RETRACTED ARTICLE: Innovative use of optical sensors for real-time imaging and diagnosis using enhanced verge denoising and LSTM for sports medicine

In this article, researchers describe a novel method for identifying muscular tiredness in human subjects by combining surface electromyography (sur-EMG) signals with long short-term memory (LSTM) networks. To improve the quality of the sur-EMG data, the experiment begins with the shaving of unwante...

Full description

Saved in:
Bibliographic Details
Published inOptical and quantum electronics Vol. 56; no. 4
Main Authors Zhang, Xiaodan, xie, Dongwei, Gao, Xiang
Format Journal Article
LanguageEnglish
Published New York Springer US 18.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, researchers describe a novel method for identifying muscular tiredness in human subjects by combining surface electromyography (sur-EMG) signals with long short-term memory (LSTM) networks. To improve the quality of the sur-EMG data, the experiment begins with the shaving of unwanted leg hair and wiping the skin with medicinal alcohol. Sur-EMG sensors are placed on specific leg muscles, and the participants perform an incremental cycling protocol. The core contribution of this research is an enhanced wavelet packet verge denoising algorithm that effectively filters noise from sur-EMG signals. This algorithm uses a continuous and differentiable verge function to optimize denoising. A Shannon entropy-based method determines the optimal number of decomposition layers, ensuring the highest denoising efficacy. Feature extraction techniques, such as root mean square (RMS), integrated electromyogram (IEMG), median frequency (MF), and mean power frequency (MPF), are employed to capture the temporal and frequency domain characteristics of the sur-EMG signals. A muscle fatigue recognition model is built using long short-term memory (LSTM) networks. The sur-EMG signals are sorted into fatigued and non-fatigued categories using this model. The performance of the LSTM model is compared to support vector machine (SVM) and convolutional neural network (CNN) models. The accuracy of the proposed strategy is shown to be superior by the evaluation results compared to other models, achieving an accuracy rate of 95.27%. The study emphasizes the importance of feature selection and dataset choice in developing robust muscle fatigue recognition models. These findings have promising implications for the field of muscle fatigue assessment and sports science.
AbstractList In this article, researchers describe a novel method for identifying muscular tiredness in human subjects by combining surface electromyography (sur-EMG) signals with long short-term memory (LSTM) networks. To improve the quality of the sur-EMG data, the experiment begins with the shaving of unwanted leg hair and wiping the skin with medicinal alcohol. Sur-EMG sensors are placed on specific leg muscles, and the participants perform an incremental cycling protocol. The core contribution of this research is an enhanced wavelet packet verge denoising algorithm that effectively filters noise from sur-EMG signals. This algorithm uses a continuous and differentiable verge function to optimize denoising. A Shannon entropy-based method determines the optimal number of decomposition layers, ensuring the highest denoising efficacy. Feature extraction techniques, such as root mean square (RMS), integrated electromyogram (IEMG), median frequency (MF), and mean power frequency (MPF), are employed to capture the temporal and frequency domain characteristics of the sur-EMG signals. A muscle fatigue recognition model is built using long short-term memory (LSTM) networks. The sur-EMG signals are sorted into fatigued and non-fatigued categories using this model. The performance of the LSTM model is compared to support vector machine (SVM) and convolutional neural network (CNN) models. The accuracy of the proposed strategy is shown to be superior by the evaluation results compared to other models, achieving an accuracy rate of 95.27%. The study emphasizes the importance of feature selection and dataset choice in developing robust muscle fatigue recognition models. These findings have promising implications for the field of muscle fatigue assessment and sports science.
ArticleNumber 678
Author Gao, Xiang
xie, Dongwei
Zhang, Xiaodan
Author_xml – sequence: 1
  givenname: Xiaodan
  surname: Zhang
  fullname: Zhang, Xiaodan
  organization: Guangdong Eco-Engineering Polytechnic
– sequence: 2
  givenname: Dongwei
  surname: xie
  fullname: xie, Dongwei
  organization: Guangdong Engineering Polytechnic
– sequence: 3
  givenname: Xiang
  surname: Gao
  fullname: Gao, Xiang
  email: Xiang_ga@outlook.com
  organization: Guangdong Justice Police Vocational College
BookMark eNp9kM9Kw0AQhxepYFt9AU_7AtHZ_Nkk3kqtWogINYK3sNmdxC3tbtlNC76HD2zaKoiHnmYY5pvh943IwFiDhFwzuGEA6a1nDLIwgDAKgEMeB_kZGbIkDYOMpe-DP_0FGXm_BAAeJzAkX4tZuZhMy9k9nSzK-bSY3dG5MXYnOr1DuvVIbUPtptNSrKhH463ztLGOOhSroNNrpHotWm1aKoyiSovWWK99j-5naD6EkajoDl2LVKGx2v8uF6_l8-GW31jXebpGpaU2eEnOG7HyePVTx-TtYVZOn4Li5XE-nRSBZBHPA6kaVLUE2YiYQ5Q0kNexBM7jMANeJykoSFPBRCYFZzVKiTXwJuQ8URBncTQm4fGudNZ7h021cX0Y91kxqPZeq6PXqvdaHbxWeQ9l_yCpu96WNZ0TenUajY6o7_-YFl21tFtn-oinqG_otZC6
CitedBy_id crossref_primary_10_3389_fphys_2025_1547257
Cites_doi 10.1080/03091902.2019.1612474
10.3390/bios10120205
10.1134/S1054661818030215
10.1109/TASE.2016.2564419
10.1016/j.chemolab.2017.05.009
10.1016/j.jneumeth.2021.109073
10.3390/nano12030334
10.1021/acs.analchem.2c05036
10.1002/mus.880160216
10.1021/acsnano.2c11996
10.1016/j.proeng.2012.01.1263
10.3390/bios13020181
10.1021/acsbiomaterials.3c00348
10.1016/j.media.2023.102878
10.1109/18.382009
10.1016/j.jelekin.2009.03.011
10.3390/mi10020134
10.1109/ACCESS.2020.3038422
10.5772/28383
10.1007/s40279-023-01910-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11082-023-06094-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1572-817X
ExternalDocumentID 10_1007_s11082_023_06094_9
GroupedDBID -~X
.86
.VR
06D
0R~
0VY
1N0
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHIR
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
YLTOR
Z45
ZMTXR
~8M
~A9
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c1369-cdfedbc0cfa46035f09b4c06642806b570d077a1a8ca61becceb06f2665d04843
IEDL.DBID U2A
ISSN 1572-817X
IngestDate Tue Jul 01 01:26:44 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Mon Jul 21 06:09:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Wavelet packet verge denoising
Optical sensors
Wearable devices
Muscle fatigue recognition
Sports medicine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1369-cdfedbc0cfa46035f09b4c06642806b570d077a1a8ca61becceb06f2665d04843
ParticipantIDs crossref_primary_10_1007_s11082_023_06094_9
crossref_citationtrail_10_1007_s11082_023_06094_9
springer_journals_10_1007_s11082_023_06094_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240218
2024-02-18
PublicationDateYYYYMMDD 2024-02-18
PublicationDate_xml – month: 2
  year: 2024
  text: 20240218
  day: 18
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Optical and quantum electronics
PublicationTitleAbbrev Opt Quant Electron
PublicationYear 2024
Publisher Springer US
Publisher_xml – name: Springer US
References Kazanskiy, Butt, Khonina (CR11) 2022; 12
Ye, Feng, Huang, Bian (CR20) 2020; 10
CR6
CR8
Lu, Pang, Huang, Shen, Cao, Shi, Liu (CR12) 2019; 10
Seshadri, Magliato, Voos, Drummond (CR14) 2019; 43
Wang, Sun, Sun (CR17) 2020; 8
Thongpanja, Phinyomark, Phukpattaranont, Limsakul (CR16) 2012; 32
Zhang (CR22) 2018; 28
Yu, Li, Chen, Xu, Qiu, Wu, Chen (CR21) 2017; 167
Wu, Xi, Ding, Wei, Ren, Law, Li (CR18) 2016; 14
Zhuang, Yang, Han, O’Malley, Kumar, Gerald, Huang (CR23) 2021; 351
Asadi, Nadhum Bahjat, Hosseini (CR1) 2023; 15
Bardhan, Radisic, Nurunnabi (CR2) 2023; 9
Jiang, Salcudean, Navab (CR9) 2023
Nelson, Kelly, Zhao, Chen (CR13) 2001; 137
Shinde, Illath, Kasiviswanathan, Nagabooshanam, Gupta, Dey, Santra (CR15) 2023; 95
Kaur, Kumar, Kaushik (CR10) 2023; 13
De Luca (CR3) 1993; 16
Yang, Li, Lu, An, Liu, Luo, Meng (CR19) 2023; 17
Duchene, Goubel (CR5) 1993; 21
Gonzalez-Izal, Malanda, Navarro-Amezqueta, Gorostiaga, Mallor, Ibanez, Izquierdo (CR7) 2010; 20
Donoho (CR4) 1995; 41
M Gonzalez-Izal (6094_CR7) 2010; 20
S Ye (6094_CR20) 2020; 10
Y Zhuang (6094_CR23) 2021; 351
DR Seshadri (6094_CR14) 2019; 43
CJ De Luca (6094_CR3) 1993; 16
X Zhang (6094_CR22) 2018; 28
M Asadi (6094_CR1) 2023; 15
Z Jiang (6094_CR9) 2023
6094_CR8
6094_CR6
B Kaur (6094_CR10) 2023; 13
J Duchene (6094_CR5) 1993; 21
A Shinde (6094_CR15) 2023; 95
NM Bardhan (6094_CR2) 2023; 9
JS Nelson (6094_CR13) 2001; 137
DL Donoho (6094_CR4) 1995; 41
L Yang (6094_CR19) 2023; 17
NL Kazanskiy (6094_CR11) 2022; 12
J Wang (6094_CR17) 2020; 8
Q Wu (6094_CR18) 2016; 14
B Yu (6094_CR21) 2017; 167
Q Lu (6094_CR12) 2019; 10
S Thongpanja (6094_CR16) 2012; 32
References_xml – volume: 21
  start-page: 313
  year: 1993
  end-page: 397
  ident: CR5
  article-title: Surface electromyogram during voluntary contraction: processing tools and relation to physiological events
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 15
  start-page: 794
  issue: 9
  year: 2023
  end-page: 814
  ident: CR1
  article-title: A review on wearable sensors for sodium detection in human sweat
  publication-title: Anal. Bioanal. Electrochem.
– volume: 43
  start-page: 66
  issue: 1
  year: 2019
  end-page: 81
  ident: CR14
  article-title: Clinical translation of biomedical sensors for sports medicine
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091902.2019.1612474
– volume: 10
  start-page: 205
  issue: 12
  year: 2020
  ident: CR20
  article-title: Recent progress in wearable biosensors: from healthcare monitoring to sports analytics
  publication-title: Biosensors
  doi: 10.3390/bios10120205
– volume: 28
  start-page: 557
  year: 2018
  end-page: 568
  ident: CR22
  article-title: A Modified artificial bee colony algorithm for image denoising using parametricwavelet thresholding method
  publication-title: Pattern Recognit Image Anal.
