RETRACTED ARTICLE: Innovative use of optical sensors for real-time imaging and diagnosis using enhanced verge denoising and LSTM for sports medicine
In this article, researchers describe a novel method for identifying muscular tiredness in human subjects by combining surface electromyography (sur-EMG) signals with long short-term memory (LSTM) networks. To improve the quality of the sur-EMG data, the experiment begins with the shaving of unwante...
Saved in:
Published in | Optical and quantum electronics Vol. 56; no. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
18.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, researchers describe a novel method for identifying muscular tiredness in human subjects by combining surface electromyography (sur-EMG) signals with long short-term memory (LSTM) networks. To improve the quality of the sur-EMG data, the experiment begins with the shaving of unwanted leg hair and wiping the skin with medicinal alcohol. Sur-EMG sensors are placed on specific leg muscles, and the participants perform an incremental cycling protocol. The core contribution of this research is an enhanced wavelet packet verge denoising algorithm that effectively filters noise from sur-EMG signals. This algorithm uses a continuous and differentiable verge function to optimize denoising. A Shannon entropy-based method determines the optimal number of decomposition layers, ensuring the highest denoising efficacy. Feature extraction techniques, such as root mean square (RMS), integrated electromyogram (IEMG), median frequency (MF), and mean power frequency (MPF), are employed to capture the temporal and frequency domain characteristics of the sur-EMG signals. A muscle fatigue recognition model is built using long short-term memory (LSTM) networks. The sur-EMG signals are sorted into fatigued and non-fatigued categories using this model. The performance of the LSTM model is compared to support vector machine (SVM) and convolutional neural network (CNN) models. The accuracy of the proposed strategy is shown to be superior by the evaluation results compared to other models, achieving an accuracy rate of 95.27%. The study emphasizes the importance of feature selection and dataset choice in developing robust muscle fatigue recognition models. These findings have promising implications for the field of muscle fatigue assessment and sports science. |
---|---|
AbstractList | In this article, researchers describe a novel method for identifying muscular tiredness in human subjects by combining surface electromyography (sur-EMG) signals with long short-term memory (LSTM) networks. To improve the quality of the sur-EMG data, the experiment begins with the shaving of unwanted leg hair and wiping the skin with medicinal alcohol. Sur-EMG sensors are placed on specific leg muscles, and the participants perform an incremental cycling protocol. The core contribution of this research is an enhanced wavelet packet verge denoising algorithm that effectively filters noise from sur-EMG signals. This algorithm uses a continuous and differentiable verge function to optimize denoising. A Shannon entropy-based method determines the optimal number of decomposition layers, ensuring the highest denoising efficacy. Feature extraction techniques, such as root mean square (RMS), integrated electromyogram (IEMG), median frequency (MF), and mean power frequency (MPF), are employed to capture the temporal and frequency domain characteristics of the sur-EMG signals. A muscle fatigue recognition model is built using long short-term memory (LSTM) networks. The sur-EMG signals are sorted into fatigued and non-fatigued categories using this model. The performance of the LSTM model is compared to support vector machine (SVM) and convolutional neural network (CNN) models. The accuracy of the proposed strategy is shown to be superior by the evaluation results compared to other models, achieving an accuracy rate of 95.27%. The study emphasizes the importance of feature selection and dataset choice in developing robust muscle fatigue recognition models. These findings have promising implications for the field of muscle fatigue assessment and sports science. |
ArticleNumber | 678 |
Author | Gao, Xiang xie, Dongwei Zhang, Xiaodan |
Author_xml | – sequence: 1 givenname: Xiaodan surname: Zhang fullname: Zhang, Xiaodan organization: Guangdong Eco-Engineering Polytechnic – sequence: 2 givenname: Dongwei surname: xie fullname: xie, Dongwei organization: Guangdong Engineering Polytechnic – sequence: 3 givenname: Xiang surname: Gao fullname: Gao, Xiang email: Xiang_ga@outlook.com organization: Guangdong Justice Police Vocational College |
BookMark | eNp9kM9Kw0AQhxepYFt9AU_7AtHZ_Nkk3kqtWogINYK3sNmdxC3tbtlNC76HD2zaKoiHnmYY5pvh943IwFiDhFwzuGEA6a1nDLIwgDAKgEMeB_kZGbIkDYOMpe-DP_0FGXm_BAAeJzAkX4tZuZhMy9k9nSzK-bSY3dG5MXYnOr1DuvVIbUPtptNSrKhH463ztLGOOhSroNNrpHotWm1aKoyiSovWWK99j-5naD6EkajoDl2LVKGx2v8uF6_l8-GW31jXebpGpaU2eEnOG7HyePVTx-TtYVZOn4Li5XE-nRSBZBHPA6kaVLUE2YiYQ5Q0kNexBM7jMANeJykoSFPBRCYFZzVKiTXwJuQ8URBncTQm4fGudNZ7h021cX0Y91kxqPZeq6PXqvdaHbxWeQ9l_yCpu96WNZ0TenUajY6o7_-YFl21tFtn-oinqG_otZC6 |
CitedBy_id | crossref_primary_10_3389_fphys_2025_1547257 |
Cites_doi | 10.1080/03091902.2019.1612474 10.3390/bios10120205 10.1134/S1054661818030215 10.1109/TASE.2016.2564419 10.1016/j.chemolab.2017.05.009 10.1016/j.jneumeth.2021.109073 10.3390/nano12030334 10.1021/acs.analchem.2c05036 10.1002/mus.880160216 10.1021/acsnano.2c11996 10.1016/j.proeng.2012.01.1263 10.3390/bios13020181 10.1021/acsbiomaterials.3c00348 10.1016/j.media.2023.102878 10.1109/18.382009 10.1016/j.jelekin.2009.03.011 10.3390/mi10020134 10.1109/ACCESS.2020.3038422 10.5772/28383 10.1007/s40279-023-01910-4 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11082-023-06094-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1572-817X |
ExternalDocumentID | 10_1007_s11082_023_06094_9 |
GroupedDBID | -~X .86 .VR 06D 0R~ 0VY 1N0 203 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSTC ACUHS ACZOJ ADHIR ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9T PF0 PT4 PT5 QOK QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 YLTOR Z45 ZMTXR ~8M ~A9 ~EX AAYXX CITATION |
ID | FETCH-LOGICAL-c1369-cdfedbc0cfa46035f09b4c06642806b570d077a1a8ca61becceb06f2665d04843 |
IEDL.DBID | U2A |
ISSN | 1572-817X |
IngestDate | Tue Jul 01 01:26:44 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Mon Jul 21 06:09:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Wavelet packet verge denoising Optical sensors Wearable devices Muscle fatigue recognition Sports medicine |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1369-cdfedbc0cfa46035f09b4c06642806b570d077a1a8ca61becceb06f2665d04843 |
ParticipantIDs | crossref_primary_10_1007_s11082_023_06094_9 crossref_citationtrail_10_1007_s11082_023_06094_9 springer_journals_10_1007_s11082_023_06094_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240218 2024-02-18 |
PublicationDateYYYYMMDD | 2024-02-18 |
PublicationDate_xml | – month: 2 year: 2024 text: 20240218 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Optical and quantum electronics |
PublicationTitleAbbrev | Opt Quant Electron |
PublicationYear | 2024 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | Kazanskiy, Butt, Khonina (CR11) 2022; 12 Ye, Feng, Huang, Bian (CR20) 2020; 10 CR6 CR8 Lu, Pang, Huang, Shen, Cao, Shi, Liu (CR12) 2019; 10 Seshadri, Magliato, Voos, Drummond (CR14) 2019; 43 Wang, Sun, Sun (CR17) 2020; 8 Thongpanja, Phinyomark, Phukpattaranont, Limsakul (CR16) 2012; 32 Zhang (CR22) 2018; 28 Yu, Li, Chen, Xu, Qiu, Wu, Chen (CR21) 2017; 167 Wu, Xi, Ding, Wei, Ren, Law, Li (CR18) 2016; 14 Zhuang, Yang, Han, O’Malley, Kumar, Gerald, Huang (CR23) 2021; 351 Asadi, Nadhum Bahjat, Hosseini (CR1) 2023; 15 Bardhan, Radisic, Nurunnabi (CR2) 2023; 9 Jiang, Salcudean, Navab (CR9) 2023 Nelson, Kelly, Zhao, Chen (CR13) 2001; 137 Shinde, Illath, Kasiviswanathan, Nagabooshanam, Gupta, Dey, Santra (CR15) 2023; 95 Kaur, Kumar, Kaushik (CR10) 2023; 13 De Luca (CR3) 1993; 16 Yang, Li, Lu, An, Liu, Luo, Meng (CR19) 2023; 17 Duchene, Goubel (CR5) 1993; 21 Gonzalez-Izal, Malanda, Navarro-Amezqueta, Gorostiaga, Mallor, Ibanez, Izquierdo (CR7) 2010; 20 Donoho (CR4) 1995; 41 M Gonzalez-Izal (6094_CR7) 2010; 20 S Ye (6094_CR20) 2020; 10 Y Zhuang (6094_CR23) 2021; 351 DR Seshadri (6094_CR14) 2019; 43 CJ De Luca (6094_CR3) 1993; 16 X Zhang (6094_CR22) 2018; 28 M Asadi (6094_CR1) 2023; 15 Z Jiang (6094_CR9) 2023 6094_CR8 6094_CR6 B Kaur (6094_CR10) 2023; 13 J Duchene (6094_CR5) 1993; 21 A Shinde (6094_CR15) 2023; 95 NM Bardhan (6094_CR2) 2023; 9 JS Nelson (6094_CR13) 2001; 137 DL Donoho (6094_CR4) 1995; 41 L Yang (6094_CR19) 2023; 17 NL Kazanskiy (6094_CR11) 2022; 12 J Wang (6094_CR17) 2020; 8 Q Wu (6094_CR18) 2016; 14 B Yu (6094_CR21) 2017; 167 Q Lu (6094_CR12) 2019; 10 S Thongpanja (6094_CR16) 2012; 32 |
References_xml | – volume: 21 start-page: 313 year: 1993 end-page: 397 ident: CR5 article-title: Surface electromyogram during voluntary contraction: processing tools and relation to physiological events publication-title: Crit. Rev. Biomed. Eng. – volume: 15 start-page: 794 issue: 9 year: 2023 end-page: 814 ident: CR1 article-title: A review on wearable sensors for sodium detection in human sweat publication-title: Anal. Bioanal. Electrochem. – volume: 43 start-page: 66 issue: 1 year: 2019 end-page: 81 ident: CR14 article-title: Clinical translation of biomedical sensors for sports medicine publication-title: J. Med. Eng. Technol. doi: 10.1080/03091902.2019.1612474 – volume: 10 start-page: 205 issue: 12 year: 2020 ident: CR20 article-title: Recent progress in wearable biosensors: from healthcare monitoring to sports analytics publication-title: Biosensors doi: 10.3390/bios10120205 – volume: 28 start-page: 557 year: 2018 end-page: 568 ident: CR22 article-title: A Modified artificial bee colony algorithm for image denoising using parametricwavelet thresholding method publication-title: Pattern Recognit Image Anal. doi: 10.1134/S1054661818030215 – volume: 14 start-page: 915 issue: 2 year: 2016 end-page: 930 ident: CR18 article-title: Classification of EMG signals by BFA-optimized GSVCM for diagnosis of fatigue status publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2016.2564419 – volume: 167 start-page: 102 year: 2017 end-page: 112 ident: CR21 article-title: Prediction subcellular localization of gram-negative bacterial proteins by support vector machine using wavelet denoising and Chou’s pseudo amino acid composition publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.05.009 – volume: 351 start-page: 109073 year: 2021 ident: CR23 article-title: Fiber optic sensor embedded smart helmet for real-time impact sensing and analysis through machine learning publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2021.109073 – volume: 12 start-page: 334 issue: 3 year: 2022 ident: CR11 article-title: Recent advances in wearable optical sensor automation powered by battery versus skin-like battery-free devices for personal healthcare: a review publication-title: Nanomaterials doi: 10.3390/nano12030334 – volume: 137 start-page: 741 issue: 6 year: 2001 end-page: 744 ident: CR13 article-title: Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography publication-title: Arch. Dermatol. – volume: 95 start-page: 3121 issue: 6 year: 2023 end-page: 3146 ident: CR15 article-title: Recent advances of biosensor-integrated organ-on-a-chip technologies for diagnostics and therapeutics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c05036 – volume: 16 start-page: 210 year: 1993 end-page: 216 ident: CR3 article-title: Use of the surface emg signal for performance evaluation of back muscles publication-title: Muscle Nerve doi: 10.1002/mus.880160216 – volume: 17 start-page: 5686 issue: 6 year: 2023 end-page: 5694 ident: CR19 article-title: High-precision wearable displacement sensing system for clinical diagnosis of anterior cruciate ligament tears publication-title: ACS Nano doi: 10.1021/acsnano.2c11996 – volume: 32 start-page: 239 year: 2012 end-page: 245 ident: CR16 article-title: A feasibility study of fatigue and muscle contraction indices based on EMG time-dependent spectral analysis publication-title: Proced. Eng. doi: 10.1016/j.proeng.2012.01.1263 – volume: 13 start-page: 181 issue: 2 year: 2023 ident: CR10 article-title: Novel wearable optical sensors for vital health monitoring systems: a review publication-title: Biosensors doi: 10.3390/bios13020181 – volume: 9 start-page: 2015 issue: 5 year: 2023 end-page: 2019 ident: CR2 article-title: Bioinspired materials for wearable diagnostics and biosensors publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.3c00348 – ident: CR6 – ident: CR8 – year: 2023 ident: CR9 article-title: Robotic ultrasound imaging: state-of-the-art and future perspectives publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102878 – volume: 41 start-page: 613 year: 1995 end-page: 627 ident: CR4 article-title: De-noising by soft-thresholding publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.382009 – volume: 20 start-page: 233 year: 2010 end-page: 240 ident: CR7 article-title: EMG spectral indices and muscle power fatigue during dynamic contractions publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2009.03.011 – volume: 10 start-page: 134 year: 2019 ident: CR12 article-title: High-G calibration denoising method for high-G MEMS accelerometer based on EMD and wavelet threshold publication-title: Micromachines doi: 10.3390/mi10020134 – volume: 8 start-page: 207914 year: 2020 end-page: 207922 ident: CR17 article-title: Recognition of muscle fatigue status based on improved wavelet threshold and cnn-svm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3038422 – volume: 137 start-page: 741 issue: 6 year: 2001 ident: 6094_CR13 publication-title: Arch. Dermatol. – volume: 15 start-page: 794 issue: 9 year: 2023 ident: 6094_CR1 publication-title: Anal. Bioanal. Electrochem. – year: 2023 ident: 6094_CR9 publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102878 – volume: 20 start-page: 233 year: 2010 ident: 6094_CR7 publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2009.03.011 – volume: 95 start-page: 3121 issue: 6 year: 2023 ident: 6094_CR15 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c05036 – volume: 351 start-page: 109073 year: 2021 ident: 6094_CR23 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2021.109073 – ident: 6094_CR8 doi: 10.5772/28383 – volume: 28 start-page: 557 year: 2018 ident: 6094_CR22 publication-title: Pattern Recognit Image Anal. doi: 10.1134/S1054661818030215 – volume: 16 start-page: 210 year: 1993 ident: 6094_CR3 publication-title: Muscle Nerve doi: 10.1002/mus.880160216 – ident: 6094_CR6 doi: 10.1007/s40279-023-01910-4 – volume: 14 start-page: 915 issue: 2 year: 2016 ident: 6094_CR18 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2016.2564419 – volume: 10 start-page: 134 year: 2019 ident: 6094_CR12 publication-title: Micromachines doi: 10.3390/mi10020134 – volume: 13 start-page: 181 issue: 2 year: 2023 ident: 6094_CR10 publication-title: Biosensors doi: 10.3390/bios13020181 – volume: 8 start-page: 207914 year: 2020 ident: 6094_CR17 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3038422 – volume: 10 start-page: 205 issue: 12 year: 2020 ident: 6094_CR20 publication-title: Biosensors doi: 10.3390/bios10120205 – volume: 17 start-page: 5686 issue: 6 year: 2023 ident: 6094_CR19 publication-title: ACS Nano doi: 10.1021/acsnano.2c11996 – volume: 12 start-page: 334 issue: 3 year: 2022 ident: 6094_CR11 publication-title: Nanomaterials doi: 10.3390/nano12030334 – volume: 9 start-page: 2015 issue: 5 year: 2023 ident: 6094_CR2 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.3c00348 – volume: 43 start-page: 66 issue: 1 year: 2019 ident: 6094_CR14 publication-title: J. Med. Eng. Technol. doi: 10.1080/03091902.2019.1612474 – volume: 41 start-page: 613 year: 1995 ident: 6094_CR4 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.382009 – volume: 21 start-page: 313 year: 1993 ident: 6094_CR5 publication-title: Crit. Rev. Biomed. Eng. – volume: 32 start-page: 239 year: 2012 ident: 6094_CR16 publication-title: Proced. Eng. doi: 10.1016/j.proeng.2012.01.1263 – volume: 167 start-page: 102 year: 2017 ident: 6094_CR21 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.05.009 |
SSID | ssj0006450 |
Score | 2.3495507 |
Snippet | In this article, researchers describe a novel method for identifying muscular tiredness in human subjects by combining surface electromyography (sur-EMG)... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Characterization and Evaluation of Materials Computer Communication Networks Electrical Engineering Lasers Optical Devices Optics Photonics Physics Physics and Astronomy |
Title | RETRACTED ARTICLE: Innovative use of optical sensors for real-time imaging and diagnosis using enhanced verge denoising and LSTM for sports medicine |
URI | https://link.springer.com/article/10.1007/s11082-023-06094-9 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9RADLZKKyQ4QFlAlELlAzcYadJMZhNu2-1uHxQOZVcqp2gyj7JSSapO21_CD8YzO2mpVFXqKRdPDvHY_hx_tgE-2SpMicoNC22PTMjcstJxxYQj8zJNpd2SbfFD7s_F4UlxkprCfM9270uS0VPfNrtlFK4YxRjGJSUlrHoCa0XI3ekWz7dHN_5XioKn9pj7z90NQXfrnzGsTNfhRcKDOFoq8BWs2HYALxM2xGR5fgDP_xscOICnkbip_Wv4ezyZHY_G5H-QoOnB-GjyFQ_SptNri1feYuewO4-_rNFT0tpdeCSkioQWz1hYLY-LP3FVEarWoFlS7xYeAyP-FG37O3IE8Dq0aSJ5qW7he-Gjn7Pv8V0xN_bYF-rfwHw6mY33Wdq0wHSWy4pp46xpNNdOCcnzwvGqEZrQiAiF16YYcsOHQ5WpUiuZBbXbhktHwb0w5AJE_hZW26617wCl4LlySjpyokJJW-auIszgCEuY7aa0G5D1H7_WaQx52IZxVt8OUA4Kq0lhdVRYXW3A55sz58shHA9Kf-l1WieD9A-Iv3-c-CY8ozsnAnE7Kz_A6uXFlf1IuOSy2YK10c7uzjQ89359m2zFa_kPO7Pc9w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BEQIOPAKohQJz4AYrreP1xuYWRakSSHsoidSbtd4HRCp21W37S_qDmd2s-5CqSr3P-uDPO_ON55sZgK-2ClOicsNC2yMTMresdFwx4eh6mabSbqO2OJCzlfh5VBylpjDfq937kmT01NfNbhmFK0YxhnFJSQmrHsMTIgNlEHKthuMr_ytFwVN7zN3nboeg2_XPGFb2XsPLxAdxvAHwDTyy7QBeJW6I6eb5Aby4MThwAE-jcFP7t3B5OF0ejifkf5Co6XyymP7Aedp0emHx3FvsHHYn8Zc1ekpau1OPxFSR2OIxC6vlcf0vripC1Ro0G-nd2mNQxP9B2_6NGgG8CG2aSF6qW_veePF7uR-fFXNjj32h_h2s9qbLyYylTQtMZ7msmDbOmkZz7ZSQPC8crxqhiY2IUHhtihE3fDRSmSq1klmA3TZcOgruhSEXIPL3sNV2rd0GlILnyinpyIkKJW2Zu4o4gyMuYYZNaXcg619-rdMY8rAN47i-HqAcAKsJsDoCVlc78O3qzMlmCMe91t97TOt0If095h8eZv4Fns2W-4t6MT_49RGeD4njBBF3Vu7C1tnpuf1EHOWs-Rw_yf_zWdzk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BEagceAQQ5TkHbrDqOl5vbG5RSNRAqFBJpN6s9T4gUmtH3bS_hB_M7NruQ0KVuM_6sDM7843nmxmAD7YIU6JSw0LbIxMytSx3XDHh6HmZqtCuZVscyoOV-HqcHV_r4o9s974k2fY0hClN9XZ_Y9z-VeNbQqGLUbxhXFKCwoq7cI_ccRLsejUcX_piKTLetcr8-9zNcHSzFhpDzOwJPOqwIY5bZT6FO7YewOMOJ2L3Cv0AHl4bIjiA-5HEqf0z-HM0XR6NJ-SLkGDqfLKYfsZ5t_X0wuK5t9g4bDbx9zV6SmCbM4-EWpGQ4wkLa-ZxfRrXFqGqDZqWhrf2GNjxv9DWvyNfAC9CyyaSx2rWvhde_Fx-j9-KebLHvmj_HFaz6XJywLqtC0wnqSyYNs6aSnPtlJA8zRwvKqEJmYhQhK2yETd8NFKJyrWSSTABW3HpKNBnhtyBSF_ATt3U9iWgFDxVTklHDlUoafPUFYQfHOEKM6xyuwdJf_ml7kaSh80YJ-XVMOWgsJIUVkaFlcUefLw8s2kHctwq_anXadk9Tn-L-Kv_E38PD358mZWL-eG317A7JLgT-NxJ_gZ2tmfn9i3BlW31LlrkX8LC4SA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RETRACTED+ARTICLE%3A+Innovative+use+of+optical+sensors+for+real-time+imaging+and+diagnosis+using+enhanced+verge+denoising+and+LSTM+for+sports+medicine&rft.jtitle=Optical+and+quantum+electronics&rft.au=Zhang%2C+Xiaodan&rft.au=xie%2C+Dongwei&rft.au=Gao%2C+Xiang&rft.date=2024-02-18&rft.issn=1572-817X&rft.eissn=1572-817X&rft.volume=56&rft.issue=4&rft_id=info:doi/10.1007%2Fs11082-023-06094-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11082_023_06094_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-817X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-817X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-817X&client=summon |