Human Activity Recognition from Accelerometer with Convolutional and Recurrent Neural Networks

Smartphones are present in most people’s daily lives. Sensors embedded in these devices open the possibility of monitoring users’ activities. The classification of the intricate data patterns collected through these sensors is a challenging task when considering hand-crafted features and pattern rec...

Full description

Saved in:
Bibliographic Details
Published inPolytechnica Vol. 4; no. 1; pp. 15 - 25
Main Authors Serrão, M. K., de A. e Aquino, G., Costa, M. G. F., Costa Filho, Cicero Ferreira Fernandes
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.04.2021
Subjects
Online AccessGet full text
ISSN2520-8497
2520-8063
DOI10.1007/s41050-021-00028-8

Cover

Abstract Smartphones are present in most people’s daily lives. Sensors embedded in these devices open the possibility of monitoring users’ activities. The classification of the intricate data patterns collected through these sensors is a challenging task when considering hand-crafted features and pattern recognition algorithms. In this work, to face this challenge, we propose a convolutional neural network architecture along with two methods for transforming sensor data stream into images, and two recurrent neural networks, a long short time memory network and a gated recurrent unit network. The proposed model was evaluated using the UniMiB SHAR dataset. This dataset was acquired with accelerometers of mobile devices. The best macro average accuracy for classification of 17 types of activities, with 5-fold-cross-validation method, 95.49% was obtained with a gated recurrent unit network. The best macro average accuracy for classification with leave-one-subject-out method, 71.36%, was obtained with a convolutional neural network. These results are better than others previously published in the literature with the same dataset.
AbstractList Smartphones are present in most people’s daily lives. Sensors embedded in these devices open the possibility of monitoring users’ activities. The classification of the intricate data patterns collected through these sensors is a challenging task when considering hand-crafted features and pattern recognition algorithms. In this work, to face this challenge, we propose a convolutional neural network architecture along with two methods for transforming sensor data stream into images, and two recurrent neural networks, a long short time memory network and a gated recurrent unit network. The proposed model was evaluated using the UniMiB SHAR dataset. This dataset was acquired with accelerometers of mobile devices. The best macro average accuracy for classification of 17 types of activities, with 5-fold-cross-validation method, 95.49% was obtained with a gated recurrent unit network. The best macro average accuracy for classification with leave-one-subject-out method, 71.36%, was obtained with a convolutional neural network. These results are better than others previously published in the literature with the same dataset.
Author Costa, M. G. F.
Serrão, M. K.
de A. e Aquino, G.
Costa Filho, Cicero Ferreira Fernandes
Author_xml – sequence: 1
  givenname: M. K.
  surname: Serrão
  fullname: Serrão, M. K.
  organization: Centro de P&D de Tecnologia Eletrônica e da Informação, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal do Amazonas
– sequence: 2
  givenname: G.
  surname: de A. e Aquino
  fullname: de A. e Aquino, G.
  organization: Centro de P&D de Tecnologia Eletrônica e da Informação, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal do Amazonas
– sequence: 3
  givenname: M. G. F.
  surname: Costa
  fullname: Costa, M. G. F.
  organization: Centro de P&D de Tecnologia Eletrônica e da Informação, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal do Amazonas
– sequence: 4
  givenname: Cicero Ferreira Fernandes
  orcidid: 0000-0003-3325-5715
  surname: Costa Filho
  fullname: Costa Filho, Cicero Ferreira Fernandes
  email: ccosta@ufam.edu.br
  organization: Centro de P&D de Tecnologia Eletrônica e da Informação, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal do Amazonas
BookMark eNp9kMFOwzAMhiM0JAbsBTj1BQpO0jTpcZqAIU1DQnAlSrN0ZHQJStJNe3taBhcOO9my_8-yvks0ct4ZhG4w3GIAfhcLDAxyIDgHACJycYbGhBHIBZR09NcXFb9Akxg3Q4jTQgAZo_d5t1Uum-pkdzYdshej_drZZL3LmuC3_Uab1vSdSSZke5s-spl3O992Q0a1mXKrgepCMC5lS9OFfrg0ae_DZ7xG541qo5n81iv09nD_Opvni-fHp9l0kWtMS5HXRBigK80apTQVdQlMlIzXXFWqqSusyxWHSogaE1JjwTAHjUuqC8a4rmhDr5A43tXBxxhMI7VNavgwBWVbiUEOquRRlexVyR9VUvQo-Yd-BbtV4XAaokco9mG3NkFufBd6HfEU9Q3oQX6O
CitedBy_id crossref_primary_10_1093_bib_bbab297
crossref_primary_10_1016_j_ins_2023_119073
crossref_primary_10_3390_s22155644
Cites_doi 10.3390/s18020679
10.3390/app7101101
10.1038/s41598-019-47765-6
10.1007/s11390-011-9430-9
10.1109/TKDE.2007.1042
10.1109/ACCESS.2020.2986246
10.1007/s00521-018-03973-1
10.1109/LT.2018.8368507
10.5220/0006554400770082
ContentType Journal Article
Copyright Escola Politécnica - Universidade de São Paulo 2021
Copyright_xml – notice: Escola Politécnica - Universidade de São Paulo 2021
DBID AAYXX
CITATION
DOI 10.1007/s41050-021-00028-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-8063
EndPage 25
ExternalDocumentID 10_1007_s41050_021_00028_8
GroupedDBID -EM
0R~
406
AAAVM
AACDK
AAHNG
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c1368-b28e03dc5faac38b6058657b7a9afb91c6d70988b122b185170c163c4557c93f3
ISSN 2520-8497
IngestDate Thu Apr 24 22:55:20 EDT 2025
Tue Jul 01 02:03:16 EDT 2025
Fri Feb 21 02:49:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human activity recognition
Convolutional neural networks
Accelerometer data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1368-b28e03dc5faac38b6058657b7a9afb91c6d70988b122b185170c163c4557c93f3
ORCID 0000-0003-3325-5715
PageCount 11
ParticipantIDs crossref_citationtrail_10_1007_s41050_021_00028_8
crossref_primary_10_1007_s41050_021_00028_8
springer_journals_10_1007_s41050_021_00028_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210400
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle Innovative Engineering for Global Challenges
PublicationTitle Polytechnica
PublicationTitleAbbrev Polytechnica
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Sharma, Vans, Shigemizu, Boroevich, Tsunoda (CR7) 2019; 9
Yin, Yang, Pan (CR10) 2008; 20
CR3
CR6
CR8
Falco, Pietro, Sannino (CR1) 2020; 32
Li, Shirahama, Nisar, Köping, Grzegorzek (CR2) 2018; 18
Lv, Wang, Jin, Xiao, Song (CR4) 2020; 8
Yang, Lee, Choi (CR9) 2011; 26
Micucci, Mobilio, Napoletano (CR5) 2017; 7
F Li (28_CR2) 2018; 18
D Micucci (28_CR5) 2017; 7
28_CR8
T Lv (28_CR4) 2020; 8
28_CR3
ID Falco (28_CR1) 2020; 32
A Sharma (28_CR7) 2019; 9
28_CR6
J Yin (28_CR10) 2008; 20
J Yang (28_CR9) 2011; 26
References_xml – volume: 18
  start-page: 1
  year: 2018
  end-page: 22
  ident: CR2
  article-title: Comparison of feature learning methods for human activity recognition using wearable sensors
  publication-title: Sensors
  doi: 10.3390/s18020679
– volume: 7
  start-page: 1
  year: 2017
  end-page: 19
  ident: CR5
  article-title: UniMiB SHAR: a dataset for human activity recognition using acceleration data from smartphones
  publication-title: Appl Sci
  doi: 10.3390/app7101101
– volume: 9
  start-page: 1
  year: 2019
  end-page: 7
  ident: CR7
  article-title: Deepinsight: a methodology to transform a non-image data to an image for convolution neural network architecture
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-47765-6
– ident: CR6
– volume: 26
  start-page: 239
  year: 2011
  end-page: 246
  ident: CR9
  article-title: Activity recognition based on RFID object usage for smart Mobile devices
  publication-title: J Comput Sci Technol
  doi: 10.1007/s11390-011-9430-9
– volume: 20
  start-page: 1082
  year: 2008
  end-page: 1090
  ident: CR10
  article-title: Sensor-based abnormal human-activity detection
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2007.1042
– ident: CR8
– ident: CR3
– volume: 8
  start-page: 68320
  year: 2020
  end-page: 68332
  ident: CR4
  article-title: A hybrid network based on dense connection and weighted feature aggregation for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986246
– volume: 32
  start-page: 747
  year: 2020
  end-page: 758
  ident: CR1
  article-title: Evaluation of artificial intelligence techniques for the classification of different activities of daily living and falls
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-018-03973-1
– volume: 18
  start-page: 1
  year: 2018
  ident: 28_CR2
  publication-title: Sensors
  doi: 10.3390/s18020679
– volume: 20
  start-page: 1082
  year: 2008
  ident: 28_CR10
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2007.1042
– volume: 7
  start-page: 1
  year: 2017
  ident: 28_CR5
  publication-title: Appl Sci
  doi: 10.3390/app7101101
– volume: 9
  start-page: 1
  year: 2019
  ident: 28_CR7
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-47765-6
– ident: 28_CR8
  doi: 10.1109/LT.2018.8368507
– volume: 8
  start-page: 68320
  year: 2020
  ident: 28_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986246
– ident: 28_CR6
– ident: 28_CR3
  doi: 10.5220/0006554400770082
– volume: 32
  start-page: 747
  year: 2020
  ident: 28_CR1
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-018-03973-1
– volume: 26
  start-page: 239
  year: 2011
  ident: 28_CR9
  publication-title: J Comput Sci Technol
  doi: 10.1007/s11390-011-9430-9
SSID ssj0002734802
ssib053844635
Score 2.1398687
Snippet Smartphones are present in most people’s daily lives. Sensors embedded in these devices open the possibility of monitoring users’ activities. The...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Energy
Engineering
Environment
Original Article
Title Human Activity Recognition from Accelerometer with Convolutional and Recurrent Neural Networks
URI https://link.springer.com/article/10.1007/s41050-021-00028-8
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFMUKPKBW0gUJ87rmK6aVqCuUNVKPRHZXq_YarWBfSDBL-vP6_iVBwsV5WKt7MnGu_N5ZjyeGSP0fsYSIrKI-iD5mE8JYT6PJPFTWlAqwqkMU5XgfDZJTy_px6vkajS66UUtbTc8EL_-mFfyP1yFPuCrypK9B2fbL4UO-Az8hRY4DO0_8dh44Ethb4A4d8FAKnpQpY2UQoBWUQUJVClE7XIdN8sfdk62SsC58rjrGk2qUAd0Tkxk-Lpvt35uFj9NudcutAfEjDlnj7W79SzwPgVubCq9MvCg-b6d68u9vZN2bNxYkxWeOAm8ajjgVfPFV-O_BRm2arwKXiPnK-Y5l_fAUxGRXoBL31P5m6-zc7d1oi9KYFObUxO5G8heX2jFoZXddAeiRg6bFFGr0U1m9Y6uMOEhaxXnGvp6utrVmHeasY1XbGs7a-IaiGtNXOcP0H6UZSpAYL-sjo4mTpaBHoGNtjVFr10ZIR0C2_44m8OlMzl3ZjG0k4aH9Nr2uXiCHttNCy4NAp-ikVw-Q496pSyfoy8ai9hhEfewiBUW8QCLWGERD7CIgbW4xSI2WMQOiy_QZXV8MT717d0dviBxmsOCz2UYT0UyY0zEOVen72mS8YwVbMYLItJpFhZ5zkkUcbAZSRYK2BoImiSZKOJZ_BLtLZulfIUwk4nI45SLQjAaFrIAo5Vz0ENKF0VZcYCI-6dqYQvbq_tVFvXf2XaAvPaZb6asy53UHxwDarv813eQv74f-Rv0sFstb9HeZrWVh2Dpbvg7C6pb3xqgww
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Activity+Recognition+from+Accelerometer+with+Convolutional+and+Recurrent+Neural+Networks&rft.jtitle=Polytechnica&rft.au=Serr%C3%A3o%2C+M.+K.&rft.au=de+A.+e+Aquino%2C+G.&rft.au=Costa%2C+M.+G.+F.&rft.au=Costa+Filho%2C+Cicero+Ferreira+Fernandes&rft.date=2021-04-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8497&rft.eissn=2520-8063&rft.volume=4&rft.issue=1&rft.spage=15&rft.epage=25&rft_id=info:doi/10.1007%2Fs41050-021-00028-8&rft.externalDocID=10_1007_s41050_021_00028_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8497&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8497&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8497&client=summon