Physics inspired compact modelling of $$\hbox {BiFeO}_3$$ based memristors

With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security primitives. Among the several available memristors, BiFe $$\mathrm{O}_{3}$$ O 3  (BFO)-based electroforming-free memristors have attracted co...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1
Main Authors Yarragolla, Sahitya, Du, Nan, Hemke, Torben, Zhao, Xianyue, Chen, Ziang, Polian, Ilia, Mussenbrock, Thomas
Format Journal Article
LanguageEnglish
Published 28.11.2022
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-24439-4

Cover

Loading…
Abstract With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security primitives. Among the several available memristors, BiFe $$\mathrm{O}_{3}$$ O 3  (BFO)-based electroforming-free memristors have attracted considerable attention due to their excellent properties, such as long retention time, self-rectification, intrinsic stochasticity, and fast switching. They have been actively investigated for use in physical unclonable function (PUF) key storage modules, artificial synapses in neural networks, nonvolatile resistive switches, and reconfigurable logic applications. In this work, we present a physics-inspired 1D compact model of a BFO memristor to understand its implementation for such applications (mainly PUFs) and perform circuit simulations. The resistive switching based on electric field-driven vacancy migration and intrinsic stochastic behaviour of the BFO memristor are modelled using the cloud-in-a-cell scheme. The experimental current–voltage characteristics of the BFO memristor are successfully reproduced. The response of the BFO memristor to changes in electrical properties, environmental properties (such as temperature) and stress are analyzed and consistant with experimental results.
AbstractList With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security primitives. Among the several available memristors, BiFe $$\mathrm{O}_{3}$$ O 3  (BFO)-based electroforming-free memristors have attracted considerable attention due to their excellent properties, such as long retention time, self-rectification, intrinsic stochasticity, and fast switching. They have been actively investigated for use in physical unclonable function (PUF) key storage modules, artificial synapses in neural networks, nonvolatile resistive switches, and reconfigurable logic applications. In this work, we present a physics-inspired 1D compact model of a BFO memristor to understand its implementation for such applications (mainly PUFs) and perform circuit simulations. The resistive switching based on electric field-driven vacancy migration and intrinsic stochastic behaviour of the BFO memristor are modelled using the cloud-in-a-cell scheme. The experimental current–voltage characteristics of the BFO memristor are successfully reproduced. The response of the BFO memristor to changes in electrical properties, environmental properties (such as temperature) and stress are analyzed and consistant with experimental results.
ArticleNumber 20490
Author Yarragolla, Sahitya
Mussenbrock, Thomas
Zhao, Xianyue
Hemke, Torben
Du, Nan
Polian, Ilia
Chen, Ziang
Author_xml – sequence: 1
  givenname: Sahitya
  orcidid: 0000-0002-2973-4943
  surname: Yarragolla
  fullname: Yarragolla, Sahitya
– sequence: 2
  givenname: Nan
  orcidid: 0000-0002-7775-7795
  surname: Du
  fullname: Du, Nan
– sequence: 3
  givenname: Torben
  orcidid: 0000-0003-2436-5840
  surname: Hemke
  fullname: Hemke, Torben
– sequence: 4
  givenname: Xianyue
  surname: Zhao
  fullname: Zhao, Xianyue
– sequence: 5
  givenname: Ziang
  surname: Chen
  fullname: Chen, Ziang
– sequence: 6
  givenname: Ilia
  orcidid: 0000-0002-6563-2725
  surname: Polian
  fullname: Polian, Ilia
– sequence: 7
  givenname: Thomas
  orcidid: 0000-0001-6445-4990
  surname: Mussenbrock
  fullname: Mussenbrock, Thomas
BookMark eNp9kD1PwzAURS1UJErpH2DykNXg78YjVJQPVSoDbEiW49jUKIkjOwMV4r8TWgbEwFvu09M7dzinYNLFzgFwTvAFway8zJwIVSJMKaKcM4X4EZhSzAWijNLJr_0EzHN-w-MIqjhRU_DwuN3lYDMMXe5DcjW0se2NHWAba9c0oXuF0cOieNlW8R1-XIeV23xqVhSwMnl8b12bQh5iymfg2Jsmu_lPzsDz6uZpeYfWm9v75dUaWcIkR94T5YiXUlDMmKmc9LguBcOeLogh1nkisHULIj1llahlqSqh5P7GSk7ZDNBDr00x5-S87lNoTdppgvW3EH0Qokchei9E8xEq_0A2DGYIsRuSCc1_6BdAhmXv
CitedBy_id crossref_primary_10_1016_j_carbon_2024_118931
crossref_primary_10_3390_s24155001
crossref_primary_10_1063_5_0202230
crossref_primary_10_1039_D3MA00069A
crossref_primary_10_1039_D3TC03244B
crossref_primary_10_1038_s41598_024_74667_z
crossref_primary_10_1038_s41598_024_80568_y
crossref_primary_10_1080_00150193_2023_2215502
crossref_primary_10_1103_PhysRevApplied_22_034028
Cites_doi 10.1126/science.1168636
10.1109/JIOT.2018.2864594
10.1016/j.mtadv.2020.100056
10.1063/1.3589814
10.1038/s41467-017-00869-x
10.1038/srep02208
10.1007/978-3-642-11710-7
10.1002/aelm.201800872
10.3389/fnins.2021.660894
10.1038/nmat2023
10.1103/PhysRevApplied.10.054025
10.7567/jjap.57.121502
10.1021/am504871g
10.1038/srep18623
10.1017/CBO9780511524790
10.1109/ICCE.2019.8661912
10.1109/TED.2014.2325531
10.1038/srep35686
10.1109/IVSW.2019.8854394
10.1002/pssc.201200881
10.1109/HST.2017.7951797
10.1016/j.apsusc.2014.12.136
10.1038/s41598-022-11240-6
10.1038/srep13753
10.1063/5.0084085
10.1016/S0921-4526(01)00631-7
10.1002/aelm.202100536
10.1109/NVMT.2008.4731194
10.1002/adfm.201303365
10.1016/j.nanoms.2021.01.001
10.1007/s10854-016-4784-y
10.1088/1361-6463/aa69ae
10.1021/acsami.7b19836
10.1109/43.541446
10.1109/TCSI.2020.3018502
10.1109/SISPAD.2016.7605167
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1038/s41598-022-24439-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID 10_1038_s41598_022_24439_4
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
AAYXX
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
ID FETCH-LOGICAL-c1364-ff19e1f6652033abe6f0d8530f271a1cef150ce716f23b5d689b59650ce738423
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Apr 24 22:59:49 EDT 2025
Tue Jul 01 00:55:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1364-ff19e1f6652033abe6f0d8530f271a1cef150ce716f23b5d689b59650ce738423
ORCID 0000-0002-6563-2725
0000-0001-6445-4990
0000-0003-2436-5840
0000-0002-7775-7795
0000-0002-2973-4943
OpenAccessLink https://www.nature.com/articles/s41598-022-24439-4.pdf
ParticipantIDs crossref_primary_10_1038_s41598_022_24439_4
crossref_citationtrail_10_1038_s41598_022_24439_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-28
PublicationDateYYYYMMDD 2022-11-28
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-28
  day: 28
PublicationDecade 2020
PublicationTitle Scientific reports
PublicationYear 2022
References M Hansen (24439_CR17) 2015; 5
B Sun (24439_CR36) 2020; 6
Y Pang (24439_CR5) 2019; 5
SE Laux (24439_CR24) 1996; 15
T Choi (24439_CR27) 2009; 324
E Solan (24439_CR21) 2017; 50
Y Shuai (24439_CR37) 2013; 10
G Rajendran (24439_CR7) 2021; 7
B Chen (24439_CR1) 2019; 6
C Wang (24439_CR28) 2011; 98
24439_CR41
24439_CR20
HEA Jiang (24439_CR10) 2017; 8
L Jin (24439_CR42) 2015; 336
T You (24439_CR30) 2014; 6
GS Rose (24439_CR4) 2014
S Ambrogio (24439_CR22) 2014; 61
S Rajendran (24439_CR3) 2021
Y Lei (24439_CR29) 2016; 27
N Du (24439_CR6) 2021; 3
MS Tyagi (24439_CR33) 1984
HM Ibrahim (24439_CR9) 2022; 12
24439_CR13
24439_CR35
Y Shuai (24439_CR38) 2018; 57
Y Shuai (24439_CR14) 2013; 3
M Hudait (24439_CR39) 2001; 307
N Du (24439_CR15) 2018; 10
RH Weber (24439_CR2) 2010
S Dirkmann (24439_CR18) 2016; 6
R Waser (24439_CR12) 2007; 6
S Yarragolla (24439_CR25) 2022; 131
T You (24439_CR31) 2015; 5
24439_CR11
N Du (24439_CR40) 2021
C Bengel (24439_CR23) 2020; 67
S Saha (24439_CR26) 2015
24439_CR8
S Dirkmann (24439_CR19) 2018; 10
SM Sze (24439_CR32) 2007
PG Bruce (24439_CR34) 1994
T You (24439_CR16) 2014; 24
References_xml – volume: 324
  start-page: 63
  year: 2009
  ident: 24439_CR27
  publication-title: Science
  doi: 10.1126/science.1168636
– volume: 6
  start-page: 435
  year: 2019
  ident: 24439_CR1
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2864594
– volume: 6
  year: 2020
  ident: 24439_CR36
  publication-title: Mater. Today Adv.
  doi: 10.1016/j.mtadv.2020.100056
– volume: 98
  year: 2011
  ident: 24439_CR28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3589814
– start-page: 1
  volume-title: Physics of Schottky Barrier Junctions
  year: 1984
  ident: 24439_CR33
– volume-title: Security of Internet of Things Nodes: Challenges, Attacks, and Countermeasures
  year: 2021
  ident: 24439_CR3
– volume: 8
  start-page: 882
  year: 2017
  ident: 24439_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00869-x
– volume: 3
  start-page: 2208
  year: 2013
  ident: 24439_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/srep02208
– volume-title: Internet of Things
  year: 2010
  ident: 24439_CR2
  doi: 10.1007/978-3-642-11710-7
– volume: 5
  start-page: 1800872
  year: 2019
  ident: 24439_CR5
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800872
– year: 2021
  ident: 24439_CR40
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.660894
– volume: 6
  start-page: 833
  year: 2007
  ident: 24439_CR12
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2023
– volume: 10
  year: 2018
  ident: 24439_CR15
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.10.054025
– volume: 57
  year: 2018
  ident: 24439_CR38
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/jjap.57.121502
– volume: 6
  start-page: 19758
  year: 2014
  ident: 24439_CR30
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am504871g
– volume: 5
  start-page: 18623
  year: 2015
  ident: 24439_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/srep18623
– volume-title: Solid State Electrochemistry. Chemistry of Solid State Materials
  year: 1994
  ident: 24439_CR34
  doi: 10.1017/CBO9780511524790
– ident: 24439_CR41
– ident: 24439_CR8
  doi: 10.1109/ICCE.2019.8661912
– volume: 61
  start-page: 2378
  year: 2014
  ident: 24439_CR22
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2014.2325531
– volume: 6
  start-page: 35686
  year: 2016
  ident: 24439_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/srep35686
– ident: 24439_CR13
  doi: 10.1109/IVSW.2019.8854394
– volume-title: Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond
  year: 2015
  ident: 24439_CR26
– volume: 10
  start-page: 636
  year: 2013
  ident: 24439_CR37
  publication-title: Phys. Status Solidi C
  doi: 10.1002/pssc.201200881
– ident: 24439_CR11
  doi: 10.1109/HST.2017.7951797
– volume: 336
  start-page: 354
  year: 2015
  ident: 24439_CR42
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.12.136
– volume: 12
  start-page: 8633
  year: 2022
  ident: 24439_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-11240-6
– volume: 5
  start-page: 13753
  year: 2015
  ident: 24439_CR17
  publication-title: Sci. Rep.
  doi: 10.1038/srep13753
– volume: 131
  year: 2022
  ident: 24439_CR25
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0084085
– volume: 307
  start-page: 125
  year: 2001
  ident: 24439_CR39
  publication-title: Phys. B
  doi: 10.1016/S0921-4526(01)00631-7
– volume: 7
  start-page: 2100536
  year: 2021
  ident: 24439_CR7
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202100536
– ident: 24439_CR35
  doi: 10.1109/NVMT.2008.4731194
– volume: 24
  start-page: 3357
  year: 2014
  ident: 24439_CR16
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303365
– volume: 3
  start-page: 186
  year: 2021
  ident: 24439_CR6
  publication-title: Nano Mater. Sci.
  doi: 10.1016/j.nanoms.2021.01.001
– volume: 27
  start-page: 7927
  year: 2016
  ident: 24439_CR29
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-016-4784-y
– start-page: 105
  volume-title: Nanoelectronics and Hardware Security
  year: 2014
  ident: 24439_CR4
– volume: 50
  year: 2017
  ident: 24439_CR21
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/aa69ae
– volume: 10
  start-page: 14857
  year: 2018
  ident: 24439_CR19
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19836
– volume: 15
  start-page: 1266
  year: 1996
  ident: 24439_CR24
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circ. Syst.
  doi: 10.1109/43.541446
– volume-title: Physics of Semiconductor Devices
  year: 2007
  ident: 24439_CR32
– volume: 67
  start-page: 4618
  year: 2020
  ident: 24439_CR23
  publication-title: IEEE Trans. Circ. Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2020.3018502
– ident: 24439_CR20
  doi: 10.1109/SISPAD.2016.7605167
SSID ssj0000529419
Score 2.3729339
Snippet With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security...
SourceID crossref
SourceType Enrichment Source
Index Database
Title Physics inspired compact modelling of $$\hbox {BiFeO}_3$$ based memristors
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21IngRP7F-kcPeZLVJdtPkIKJiKYXqxUIPwpJPLLRb7VZoEf-7SXYrPRTB626yhxnCe7OTeQ-ASHCiW1jwmEmhXIHCZSx5Ir3XizCpcK-E_6Hfe6KdftIdpIMaWNodVQEs1pZ23k-qPx1dzT8Wt-7A35Qj4-y6cCDkB8VcWeXAync2N8CmQ6aWP6i9iu6XWt-YJ8Hrw4uwx45M4GqOZv1nVrBqBXTau2CnYovwrkzvHqiZfB9slf6RiwPQDfc3VQGHuW-YGw3DlXI1g8Hgxk-aw4mFUfT6Jidz-HU_bJvn74xEEfTopeHYjIO2wLQ4BP3248tDJ67MEWKFCE1iaxE3yFKa4iYhQhpqm9phb9PiFhJIGeuonjKuHLKYyFRTxmXKaXhGmCNRR6CeT3JzDCCSqCUVM1ooklhtmOUEJVhRpkkqiGoAtAxDpirlcG9gMcpCB5uwrAxd5kKXhdBlSQNc_u55L3Uz_lh98q_Vp2Ab-ywhFGN2Buqz6ac5d9RgJi9CSX0Rsv4DDlqxgw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+inspired+compact+modelling+of+%24%24%5Chbox+%7BBiFeO%7D_3%24%24+based+memristors&rft.jtitle=Scientific+reports&rft.au=Yarragolla%2C+Sahitya&rft.au=Du%2C+Nan&rft.au=Hemke%2C+Torben&rft.au=Zhao%2C+Xianyue&rft.date=2022-11-28&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-24439-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_022_24439_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon