymFyidrks1RXCIiqUhAZmQO3VkBdcMsJDAYJyMg5FFz02Bs9XVkcjN_mHl-QGnhzgyWt4uqgDxty709rx-o_rN-gQHrdLI7eoXa236k5PFip-b5zkG46ouuU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HtSDz4r1uQdvkjbJ7uZx1NDSahNBW-gtZB8FKaTSph789e5uEloFwVNCCMsy3ySzszvfNwB3xM0Yo6GweEC4RSjDFstC31Ifl1AJhy8dw-KPE68_Jk8TOqnI6oYLI6U0xWeyrW_NWb6Y85XeKuvo09JAec027KjAT2hJ11rTIG1ciU7qinY_qDkydtgZRS9xrLJBl7Yx1Yrp_o84tNFYxcSV3iEk9YzKcpJZe1WwNv_6Jdb47ykfwUG1wkQPpUscw5bMT2B_Q3fwFCbRGv1PiQY16Q-95-h18GYpzDT6AsXdCCVlofgSabrZApVtINQw6DHjMzVPpHt-mk4TxbIJ4153FPWtqsWCxR3sFer3EuiEAk8dTvypzUmo5WiUJanrcaLip3A9STH1mciEQ7gtAnVlTCEcOoIG-Awa-TyX54C4n0mhW5hpcq8CPWOCYuZxLSknAo-34L42ePpRKmmkJgOxw9TAk2p40gqeFjS1MTfeLO148cfzW9jtj-JhOhwkz5ewp4cqN0quoFEsVvJaLR0KdmMc5huIEr4y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Inference+in+RIS-Assisted+MEC+Networks+under+Computing+Backlog+Constraints&rft.jtitle=IEEE+transactions+on+communications&rft.au=Yang%2C+Yang&rft.au=Gursoy%2C+M.+Cenk&rft.date=2025&rft.issn=0090-6778&rft.eissn=1558-0857&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCOMM.2025.3564727&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2025_3564727 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |