Dichotomous Radial Basis Tanimoto Network to Predict Delivery Mode in Maternal Care Domain

Pregnancy delivery mode prediction is an important one for doctors to provide timely treatment. Some research works have been developed for pregnancy delivery mode prediction using machine learning techniques. But the accuracy of prediction was not improved with less time. In order to perform accura...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of information communication technologies and human development Vol. 13; no. 4; pp. 92 - 104
Main Authors Thangavel, Balasubramanian, Kannan, Kavitha
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.10.2021
Subjects
Online AccessGet full text
ISSN1935-5661
1935-567X
DOI10.4018/IJICTHD.2021100104

Cover

Abstract Pregnancy delivery mode prediction is an important one for doctors to provide timely treatment. Some research works have been developed for pregnancy delivery mode prediction using machine learning techniques. But the accuracy of prediction was not improved with less time. In order to perform accurate delivery prediction, dichotomous radial basis Tanimoto network prediction (DRBTNP) method is proposed to enhance the process of pregnancy delivery mode prediction with higher accuracy. The proposed DRBTNP method comprises different types of layers for performing delivery mode prediction with less time and space utilization. Experimental evaluation is performed with different factors such as prediction accuracy, prediction time, and space utilization with respect to patient data. The observed result shows that the presented DRBTNP method increases the prediction accuracy up to 9% with the reduction of prediction time and space utilization up to 20% and 19% over the state-of-the-art methods.
AbstractList Pregnancy delivery mode prediction is an important one for doctors to provide timely treatment. Some research works have been developed for pregnancy delivery mode prediction using machine learning techniques. But the accuracy of prediction was not improved with less time. In order to perform accurate delivery prediction, dichotomous radial basis Tanimoto network prediction (DRBTNP) method is proposed to enhance the process of pregnancy delivery mode prediction with higher accuracy. The proposed DRBTNP method comprises different types of layers for performing delivery mode prediction with less time and space utilization. Experimental evaluation is performed with different factors such as prediction accuracy, prediction time, and space utilization with respect to patient data. The observed result shows that the presented DRBTNP method increases the prediction accuracy up to 9% with the reduction of prediction time and space utilization up to 20% and 19% over the state-of-the-art methods.
Author Thangavel, Balasubramanian
Kannan, Kavitha
Author_xml – sequence: 1
  givenname: Balasubramanian
  surname: Thangavel
  fullname: Thangavel, Balasubramanian
– sequence: 2
  givenname: Kavitha
  surname: Kannan
  fullname: Kannan, Kavitha
BookMark eNo9TlFLwzAYDDLBOfcHfAr43JmvSdPkUVvnKpuKVBBfRtImmNk12rSK_96K4r3cHccdd4wmrW8NQqdAFoyAOC9uiqxc5YuYxACEAGEHaAqSJlHC06fJv-ZwhOYh7MiIhKU04VP0nLvqxfd-74eAH1TtVIMvVXABl6p1-zHBt6b_9N0rHuV9Z2pX9Tg3jfsw3Rfe-Npg1-KN6k3Xjt1MdQbnfq9ce4IOrWqCmf_xDD0ur8psFa3vrovsYh1VQLmIhGScqphaHUOlta20JUJpY6WCtAJd65SPhrJYEJ5qXktiLWM146m02jI6Q2e_u2-dfx9M6Lc7P_ycCdtYUpAcEiHoNwgOWCY
ContentType Journal Article
Copyright Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Copyright_xml – notice: Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
DBID 7SC
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.4018/IJICTHD.2021100104
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Proquest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1935-567X
EndPage 104
GroupedDBID 0R~
4.4
7SC
8FD
8FE
8FG
AAYVP
ABEPT
ABTWW
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BAAKF
BENPR
BGLVJ
BTFVE
BYHXH
CBWLS
CCPQU
CDTDJ
CIGCI
CKMBR
CNQXE
COVLG
CTSEY
DWQXO
EBS
GNUQQ
H13
HCIFZ
HZ~
IAO
ITC
JQ2
K7-
L7M
L~C
L~D
MV1
N95
NEEBM
O9-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RIF
ID FETCH-LOGICAL-c1368-89463a23fb21cbbfcbf08abef9a17c1bdb76ef93428067b6d90ff44d4679fbf43
IEDL.DBID 8FG
ISSN 1935-5661
IngestDate Fri Jul 25 23:37:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1368-89463a23fb21cbbfcbf08abef9a17c1bdb76ef93428067b6d90ff44d4679fbf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2931961588
PQPubID 2045839
PageCount 13
ParticipantIDs proquest_journals_2931961588
PublicationCentury 2000
PublicationDate 20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211001
  day: 01
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of information communication technologies and human development
PublicationYear 2021
Publisher IGI Global
Publisher_xml – name: IGI Global
SSID ssj0000547356
Score 2.1588473
Snippet Pregnancy delivery mode prediction is an important one for doctors to provide timely treatment. Some research works have been developed for pregnancy delivery...
SourceID proquest
SourceType Aggregation Database
StartPage 92
SubjectTerms Accuracy
Births
Cesarean section
Childbirth & labor
Information communication
Machine learning
Medical research
Neural networks
Performance prediction
Pregnancy
Regression analysis
Similarity measures
Utilization
Vagina
Title Dichotomous Radial Basis Tanimoto Network to Predict Delivery Mode in Maternal Care Domain
URI https://www.proquest.com/docview/2931961588
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La8JAEF5avbSH0id9WNlDr4uu2WySU6mvqqCIKEgvMrvZBcEmrbGH_vvuJLEtFHrLktvMMDPfvD5CHgCs0SKQzAJ4TCijGLSMZs56oAkCWjLG5eTxRA4WYrT0l2XBLSvHKvc-MXfUcaqxRt5wYckZC_fD8PHtnSFrFHZXSwqNQ1LlLtKgnYf95-8aSzMn1pVFY9lnLnPhxd6MAxVhYzgaduaDrsOICIIQl_zxx3mQ6Z-SkzI7pE-FOs_IgUnOyfGvm4EX5KW7xrWpFCE7neFlgQ1tQ7bO6BwSFHxKJ8VoN3Wf0y02Yna0azY4gPFJkfuMrhM6huL6M8UFJNpNX2GdXJJFvzfvDFhJkMA092TIwkhID1qeVS2ulbJa2WYIytgIeKC5ilUg3cMT2D4NlIyjprVCxM45RlZZ4V2RSpIm5ppQJwNw2Zjg1vgiBq587YEIILBSqsDnN6S2F82qtPJs9aOT2_9_35EjlHIxBFcjld32w9y7YL5T9VxjdVJt9ybT2Rf94KCI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qPagH8YmPqnvQ42I32WzSg4gapQ9bRCqIlzqb7EJBE7UV6Z_yN7rTtCoI3npLCOQw--28vxmAQ0RrEhkqbhF9LrXRHD2TcIcerKJET6VETm53VP1ONu-D-xJ8Trkw1FY51YljRZ3mCeXIj51ZcmARQRSdvrxy2hpF1dXpCo0CFi0z-nAh2-CkEbvzPfK8q8vuRZ1PtgrwRPgq4lFNKh8932pPJFrbRNtqhNrYGoowETrVoXIvvqSaY6hVWqtaK2XqNErNait99985mJfEaC3D_Pll5-b2O6tTHa_yVUUpO-DOVxIFU8eFMdFxo9m46NZjF5VS2EWR0B8LMDZrVyuwPPFH2VkBoFUomWwNln5NKVyHh7hPRK2ckgTslmYZPLFzHPQHrIsZHXXOOkUzOXOPN29U-hmy2DxRy8eI0bY11s9YG4t504woTyzOn7GfbcDdTIS3CeUsz8wWMCcDdP6fFNYEMkWhg8RHGWJoldJhILahMhVNb3KvBr0fFOz8__kAFurd9nXvutFp7cIiSbxowatAefj2bvacKzHU-5PzY_A4a8h8ARGJ3oc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dichotomous+Radial+Basis+Tanimoto+Network+to+Predict+Delivery+Mode+in+Maternal+Care+Domain&rft.jtitle=International+journal+of+information+communication+technologies+and+human+development&rft.au=Thangavel%2C+Balasubramanian&rft.au=Kannan%2C+Kavitha&rft.date=2021-10-01&rft.pub=IGI+Global&rft.issn=1935-5661&rft.eissn=1935-567X&rft.volume=13&rft.issue=4&rft.spage=92&rft.epage=104&rft_id=info:doi/10.4018%2FIJICTHD.2021100104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-5661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-5661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-5661&client=summon