Physics inspired compact modelling of $$\hbox {BiFeO}_3$$ based memristors
With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security primitives. Among the several available memristors, BiFe $$\mathrm{O}_{3}$$ O 3 (BFO)-based electroforming-free memristors have attracted co...
Saved in:
Published in | Scientific reports Vol. 12; no. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
28.11.2022
|
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-022-24439-4 |
Cover
Loading…
Abstract | With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security primitives. Among the several available memristors, BiFe
$$\mathrm{O}_{3}$$
O
3
(BFO)-based electroforming-free memristors have attracted considerable attention due to their excellent properties, such as long retention time, self-rectification, intrinsic stochasticity, and fast switching. They have been actively investigated for use in physical unclonable function (PUF) key storage modules, artificial synapses in neural networks, nonvolatile resistive switches, and reconfigurable logic applications. In this work, we present a physics-inspired 1D compact model of a BFO memristor to understand its implementation for such applications (mainly PUFs) and perform circuit simulations. The resistive switching based on electric field-driven vacancy migration and intrinsic stochastic behaviour of the BFO memristor are modelled using the cloud-in-a-cell scheme. The experimental current–voltage characteristics of the BFO memristor are successfully reproduced. The response of the BFO memristor to changes in electrical properties, environmental properties (such as temperature) and stress are analyzed and consistant with experimental results. |
---|---|
AbstractList | With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security primitives. Among the several available memristors, BiFe
$$\mathrm{O}_{3}$$
O
3
(BFO)-based electroforming-free memristors have attracted considerable attention due to their excellent properties, such as long retention time, self-rectification, intrinsic stochasticity, and fast switching. They have been actively investigated for use in physical unclonable function (PUF) key storage modules, artificial synapses in neural networks, nonvolatile resistive switches, and reconfigurable logic applications. In this work, we present a physics-inspired 1D compact model of a BFO memristor to understand its implementation for such applications (mainly PUFs) and perform circuit simulations. The resistive switching based on electric field-driven vacancy migration and intrinsic stochastic behaviour of the BFO memristor are modelled using the cloud-in-a-cell scheme. The experimental current–voltage characteristics of the BFO memristor are successfully reproduced. The response of the BFO memristor to changes in electrical properties, environmental properties (such as temperature) and stress are analyzed and consistant with experimental results. |
ArticleNumber | 20490 |
Author | Yarragolla, Sahitya Mussenbrock, Thomas Zhao, Xianyue Hemke, Torben Du, Nan Polian, Ilia Chen, Ziang |
Author_xml | – sequence: 1 givenname: Sahitya orcidid: 0000-0002-2973-4943 surname: Yarragolla fullname: Yarragolla, Sahitya – sequence: 2 givenname: Nan orcidid: 0000-0002-7775-7795 surname: Du fullname: Du, Nan – sequence: 3 givenname: Torben orcidid: 0000-0003-2436-5840 surname: Hemke fullname: Hemke, Torben – sequence: 4 givenname: Xianyue surname: Zhao fullname: Zhao, Xianyue – sequence: 5 givenname: Ziang surname: Chen fullname: Chen, Ziang – sequence: 6 givenname: Ilia orcidid: 0000-0002-6563-2725 surname: Polian fullname: Polian, Ilia – sequence: 7 givenname: Thomas orcidid: 0000-0001-6445-4990 surname: Mussenbrock fullname: Mussenbrock, Thomas |
BookMark | eNp9kD1PwzAURS1UJErpH2DykNXg78YjVJQPVSoDbEiW49jUKIkjOwMV4r8TWgbEwFvu09M7dzinYNLFzgFwTvAFway8zJwIVSJMKaKcM4X4EZhSzAWijNLJr_0EzHN-w-MIqjhRU_DwuN3lYDMMXe5DcjW0se2NHWAba9c0oXuF0cOieNlW8R1-XIeV23xqVhSwMnl8b12bQh5iymfg2Jsmu_lPzsDz6uZpeYfWm9v75dUaWcIkR94T5YiXUlDMmKmc9LguBcOeLogh1nkisHULIj1llahlqSqh5P7GSk7ZDNBDr00x5-S87lNoTdppgvW3EH0Qokchei9E8xEq_0A2DGYIsRuSCc1_6BdAhmXv |
CitedBy_id | crossref_primary_10_1016_j_carbon_2024_118931 crossref_primary_10_3390_s24155001 crossref_primary_10_1063_5_0202230 crossref_primary_10_1039_D3MA00069A crossref_primary_10_1039_D3TC03244B crossref_primary_10_1038_s41598_024_74667_z crossref_primary_10_1038_s41598_024_80568_y crossref_primary_10_1080_00150193_2023_2215502 crossref_primary_10_1103_PhysRevApplied_22_034028 |
Cites_doi | 10.1126/science.1168636 10.1109/JIOT.2018.2864594 10.1016/j.mtadv.2020.100056 10.1063/1.3589814 10.1038/s41467-017-00869-x 10.1038/srep02208 10.1007/978-3-642-11710-7 10.1002/aelm.201800872 10.3389/fnins.2021.660894 10.1038/nmat2023 10.1103/PhysRevApplied.10.054025 10.7567/jjap.57.121502 10.1021/am504871g 10.1038/srep18623 10.1017/CBO9780511524790 10.1109/ICCE.2019.8661912 10.1109/TED.2014.2325531 10.1038/srep35686 10.1109/IVSW.2019.8854394 10.1002/pssc.201200881 10.1109/HST.2017.7951797 10.1016/j.apsusc.2014.12.136 10.1038/s41598-022-11240-6 10.1038/srep13753 10.1063/5.0084085 10.1016/S0921-4526(01)00631-7 10.1002/aelm.202100536 10.1109/NVMT.2008.4731194 10.1002/adfm.201303365 10.1016/j.nanoms.2021.01.001 10.1007/s10854-016-4784-y 10.1088/1361-6463/aa69ae 10.1021/acsami.7b19836 10.1109/43.541446 10.1109/TCSI.2020.3018502 10.1109/SISPAD.2016.7605167 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1038/s41598-022-24439-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | 10_1038_s41598_022_24439_4 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML AAYXX ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU CITATION DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M48 M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP |
ID | FETCH-LOGICAL-c1364-ff19e1f6652033abe6f0d8530f271a1cef150ce716f23b5d689b59650ce738423 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Apr 24 22:59:49 EDT 2025 Tue Jul 01 00:55:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1364-ff19e1f6652033abe6f0d8530f271a1cef150ce716f23b5d689b59650ce738423 |
ORCID | 0000-0002-6563-2725 0000-0001-6445-4990 0000-0003-2436-5840 0000-0002-7775-7795 0000-0002-2973-4943 |
OpenAccessLink | https://www.nature.com/articles/s41598-022-24439-4.pdf |
ParticipantIDs | crossref_primary_10_1038_s41598_022_24439_4 crossref_citationtrail_10_1038_s41598_022_24439_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-28 |
PublicationDateYYYYMMDD | 2022-11-28 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Scientific reports |
PublicationYear | 2022 |
References | M Hansen (24439_CR17) 2015; 5 B Sun (24439_CR36) 2020; 6 Y Pang (24439_CR5) 2019; 5 SE Laux (24439_CR24) 1996; 15 T Choi (24439_CR27) 2009; 324 E Solan (24439_CR21) 2017; 50 Y Shuai (24439_CR37) 2013; 10 G Rajendran (24439_CR7) 2021; 7 B Chen (24439_CR1) 2019; 6 C Wang (24439_CR28) 2011; 98 24439_CR41 24439_CR20 HEA Jiang (24439_CR10) 2017; 8 L Jin (24439_CR42) 2015; 336 T You (24439_CR30) 2014; 6 GS Rose (24439_CR4) 2014 S Ambrogio (24439_CR22) 2014; 61 S Rajendran (24439_CR3) 2021 Y Lei (24439_CR29) 2016; 27 N Du (24439_CR6) 2021; 3 MS Tyagi (24439_CR33) 1984 HM Ibrahim (24439_CR9) 2022; 12 24439_CR13 24439_CR35 Y Shuai (24439_CR38) 2018; 57 Y Shuai (24439_CR14) 2013; 3 M Hudait (24439_CR39) 2001; 307 N Du (24439_CR15) 2018; 10 RH Weber (24439_CR2) 2010 S Dirkmann (24439_CR18) 2016; 6 R Waser (24439_CR12) 2007; 6 S Yarragolla (24439_CR25) 2022; 131 T You (24439_CR31) 2015; 5 24439_CR11 N Du (24439_CR40) 2021 C Bengel (24439_CR23) 2020; 67 S Saha (24439_CR26) 2015 24439_CR8 S Dirkmann (24439_CR19) 2018; 10 SM Sze (24439_CR32) 2007 PG Bruce (24439_CR34) 1994 T You (24439_CR16) 2014; 24 |
References_xml | – volume: 324 start-page: 63 year: 2009 ident: 24439_CR27 publication-title: Science doi: 10.1126/science.1168636 – volume: 6 start-page: 435 year: 2019 ident: 24439_CR1 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2864594 – volume: 6 year: 2020 ident: 24439_CR36 publication-title: Mater. Today Adv. doi: 10.1016/j.mtadv.2020.100056 – volume: 98 year: 2011 ident: 24439_CR28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3589814 – start-page: 1 volume-title: Physics of Schottky Barrier Junctions year: 1984 ident: 24439_CR33 – volume-title: Security of Internet of Things Nodes: Challenges, Attacks, and Countermeasures year: 2021 ident: 24439_CR3 – volume: 8 start-page: 882 year: 2017 ident: 24439_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00869-x – volume: 3 start-page: 2208 year: 2013 ident: 24439_CR14 publication-title: Sci. Rep. doi: 10.1038/srep02208 – volume-title: Internet of Things year: 2010 ident: 24439_CR2 doi: 10.1007/978-3-642-11710-7 – volume: 5 start-page: 1800872 year: 2019 ident: 24439_CR5 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800872 – year: 2021 ident: 24439_CR40 publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.660894 – volume: 6 start-page: 833 year: 2007 ident: 24439_CR12 publication-title: Nat. Mater. doi: 10.1038/nmat2023 – volume: 10 year: 2018 ident: 24439_CR15 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.054025 – volume: 57 year: 2018 ident: 24439_CR38 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/jjap.57.121502 – volume: 6 start-page: 19758 year: 2014 ident: 24439_CR30 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am504871g – volume: 5 start-page: 18623 year: 2015 ident: 24439_CR31 publication-title: Sci. Rep. doi: 10.1038/srep18623 – volume-title: Solid State Electrochemistry. Chemistry of Solid State Materials year: 1994 ident: 24439_CR34 doi: 10.1017/CBO9780511524790 – ident: 24439_CR41 – ident: 24439_CR8 doi: 10.1109/ICCE.2019.8661912 – volume: 61 start-page: 2378 year: 2014 ident: 24439_CR22 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2014.2325531 – volume: 6 start-page: 35686 year: 2016 ident: 24439_CR18 publication-title: Sci. Rep. doi: 10.1038/srep35686 – ident: 24439_CR13 doi: 10.1109/IVSW.2019.8854394 – volume-title: Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond year: 2015 ident: 24439_CR26 – volume: 10 start-page: 636 year: 2013 ident: 24439_CR37 publication-title: Phys. Status Solidi C doi: 10.1002/pssc.201200881 – ident: 24439_CR11 doi: 10.1109/HST.2017.7951797 – volume: 336 start-page: 354 year: 2015 ident: 24439_CR42 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.12.136 – volume: 12 start-page: 8633 year: 2022 ident: 24439_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-022-11240-6 – volume: 5 start-page: 13753 year: 2015 ident: 24439_CR17 publication-title: Sci. Rep. doi: 10.1038/srep13753 – volume: 131 year: 2022 ident: 24439_CR25 publication-title: J. Appl. Phys. doi: 10.1063/5.0084085 – volume: 307 start-page: 125 year: 2001 ident: 24439_CR39 publication-title: Phys. B doi: 10.1016/S0921-4526(01)00631-7 – volume: 7 start-page: 2100536 year: 2021 ident: 24439_CR7 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202100536 – ident: 24439_CR35 doi: 10.1109/NVMT.2008.4731194 – volume: 24 start-page: 3357 year: 2014 ident: 24439_CR16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303365 – volume: 3 start-page: 186 year: 2021 ident: 24439_CR6 publication-title: Nano Mater. Sci. doi: 10.1016/j.nanoms.2021.01.001 – volume: 27 start-page: 7927 year: 2016 ident: 24439_CR29 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-016-4784-y – start-page: 105 volume-title: Nanoelectronics and Hardware Security year: 2014 ident: 24439_CR4 – volume: 50 year: 2017 ident: 24439_CR21 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/aa69ae – volume: 10 start-page: 14857 year: 2018 ident: 24439_CR19 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19836 – volume: 15 start-page: 1266 year: 1996 ident: 24439_CR24 publication-title: IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. doi: 10.1109/43.541446 – volume-title: Physics of Semiconductor Devices year: 2007 ident: 24439_CR32 – volume: 67 start-page: 4618 year: 2020 ident: 24439_CR23 publication-title: IEEE Trans. Circ. Syst. I Regul. Pap. doi: 10.1109/TCSI.2020.3018502 – ident: 24439_CR20 doi: 10.1109/SISPAD.2016.7605167 |
SSID | ssj0000529419 |
Score | 2.3729339 |
Snippet | With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
Title | Physics inspired compact modelling of $$\hbox {BiFeO}_3$$ based memristors |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21IngRP7F-kcPeZLVJdtPkIKJiKYXqxUIPwpJPLLRb7VZoEf-7SXYrPRTB626yhxnCe7OTeQ-ASHCiW1jwmEmhXIHCZSx5Ir3XizCpcK-E_6Hfe6KdftIdpIMaWNodVQEs1pZ23k-qPx1dzT8Wt-7A35Qj4-y6cCDkB8VcWeXAync2N8CmQ6aWP6i9iu6XWt-YJ8Hrw4uwx45M4GqOZv1nVrBqBXTau2CnYovwrkzvHqiZfB9slf6RiwPQDfc3VQGHuW-YGw3DlXI1g8Hgxk-aw4mFUfT6Jidz-HU_bJvn74xEEfTopeHYjIO2wLQ4BP3248tDJ67MEWKFCE1iaxE3yFKa4iYhQhpqm9phb9PiFhJIGeuonjKuHLKYyFRTxmXKaXhGmCNRR6CeT3JzDCCSqCUVM1ooklhtmOUEJVhRpkkqiGoAtAxDpirlcG9gMcpCB5uwrAxd5kKXhdBlSQNc_u55L3Uz_lh98q_Vp2Ab-ywhFGN2Buqz6ac5d9RgJi9CSX0Rsv4DDlqxgw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+inspired+compact+modelling+of+%24%24%5Chbox+%7BBiFeO%7D_3%24%24+based+memristors&rft.jtitle=Scientific+reports&rft.au=Yarragolla%2C+Sahitya&rft.au=Du%2C+Nan&rft.au=Hemke%2C+Torben&rft.au=Zhao%2C+Xianyue&rft.date=2022-11-28&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-24439-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_022_24439_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |