Revealing the marked differences of phosphorescence efficiencies on C˄N˄N‐coordinated Pt(II) complexes: A theoretical study

In this study, green phosphorescent Pt(II) complexes with N,N‐diphenyl‐6‐(1H‐pyrazol‐1‐yl)pyridin‐2‐amine (Ndpp) coordinated ligands, [Pt (Ndpp)Cl] 2a, [Pt (Ndpp)Pb, Pb = (prop‐1‐ynyl)benzene] 2b, and [Pt (Ndpp)CN] 2aCN were theoretically investigated by means of density functional theory and time‐...

Full description

Saved in:
Bibliographic Details
Published inApplied organometallic chemistry Vol. 35; no. 1
Main Authors Ren, Xue‐Feng, Liu, Xia, Kang, Guo‐Jun, Li, Ke
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, green phosphorescent Pt(II) complexes with N,N‐diphenyl‐6‐(1H‐pyrazol‐1‐yl)pyridin‐2‐amine (Ndpp) coordinated ligands, [Pt (Ndpp)Cl] 2a, [Pt (Ndpp)Pb, Pb = (prop‐1‐ynyl)benzene] 2b, and [Pt (Ndpp)CN] 2aCN were theoretically investigated by means of density functional theory and time‐dependent density functional theory calculations to reveal their marked distinct phosphorescence quantum yields. These complexes exhibit evident absorption bands in the 200–450 nm region but emit strong green light with marked differences of phosphorescence quantum yields. Compared with the complex 2a, the complex 2b possesses large oscillator strengths of absorption spectra, strong spin‐orbit coupling, and transition electric dipole moment, as well as small singlet‐triplet splitting energies, which conduces to enhancing its radiative decay. To illustrate the nonradiative decay process, the transition state (TS) between the triplet metal‐centered (3MC) state and the excited state (T1) was optimized. The 3MC state is found to be the minimum energy crossing point (MECP) between the T1 state and the S0 state. Compared with the complex 2a, the complex 2b possesses a much larger energy barrier to the MECP state from the T1 state, so it is strongly emissive in the green region. Besides, the introduction of CN substitutions on 2a is useful for enhancing the energy barrier to the thermal deactivation pathway of 3MLCT → TS → MECP. These results demonstrate that the modification of metal–ligand conjugation is an effective way to develop high‐performance phosphorescent materials. The effect of cyclometalated ligand on Фem was theoretically analyzed. Complex 2b and 2aCN possesses a much larger energy barrier to the MECP state from the T1 state relative to 2b, so they strongly emissive in the green region.
AbstractList In this study, green phosphorescent Pt(II) complexes with N,N‐diphenyl‐6‐(1H‐pyrazol‐1‐yl)pyridin‐2‐amine (Ndpp) coordinated ligands, [Pt (Ndpp)Cl] 2a , [Pt (Ndpp)Pb, Pb = (prop‐1‐ynyl)benzene] 2b , and [Pt (Ndpp)CN] 2aCN were theoretically investigated by means of density functional theory and time‐dependent density functional theory calculations to reveal their marked distinct phosphorescence quantum yields. These complexes exhibit evident absorption bands in the 200–450 nm region but emit strong green light with marked differences of phosphorescence quantum yields. Compared with the complex 2a , the complex 2b possesses large oscillator strengths of absorption spectra, strong spin‐orbit coupling, and transition electric dipole moment, as well as small singlet‐triplet splitting energies, which conduces to enhancing its radiative decay. To illustrate the nonradiative decay process, the transition state (TS) between the triplet metal‐centered ( 3 MC) state and the excited state ( T 1 ) was optimized. The 3 MC state is found to be the minimum energy crossing point (MECP) between the T 1 state and the S 0 state. Compared with the complex 2a , the complex 2b possesses a much larger energy barrier to the MECP state from the T 1 state, so it is strongly emissive in the green region. Besides, the introduction of CN substitutions on 2a is useful for enhancing the energy barrier to the thermal deactivation pathway of 3 MLCT → TS → MECP. These results demonstrate that the modification of metal–ligand conjugation is an effective way to develop high‐performance phosphorescent materials.
In this study, green phosphorescent Pt(II) complexes with N,N‐diphenyl‐6‐(1H‐pyrazol‐1‐yl)pyridin‐2‐amine (Ndpp) coordinated ligands, [Pt (Ndpp)Cl] 2a, [Pt (Ndpp)Pb, Pb = (prop‐1‐ynyl)benzene] 2b, and [Pt (Ndpp)CN] 2aCN were theoretically investigated by means of density functional theory and time‐dependent density functional theory calculations to reveal their marked distinct phosphorescence quantum yields. These complexes exhibit evident absorption bands in the 200–450 nm region but emit strong green light with marked differences of phosphorescence quantum yields. Compared with the complex 2a, the complex 2b possesses large oscillator strengths of absorption spectra, strong spin‐orbit coupling, and transition electric dipole moment, as well as small singlet‐triplet splitting energies, which conduces to enhancing its radiative decay. To illustrate the nonradiative decay process, the transition state (TS) between the triplet metal‐centered (3MC) state and the excited state (T1) was optimized. The 3MC state is found to be the minimum energy crossing point (MECP) between the T1 state and the S0 state. Compared with the complex 2a, the complex 2b possesses a much larger energy barrier to the MECP state from the T1 state, so it is strongly emissive in the green region. Besides, the introduction of CN substitutions on 2a is useful for enhancing the energy barrier to the thermal deactivation pathway of 3MLCT → TS → MECP. These results demonstrate that the modification of metal–ligand conjugation is an effective way to develop high‐performance phosphorescent materials. The effect of cyclometalated ligand on Фem was theoretically analyzed. Complex 2b and 2aCN possesses a much larger energy barrier to the MECP state from the T1 state relative to 2b, so they strongly emissive in the green region.
In this study, green phosphorescent Pt(II) complexes with N,N‐diphenyl‐6‐(1H‐pyrazol‐1‐yl)pyridin‐2‐amine (Ndpp) coordinated ligands, [Pt (Ndpp)Cl] 2a, [Pt (Ndpp)Pb, Pb = (prop‐1‐ynyl)benzene] 2b, and [Pt (Ndpp)CN] 2aCN were theoretically investigated by means of density functional theory and time‐dependent density functional theory calculations to reveal their marked distinct phosphorescence quantum yields. These complexes exhibit evident absorption bands in the 200–450 nm region but emit strong green light with marked differences of phosphorescence quantum yields. Compared with the complex 2a, the complex 2b possesses large oscillator strengths of absorption spectra, strong spin‐orbit coupling, and transition electric dipole moment, as well as small singlet‐triplet splitting energies, which conduces to enhancing its radiative decay. To illustrate the nonradiative decay process, the transition state (TS) between the triplet metal‐centered (3MC) state and the excited state (T1) was optimized. The 3MC state is found to be the minimum energy crossing point (MECP) between the T1 state and the S0 state. Compared with the complex 2a, the complex 2b possesses a much larger energy barrier to the MECP state from the T1 state, so it is strongly emissive in the green region. Besides, the introduction of CN substitutions on 2a is useful for enhancing the energy barrier to the thermal deactivation pathway of 3MLCT → TS → MECP. These results demonstrate that the modification of metal–ligand conjugation is an effective way to develop high‐performance phosphorescent materials.
Author Ren, Xue‐Feng
Liu, Xia
Li, Ke
Kang, Guo‐Jun
Author_xml – sequence: 1
  givenname: Xue‐Feng
  orcidid: 0000-0003-2116-4007
  surname: Ren
  fullname: Ren, Xue‐Feng
  organization: China University of Mining and Technology
– sequence: 2
  givenname: Xia
  surname: Liu
  fullname: Liu, Xia
  organization: China University of Mining and Technology
– sequence: 3
  givenname: Guo‐Jun
  surname: Kang
  fullname: Kang, Guo‐Jun
  email: gjkang@cumt.edu.cn
  organization: China University of Mining and Technology
– sequence: 4
  givenname: Ke
  surname: Li
  fullname: Li, Ke
  organization: China University of Mining and Technology