  doi: 10.1134/S1054661818030215
– volume: 14
  start-page: 915
  issue: 2
  year: 2016
  end-page: 930
  ident: CR18
  article-title: Classification of EMG signals by BFA-optimized GSVCM for diagnosis of fatigue status
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2016.2564419
– volume: 167
  start-page: 102
  year: 2017
  end-page: 112
  ident: CR21
  article-title: Prediction subcellular localization of gram-negative bacterial proteins by support vector machine using wavelet denoising and Chou’s pseudo amino acid composition
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.05.009
– volume: 351
  start-page: 109073
  year: 2021
  ident: CR23
  article-title: Fiber optic sensor embedded smart helmet for real-time impact sensing and analysis through machine learning
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2021.109073
– volume: 12
  start-page: 334
  issue: 3
  year: 2022
  ident: CR11
  article-title: Recent advances in wearable optical sensor automation powered by battery versus skin-like battery-free devices for personal healthcare: a review
  publication-title: Nanomaterials
  doi: 10.3390/nano12030334
– volume: 137
  start-page: 741
  issue: 6
  year: 2001
  end-page: 744
  ident: CR13
  article-title: Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography
  publication-title: Arch. Dermatol.
– volume: 95
  start-page: 3121
  issue: 6
  year: 2023
  end-page: 3146
  ident: CR15
  article-title: Recent advances of biosensor-integrated organ-on-a-chip technologies for diagnostics and therapeutics
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c05036
– volume: 16
  start-page: 210
  year: 1993
  end-page: 216
  ident: CR3
  article-title: Use of the surface emg signal for performance evaluation of back muscles
  publication-title: Muscle Nerve
  doi: 10.1002/mus.880160216
– volume: 17
  start-page: 5686
  issue: 6
  year: 2023
  end-page: 5694
  ident: CR19
  article-title: High-precision wearable displacement sensing system for clinical diagnosis of anterior cruciate ligament tears
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c11996
– volume: 32
  start-page: 239
  year: 2012
  end-page: 245
  ident: CR16
  article-title: A feasibility study of fatigue and muscle contraction indices based on EMG time-dependent spectral analysis
  publication-title: Proced. Eng.
  doi: 10.1016/j.proeng.2012.01.1263
– volume: 13
  start-page: 181
  issue: 2
  year: 2023
  ident: CR10
  article-title: Novel wearable optical sensors for vital health monitoring systems: a review
  publication-title: Biosensors
  doi: 10.3390/bios13020181
– volume: 9
  start-page: 2015
  issue: 5
  year: 2023
  end-page: 2019
  ident: CR2
  article-title: Bioinspired materials for wearable diagnostics and biosensors
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.3c00348
– ident: CR6
– ident: CR8
– year: 2023
  ident: CR9
  article-title: Robotic ultrasound imaging: state-of-the-art and future perspectives
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.102878
– volume: 41
  start-page: 613
  year: 1995
  end-page: 627
  ident: CR4
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.382009
– volume: 20
  start-page: 233
  year: 2010
  end-page: 240
  ident: CR7
  article-title: EMG spectral indices and muscle power fatigue during dynamic contractions
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2009.03.011
– volume: 10
  start-page: 134
  year: 2019
  ident: CR12
  article-title: High-G calibration denoising method for high-G MEMS accelerometer based on EMD and wavelet threshold
  publication-title: Micromachines
  doi: 10.3390/mi10020134
– volume: 8
  start-page: 207914
  year: 2020
  end-page: 207922
  ident: CR17
  article-title: Recognition of muscle fatigue status based on improved wavelet threshold and cnn-svm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3038422
– volume: 137
  start-page: 741
  issue: 6
  year: 2001
  ident: 6094_CR13
  publication-title: Arch. Dermatol.
– volume: 15
  start-page: 794
  issue: 9
  year: 2023
  ident: 6094_CR1
  publication-title: Anal. Bioanal. Electrochem.
– year: 2023
  ident: 6094_CR9
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.102878
– volume: 20
  start-page: 233
  year: 2010
  ident: 6094_CR7
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2009.03.011
– volume: 95
  start-page: 3121
  issue: 6
  year: 2023
  ident: 6094_CR15
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c05036
– volume: 351
  start-page: 109073
  year: 2021
  ident: 6094_CR23
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2021.109073
– ident: 6094_CR8
  doi: 10.5772/28383
– volume: 28
  start-page: 557
  year: 2018
  ident: 6094_CR22
  publication-title: Pattern Recognit Image Anal.
  doi: 10.1134/S1054661818030215
– volume: 16
  start-page: 210
  year: 1993
  ident: 6094_CR3
  publication-title: Muscle Nerve
  doi: 10.1002/mus.880160216
– ident: 6094_CR6
  doi: 10.1007/s40279-023-01910-4
– volume: 14
  start-page: 915
  issue: 2
  year: 2016
  ident: 6094_CR18
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2016.2564419
– volume: 10
  start-page: 134
  year: 2019
  ident: 6094_CR12
  publication-title: Micromachines
  doi: 10.3390/mi10020134
– volume: 13
  start-page: 181
  issue: 2
  year: 2023
  ident: 6094_CR10
  publication-title: Biosensors
  doi: 10.3390/bios13020181
– volume: 8
  start-page: 207914
  year: 2020
  ident: 6094_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3038422
– volume: 10
  start-page: 205
  issue: 12
  year: 2020
  ident: 6094_CR20
  publication-title: Biosensors
  doi: 10.3390/bios10120205
– volume: 17
  start-page: 5686
  issue: 6
  year: 2023
  ident: 6094_CR19
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c11996
– volume: 12
  start-page: 334
  issue: 3
  year: 2022
  ident: 6094_CR11
  publication-title: Nanomaterials
  doi: 10.3390/nano12030334
– volume: 9
  start-page: 2015
  issue: 5
  year: 2023
  ident: 6094_CR2
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.3c00348
– volume: 43
  start-page: 66
  issue: 1
  year: 2019
  ident: 6094_CR14
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091902.2019.1612474
– volume: 41
  start-page: 613
  year: 1995
  ident: 6094_CR4
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.382009
– volume: 21
  start-page: 313
  year: 1993
  ident: 6094_CR5
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 32
  start-page: 239
  year: 2012
  ident: 6094_CR16
  publication-title: Proced. Eng.
  doi: 10.1016/j.proeng.2012.01.1263
– volume: 167
  start-page: 102
  year: 2017
  ident: 6094_CR21
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.05.009
SSID ssj0006450
Score 2.3495507
Snippet In this article, researchers describe a novel method for identifying muscular tiredness in human subjects by combining surface electromyography (sur-EMG)...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Characterization and Evaluation of Materials
Computer Communication Networks
Electrical Engineering
Lasers
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Title RETRACTED ARTICLE: Innovative use of optical sensors for real-time imaging and diagnosis using enhanced verge denoising and LSTM for sports medicine
URI https://link.springer.com/article/10.1007/s11082-023-06094-9
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9RADLZKKyQ4QFlAlELlAzcYadJMZhNu2-1uHxQOZVcqp2gyj7JSSapO21_CD8YzO2mpVFXqKRdPDvHY_hx_tgE-2SpMicoNC22PTMjcstJxxYQj8zJNpd2SbfFD7s_F4UlxkprCfM9270uS0VPfNrtlFK4YxRjGJSUlrHoCa0XI3ekWz7dHN_5XioKn9pj7z90NQXfrnzGsTNfhRcKDOFoq8BWs2HYALxM2xGR5fgDP_xscOICnkbip_Wv4ezyZHY_G5H-QoOnB-GjyFQ_SptNri1feYuewO4-_rNFT0tpdeCSkioQWz1hYLY-LP3FVEarWoFlS7xYeAyP-FG37O3IE8Dq0aSJ5qW7he-Gjn7Pv8V0xN_bYF-rfwHw6mY33Wdq0wHSWy4pp46xpNNdOCcnzwvGqEZrQiAiF16YYcsOHQ5WpUiuZBbXbhktHwb0w5AJE_hZW26617wCl4LlySjpyokJJW-auIszgCEuY7aa0G5D1H7_WaQx52IZxVt8OUA4Kq0lhdVRYXW3A55sz58shHA9Kf-l1WieD9A-Iv3-c-CY8ozsnAnE7Kz_A6uXFlf1IuOSy2YK10c7uzjQ89359m2zFa_kPO7Pc9w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BEQIOPAKohQJz4AYrreP1xuYWRakSSHsoidSbtd4HRCp21W37S_qDmd2s-5CqSr3P-uDPO_ON55sZgK-2ClOicsNC2yMTMresdFwx4eh6mabSbqO2OJCzlfh5VBylpjDfq937kmT01NfNbhmFK0YxhnFJSQmrHsMTIgNlEHKthuMr_ytFwVN7zN3nboeg2_XPGFb2XsPLxAdxvAHwDTyy7QBeJW6I6eb5Aby4MThwAE-jcFP7t3B5OF0ejifkf5Co6XyymP7Aedp0emHx3FvsHHYn8Zc1ekpau1OPxFSR2OIxC6vlcf0vripC1Ro0G-nd2mNQxP9B2_6NGgG8CG2aSF6qW_veePF7uR-fFXNjj32h_h2s9qbLyYylTQtMZ7msmDbOmkZz7ZSQPC8crxqhiY2IUHhtihE3fDRSmSq1klmA3TZcOgruhSEXIPL3sNV2rd0GlILnyinpyIkKJW2Zu4o4gyMuYYZNaXcg619-rdMY8rAN47i-HqAcAKsJsDoCVlc78O3qzMlmCMe91t97TOt0If095h8eZv4Fns2W-4t6MT_49RGeD4njBBF3Vu7C1tnpuf1EHOWs-Rw_yf_zWdzk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BEagceAQQ5TkHbrDqOl5vbG5RSNRAqFBJpN6s9T4gUmtH3bS_hB_M7NruQ0KVuM_6sDM7843nmxmAD7YIU6JSw0LbIxMytSx3XDHh6HmZqtCuZVscyoOV-HqcHV_r4o9s974k2fY0hClN9XZ_Y9z-VeNbQqGLUbxhXFKCwoq7cI_ccRLsejUcX_piKTLetcr8-9zNcHSzFhpDzOwJPOqwIY5bZT6FO7YewOMOJ2L3Cv0AHl4bIjiA-5HEqf0z-HM0XR6NJ-SLkGDqfLKYfsZ5t_X0wuK5t9g4bDbx9zV6SmCbM4-EWpGQ4wkLa-ZxfRrXFqGqDZqWhrf2GNjxv9DWvyNfAC9CyyaSx2rWvhde_Fx-j9-KebLHvmj_HFaz6XJywLqtC0wnqSyYNs6aSnPtlJA8zRwvKqEJmYhQhK2yETd8NFKJyrWSSTABW3HpKNBnhtyBSF_ATt3U9iWgFDxVTklHDlUoafPUFYQfHOEKM6xyuwdJf_ml7kaSh80YJ-XVMOWgsJIUVkaFlcUefLw8s2kHctwq_anXadk9Tn-L-Kv_E38PD358mZWL-eG317A7JLgT-NxJ_gZ2tmfn9i3BlW31LlrkX8LC4SA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RETRACTED+ARTICLE%3A+Innovative+use+of+optical+sensors+for+real-time+imaging+and+diagnosis+using+enhanced+verge+denoising+and+LSTM+for+sports+medicine&rft.jtitle=Optical+and+quantum+electronics&rft.au=Zhang%2C+Xiaodan&rft.au=xie%2C+Dongwei&rft.au=Gao%2C+Xiang&rft.date=2024-02-18&rft.issn=1572-817X&rft.eissn=1572-817X&rft.volume=56&rft.issue=4&rft_id=info:doi/10.1007%2Fs11082-023-06094-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11082_023_06094_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-817X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-817X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-817X&client=summon