Collaborative Inference in RIS-Assisted MEC Networks under Computing Backlog Constraints

In this paper, we analyze collaborative inference in a mobile edge computing (MEC) network aided by a reconfigurable intelligent surface (RIS). In particular, we consider multiple user equipments (UEs) with collaborative inference tasks that require the execution of deep neural networks. The goal is...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications p. 1
Main Authors Yang, Yang, Gursoy, M. Cenk
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN0090-6778
1558-0857
DOI10.1109/TCOMM.2025.3564727

Cover

Abstract In this paper, we analyze collaborative inference in a mobile edge computing (MEC) network aided by a reconfigurable intelligent surface (RIS). In particular, we consider multiple user equipments (UEs) with collaborative inference tasks that require the execution of deep neural networks. The goal is to minimize the long-term average energy consumption subject to a long-term average computing queue backlog constraint. We first transform the considered problem into a Lyapunov optimization problem and then propose a deep reinforcement learning (DRL)-based algorithm to solve it. An optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal RIS coefficients, while the UEs' deep neural network (DNN) partition decisions and computational resource allocations at the MEC server are obtained from the DRL-based algorithm. Via numerical results, it is shown that the proposed algorithm solves the problem efficiently, and the introduced RIS improves the long-term average energy consumption significantly. Furthermore, it is demonstrated that system parameters (such as communication bandwidth and the maximum CPU frequency at the MEC server) can have significant impact on the energy consumption and computing backlog levels.
AbstractList In this paper, we analyze collaborative inference in a mobile edge computing (MEC) network aided by a reconfigurable intelligent surface (RIS). In particular, we consider multiple user equipments (UEs) with collaborative inference tasks that require the execution of deep neural networks. The goal is to minimize the long-term average energy consumption subject to a long-term average computing queue backlog constraint. We first transform the considered problem into a Lyapunov optimization problem and then propose a deep reinforcement learning (DRL)-based algorithm to solve it. An optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal RIS coefficients, while the UEs' deep neural network (DNN) partition decisions and computational resource allocations at the MEC server are obtained from the DRL-based algorithm. Via numerical results, it is shown that the proposed algorithm solves the problem efficiently, and the introduced RIS improves the long-term average energy consumption significantly. Furthermore, it is demonstrated that system parameters (such as communication bandwidth and the maximum CPU frequency at the MEC server) can have significant impact on the energy consumption and computing backlog levels.
Author Gursoy, M. Cenk
Yang, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0009-0006-0703-3798
  surname: Yang
  fullname: Yang, Yang
  email: yyang82@syr.edu
  organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA
– sequence: 2
  givenname: M. Cenk
  orcidid: 0000-0002-7352-1013
  surname: Gursoy
  fullname: Gursoy, M. Cenk
  email: mcgursoy@syr.edu
  organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA
BookMark eNpNkNFKwzAYhYNMcJu-gHiRF-hMmqRJL2eZOtgc6ATvSpr8HXVdMpJO8e3t3C68OnDgOxy-ERo47wChW0omlJL8fl2slstJSlIxYSLjMpUXaEiFUAlRQg7QkJCcJJmU6gqNYvwkhHDC2BB9FL5tdeWD7povwHNXQwBnADcOv87fkmmMTezA4uWswC_QffuwjfjgLARc-N3-0DVugx-02bZ-0zcudkE3rovX6LLWbYSbc47R--NsXTwni9XTvJguEkNZ1iVMqlxyyWpquKyJ4TmTXPXnRJoZDmBtmoFgQlZWW8oNsarPqkp1lVMrFBuj9LRrgo8xQF3uQ7PT4aekpDy6Kf_clEc35dlND92doAYA_gG5VEQw9guyQGLK
CODEN IECMBT
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCOMM.2025.3564727
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 1
ExternalDocumentID 10_1109_TCOMM_2025_3564727
10978053
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CNS 2221875
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
ZCA
3EH
5VS
AAYXX
ABFSI
ACKIV
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
RIG
VH1
ZCG
ID FETCH-LOGICAL-c136t-37897473f1c47f0c493748040526c4eedd26e5357bdad14c0d8ad1bb2ab91d583
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Tue Aug 05 12:08:49 EDT 2025
Wed Aug 27 02:03:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c136t-37897473f1c47f0c493748040526c4eedd26e5357bdad14c0d8ad1bb2ab91d583
ORCID 0000-0002-7352-1013
0009-0006-0703-3798
PageCount 1
ParticipantIDs crossref_primary_10_1109_TCOMM_2025_3564727
ieee_primary_10978053
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0004033
Score 2.4607418
Snippet In this paper, we analyze collaborative inference in a mobile edge computing (MEC) network aided by a reconfigurable intelligent surface (RIS). In particular,...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Collaboration
collaborative inference
Computational modeling
deep reinforcement learning
edge computing
Energy consumption
Optimization
Partitioning algorithms
Queueing analysis
reconfigurable intelligent surface (RIS)
Reconfigurable intelligent surfaces
Servers
Wireless communication
Title Collaborative Inference in RIS-Assisted MEC Networks under Computing Backlog Constraints
URI https://ieeexplore.ieee.org/document/10978053
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3rwWbG-2IM3SZpkd_M4amhphVTQFnoL2UdBCmlpUw_-end2E1oFwVNCSMIy3ySzszvfNwg90KDgnCXSETEVDmWcOLxIIkd_XFInHJHyDYs_G4fDKX2ZsVlNVjdcGKWUKT5TLpyavXy5FFtYKuvBbmmsvaaFWtrPLFlrR4L0SC05CfXsUdwwZLykN0lfs0znggFzCQO99OhHFNprq2KiyuAEjZvx2GKShbutuCu-fkk1_nvAp-i4nl_iJ-sQZ-hAlefoaE918ALN0h32nwqPGsof_ijx2-jd0YgB9hJn_RSPbZn4BgPZbI1tEwj9GvxciIUeJ4aOn6bPRLXpoOmgP0mHTt1gwRE-CSv9c4khnSBzX9Bo7gmagBiNtiQLQkF19JRBqBhhEZeF9KnwZKyPnGt8E1-ymFyidrks1RXCIiqUhAZmQO3VkBdcMsJDAYJyMg5FFz02Bs9XVkcjN_mHl-QGnhzgyWt4uqgDxty709rx-o_rN-gQHrdLI7eoXa236k5PFip-b5zkG46ouuU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HtSDz4r1uQdvkjbJ7uZx1NDSahNBW-gtZB8FKaTSph789e5uEloFwVNCCMsy3ySzszvfNwB3xM0Yo6GweEC4RSjDFstC31Ifl1AJhy8dw-KPE68_Jk8TOqnI6oYLI6U0xWeyrW_NWb6Y85XeKuvo09JAec027KjAT2hJ11rTIG1ciU7qinY_qDkydtgZRS9xrLJBl7Yx1Yrp_o84tNFYxcSV3iEk9YzKcpJZe1WwNv_6Jdb47ykfwUG1wkQPpUscw5bMT2B_Q3fwFCbRGv1PiQY16Q-95-h18GYpzDT6AsXdCCVlofgSabrZApVtINQw6DHjMzVPpHt-mk4TxbIJ4153FPWtqsWCxR3sFer3EuiEAk8dTvypzUmo5WiUJanrcaLip3A9STH1mciEQ7gtAnVlTCEcOoIG-Awa-TyX54C4n0mhW5hpcq8CPWOCYuZxLSknAo-34L42ePpRKmmkJgOxw9TAk2p40gqeFjS1MTfeLO148cfzW9jtj-JhOhwkz5ewp4cqN0quoFEsVvJaLR0KdmMc5huIEr4y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Inference+in+RIS-Assisted+MEC+Networks+under+Computing+Backlog+Constraints&rft.jtitle=IEEE+transactions+on+communications&rft.au=Yang%2C+Yang&rft.au=Gursoy%2C+M.+Cenk&rft.date=2025&rft.issn=0090-6778&rft.eissn=1558-0857&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCOMM.2025.3564727&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2025_3564727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon