Human Activity Recognition from Accelerometer with Convolutional and Recurrent Neural Networks
Smartphones are present in most people’s daily lives. Sensors embedded in these devices open the possibility of monitoring users’ activities. The classification of the intricate data patterns collected through these sensors is a challenging task when considering hand-crafted features and pattern rec...
Saved in:
Published in | Polytechnica Vol. 4; no. 1; pp. 15 - 25 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2520-8497 2520-8063 |
DOI | 10.1007/s41050-021-00028-8 |
Cover
Abstract | Smartphones are present in most people’s daily lives. Sensors embedded in these devices open the possibility of monitoring users’ activities. The classification of the intricate data patterns collected through these sensors is a challenging task when considering hand-crafted features and pattern recognition algorithms. In this work, to face this challenge, we propose a convolutional neural network architecture along with two methods for transforming sensor data stream into images, and two recurrent neural networks, a long short time memory network and a gated recurrent unit network. The proposed model was evaluated using the UniMiB SHAR dataset. This dataset was acquired with accelerometers of mobile devices. The best macro average accuracy for classification of 17 types of activities, with 5-fold-cross-validation method, 95.49% was obtained with a gated recurrent unit network. The best macro average accuracy for classification with leave-one-subject-out method, 71.36%, was obtained with a convolutional neural network. These results are better than others previously published in the literature with the same dataset. |
---|---|
AbstractList | Smartphones are present in most people’s daily lives. Sensors embedded in these devices open the possibility of monitoring users’ activities. The classification of the intricate data patterns collected through these sensors is a challenging task when considering hand-crafted features and pattern recognition algorithms. In this work, to face this challenge, we propose a convolutional neural network architecture along with two methods for transforming sensor data stream into images, and two recurrent neural networks, a long short time memory network and a gated recurrent unit network. The proposed model was evaluated using the UniMiB SHAR dataset. This dataset was acquired with accelerometers of mobile devices. The best macro average accuracy for classification of 17 types of activities, with 5-fold-cross-validation method, 95.49% was obtained with a gated recurrent unit network. The best macro average accuracy for classification with leave-one-subject-out method, 71.36%, was obtained with a convolutional neural network. These results are better than others previously published in the literature with the same dataset. |
Author | Costa, M. G. F. Serrão, M. K. de A. e Aquino, G. Costa Filho, Cicero Ferreira Fernandes |
Author_xml | – sequence: 1 givenname: M. K. surname: Serrão fullname: Serrão, M. K. organization: Centro de P&D de Tecnologia Eletrônica e da Informação, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal do Amazonas – sequence: 2 givenname: G. surname: de A. e Aquino fullname: de A. e Aquino, G. organization: Centro de P&D de Tecnologia Eletrônica e da Informação, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal do Amazonas – sequence: 3 givenname: M. G. F. surname: Costa fullname: Costa, M. G. F. organization: Centro de P&D de Tecnologia Eletrônica e da Informação, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal do Amazonas – sequence: 4 givenname: Cicero Ferreira Fernandes orcidid: 0000-0003-3325-5715 surname: Costa Filho fullname: Costa Filho, Cicero Ferreira Fernandes email: ccosta@ufam.edu.br organization: Centro de P&D de Tecnologia Eletrônica e da Informação, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal do Amazonas |
BookMark | eNp9kMFOwzAMhiM0JAbsBTj1BQpO0jTpcZqAIU1DQnAlSrN0ZHQJStJNe3taBhcOO9my_8-yvks0ct4ZhG4w3GIAfhcLDAxyIDgHACJycYbGhBHIBZR09NcXFb9Akxg3Q4jTQgAZo_d5t1Uum-pkdzYdshej_drZZL3LmuC3_Uab1vSdSSZke5s-spl3O992Q0a1mXKrgepCMC5lS9OFfrg0ae_DZ7xG541qo5n81iv09nD_Opvni-fHp9l0kWtMS5HXRBigK80apTQVdQlMlIzXXFWqqSusyxWHSogaE1JjwTAHjUuqC8a4rmhDr5A43tXBxxhMI7VNavgwBWVbiUEOquRRlexVyR9VUvQo-Yd-BbtV4XAaokco9mG3NkFufBd6HfEU9Q3oQX6O |
CitedBy_id | crossref_primary_10_1093_bib_bbab297 crossref_primary_10_1016_j_ins_2023_119073 crossref_primary_10_3390_s22155644 |
Cites_doi | 10.3390/s18020679 10.3390/app7101101 10.1038/s41598-019-47765-6 10.1007/s11390-011-9430-9 10.1109/TKDE.2007.1042 10.1109/ACCESS.2020.2986246 10.1007/s00521-018-03973-1 10.1109/LT.2018.8368507 10.5220/0006554400770082 |
ContentType | Journal Article |
Copyright | Escola Politécnica - Universidade de São Paulo 2021 |
Copyright_xml | – notice: Escola Politécnica - Universidade de São Paulo 2021 |
DBID | AAYXX CITATION |
DOI | 10.1007/s41050-021-00028-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2520-8063 |
EndPage | 25 |
ExternalDocumentID | 10_1007_s41050_021_00028_8 |
GroupedDBID | -EM 0R~ 406 AAAVM AACDK AAHNG AAJBT AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADKNI ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c1368-b28e03dc5faac38b6058657b7a9afb91c6d70988b122b185170c163c4557c93f3 |
ISSN | 2520-8497 |
IngestDate | Thu Apr 24 22:55:20 EDT 2025 Tue Jul 01 02:03:16 EDT 2025 Fri Feb 21 02:49:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human activity recognition Convolutional neural networks Accelerometer data |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1368-b28e03dc5faac38b6058657b7a9afb91c6d70988b122b185170c163c4557c93f3 |
ORCID | 0000-0003-3325-5715 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1007_s41050_021_00028_8 crossref_primary_10_1007_s41050_021_00028_8 springer_journals_10_1007_s41050_021_00028_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210400 2021-04-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210400 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationSubtitle | Innovative Engineering for Global Challenges |
PublicationTitle | Polytechnica |
PublicationTitleAbbrev | Polytechnica |
PublicationYear | 2021 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Sharma, Vans, Shigemizu, Boroevich, Tsunoda (CR7) 2019; 9 Yin, Yang, Pan (CR10) 2008; 20 CR3 CR6 CR8 Falco, Pietro, Sannino (CR1) 2020; 32 Li, Shirahama, Nisar, Köping, Grzegorzek (CR2) 2018; 18 Lv, Wang, Jin, Xiao, Song (CR4) 2020; 8 Yang, Lee, Choi (CR9) 2011; 26 Micucci, Mobilio, Napoletano (CR5) 2017; 7 F Li (28_CR2) 2018; 18 D Micucci (28_CR5) 2017; 7 28_CR8 T Lv (28_CR4) 2020; 8 28_CR3 ID Falco (28_CR1) 2020; 32 A Sharma (28_CR7) 2019; 9 28_CR6 J Yin (28_CR10) 2008; 20 J Yang (28_CR9) 2011; 26 |
References_xml | – volume: 18 start-page: 1 year: 2018 end-page: 22 ident: CR2 article-title: Comparison of feature learning methods for human activity recognition using wearable sensors publication-title: Sensors doi: 10.3390/s18020679 – volume: 7 start-page: 1 year: 2017 end-page: 19 ident: CR5 article-title: UniMiB SHAR: a dataset for human activity recognition using acceleration data from smartphones publication-title: Appl Sci doi: 10.3390/app7101101 – volume: 9 start-page: 1 year: 2019 end-page: 7 ident: CR7 article-title: Deepinsight: a methodology to transform a non-image data to an image for convolution neural network architecture publication-title: Sci Rep doi: 10.1038/s41598-019-47765-6 – ident: CR6 – volume: 26 start-page: 239 year: 2011 end-page: 246 ident: CR9 article-title: Activity recognition based on RFID object usage for smart Mobile devices publication-title: J Comput Sci Technol doi: 10.1007/s11390-011-9430-9 – volume: 20 start-page: 1082 year: 2008 end-page: 1090 ident: CR10 article-title: Sensor-based abnormal human-activity detection publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2007.1042 – ident: CR8 – ident: CR3 – volume: 8 start-page: 68320 year: 2020 end-page: 68332 ident: CR4 article-title: A hybrid network based on dense connection and weighted feature aggregation for human activity recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986246 – volume: 32 start-page: 747 year: 2020 end-page: 758 ident: CR1 article-title: Evaluation of artificial intelligence techniques for the classification of different activities of daily living and falls publication-title: Neural Comput & Applic doi: 10.1007/s00521-018-03973-1 – volume: 18 start-page: 1 year: 2018 ident: 28_CR2 publication-title: Sensors doi: 10.3390/s18020679 – volume: 20 start-page: 1082 year: 2008 ident: 28_CR10 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2007.1042 – volume: 7 start-page: 1 year: 2017 ident: 28_CR5 publication-title: Appl Sci doi: 10.3390/app7101101 – volume: 9 start-page: 1 year: 2019 ident: 28_CR7 publication-title: Sci Rep doi: 10.1038/s41598-019-47765-6 – ident: 28_CR8 doi: 10.1109/LT.2018.8368507 – volume: 8 start-page: 68320 year: 2020 ident: 28_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986246 – ident: 28_CR6 – ident: 28_CR3 doi: 10.5220/0006554400770082 – volume: 32 start-page: 747 year: 2020 ident: 28_CR1 publication-title: Neural Comput & Applic doi: 10.1007/s00521-018-03973-1 – volume: 26 start-page: 239 year: 2011 ident: 28_CR9 publication-title: J Comput Sci Technol doi: 10.1007/s11390-011-9430-9 |
SSID | ssj0002734802 ssib053844635 |
Score | 2.1398687 |
Snippet | Smartphones are present in most people’s daily lives. Sensors embedded in these devices open the possibility of monitoring users’ activities. The... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 15 |
SubjectTerms | Energy Engineering Environment Original Article |
Title | Human Activity Recognition from Accelerometer with Convolutional and Recurrent Neural Networks |
URI | https://link.springer.com/article/10.1007/s41050-021-00028-8 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFMUKPKBW0gUJ87rmK6aVqCuUNVKPRHZXq_YarWBfSDBL-vP6_iVBwsV5WKt7MnGu_N5ZjyeGSP0fsYSIrKI-iD5mE8JYT6PJPFTWlAqwqkMU5XgfDZJTy_px6vkajS66UUtbTc8EL_-mFfyP1yFPuCrypK9B2fbL4UO-Az8hRY4DO0_8dh44Ethb4A4d8FAKnpQpY2UQoBWUQUJVClE7XIdN8sfdk62SsC58rjrGk2qUAd0Tkxk-Lpvt35uFj9NudcutAfEjDlnj7W79SzwPgVubCq9MvCg-b6d68u9vZN2bNxYkxWeOAm8ajjgVfPFV-O_BRm2arwKXiPnK-Y5l_fAUxGRXoBL31P5m6-zc7d1oi9KYFObUxO5G8heX2jFoZXddAeiRg6bFFGr0U1m9Y6uMOEhaxXnGvp6utrVmHeasY1XbGs7a-IaiGtNXOcP0H6UZSpAYL-sjo4mTpaBHoGNtjVFr10ZIR0C2_44m8OlMzl3ZjG0k4aH9Nr2uXiCHttNCy4NAp-ikVw-Q496pSyfoy8ai9hhEfewiBUW8QCLWGERD7CIgbW4xSI2WMQOiy_QZXV8MT717d0dviBxmsOCz2UYT0UyY0zEOVen72mS8YwVbMYLItJpFhZ5zkkUcbAZSRYK2BoImiSZKOJZ_BLtLZulfIUwk4nI45SLQjAaFrIAo5Vz0ENKF0VZcYCI-6dqYQvbq_tVFvXf2XaAvPaZb6asy53UHxwDarv813eQv74f-Rv0sFstb9HeZrWVh2Dpbvg7C6pb3xqgww |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Activity+Recognition+from+Accelerometer+with+Convolutional+and+Recurrent+Neural+Networks&rft.jtitle=Polytechnica&rft.au=Serr%C3%A3o%2C+M.+K.&rft.au=de+A.+e+Aquino%2C+G.&rft.au=Costa%2C+M.+G.+F.&rft.au=Costa+Filho%2C+Cicero+Ferreira+Fernandes&rft.date=2021-04-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8497&rft.eissn=2520-8063&rft.volume=4&rft.issue=1&rft.spage=15&rft.epage=25&rft_id=info:doi/10.1007%2Fs41050-021-00028-8&rft.externalDocID=10_1007_s41050_021_00028_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8497&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8497&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8497&client=summon |