BookMark eNp1kEtOwzAQhi0EEm1B4giW2JRFih-Jk7CrKh6VKooQrCPXGVOXNC52CnQFCw7AvbgFJ8GhbJFmNKOZb_6R_i7arW0NCB1RMqCEsFNp1UCQlO2gDiV5HpGU57uoQ5jIIiZIso-63i8IIbmgcQe93cIzyMrUD7iZA15K9wglLo3W4KBW4LHVeDW3PqQDr9oZBq2NMqE17b7Go6-P6xDf75_KWleaWjZB5Kbpj8cnWNnlqoJX8Gd42P4IMo1RssK-WZebA7SnZeXh8K_20P3F-d3oKppML8ej4SRSlAsWJUBj4DxmWUJ5KpSQsZIZI5qmcaqzJOMlz3QyiwVVaqZkqsWMl1qylJXhhvEeOt7qrpx9WoNvioVduzq8LFicBhXGqAhUf0spZ713oIuVM8GTTUFJ0dpbBHuL1t6ARlv0xVSw-ZcrhtPRL_8DPk9_2Q
Cites_doi 10.1039/C5SC03766B
10.1039/C9QI00844F
10.1103/PhysRevLett.77.3865
10.1021/ic100872w
10.1063/1.478522
10.1063/1.448799
10.1021/ic400732g
10.1063/1.448800
10.1021/acs.inorgchem.7b00946
10.1063/1.124258
10.1039/C8CS00075A
10.1021/ic501430x
10.1016/j.ccr.2008.03.014
10.1002/aoc.4879
10.1007/s002140050309
10.1039/a907723e
10.1016/j.cplett.2019.137077
10.1021/acs.jpcc.8b02768
10.1016/0263-7855(96)00018-5
10.1016/j.orgel.2016.11.012
10.1002/chem.201806174
10.1021/acs.inorgchem.8b01828
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/aoc.6072
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0739
EndPage n/a
ExternalDocumentID 10_1002_aoc_6072
AOC6072
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2017XKQY065
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M21
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWK
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YCJ
ZZTAW
~IA
~WT
AAYXX
CITATION
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c1362-5e14e3342851376c6a4ca820f1747f8583d38f5b461ccbca7f6b3dfa272d28523
IEDL.DBID DR2
ISSN 0268-2605
IngestDate Fri Sep 13 01:04:36 EDT 2024
Fri Aug 23 02:51:26 EDT 2024
Sat Aug 24 01:06:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1362-5e14e3342851376c6a4ca820f1747f8583d38f5b461ccbca7f6b3dfa272d28523
ORCID 0000-0003-2116-4007
PQID 2471742216
PQPubID 2045198
PageCount 10
ParticipantIDs proquest_journals_2471742216
crossref_primary_10_1002_aoc_6072
wiley_primary_10_1002_aoc_6072_AOC6072
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Applied organometallic chemistry
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 122
2016; 7
2017; 41
2010; 49
2019; 6
2019; 33
2010
2019; 48
2013; 52
2019; 25
2017; 56
1999; 110
2008
1999; 75
2020; 5739
1985; 82
2020; 740
1999; 1
1996; 14
2008; 252
1998; 99
2014; 53
1996; 77
2018; 57
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Gareth Williams J. A. (e_1_2_8_4_1) 2008; 252
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
Yersin H. (e_1_2_8_26_1) 2008
e_1_2_8_16_1
Kang G.‐J. (e_1_2_8_10_1) 2020; 5739
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 25
  start-page: 4202
  year: 2019
  publication-title: Chem. – Eur. J.
– volume: 82
  start-page: 270
  issue: 1
  year: 1985
  publication-title: J. Chem. Phys.
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 41
  start-page: 251
  year: 2017
  publication-title: Org. Electron.
– volume: 53
  start-page: 11015
  issue: 20
  year: 2014
  publication-title: Inorg. Chem.
– volume: 110
  start-page: 6158
  issue: 13
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 56
  start-page: 8986
  year: 2017
  publication-title: Inorg. Chem.
– volume: 99
  start-page: 95
  issue: 2
  year: 1998
  publication-title: Theor. Chem. Acc.
– volume: 75
  start-page: 4
  year: 1999
  publication-title: Appl. Phys. Lett.
– volume: 122
  start-page: 16872
  issue: 29
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 1653
  issue: 3
  year: 2016
  publication-title: Chem. Sci.
– volume: 5739
  year: 2020
  publication-title: Appl. Organomet. Chem.
– volume: 740
  year: 2020
  publication-title: Chem. Phys. Lett.
– year: 2010
– volume: 49
  start-page: 9290
  year: 2010
  publication-title: Inorg. Chem.
– volume: 82
  start-page: 284
  issue: 1
  year: 1985
  publication-title: J. Chem. Phys.
– volume: 1
  start-page: 5555
  issue: 24
  year: 1999
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  start-page: 33
  year: 1996
  publication-title: J. Mol. Graph.
– start-page: 1
  year: 2008
– volume: 33
  start-page: 4879
  issue: 7
  year: 2019
  publication-title: Appl. Organomet. Chem.
– volume: 52
  start-page: 11711
  issue: 20
  year: 2013
  publication-title: Inorg. Chem.
– volume: 48
  start-page: 5033
  issue: 19
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 2776
  issue: 10
  year: 2019
  publication-title: Inorg. Chem. Front.
– volume: 57
  start-page: 12174
  issue: 19
  year: 2018
  publication-title: Inorg. Chem.
– volume: 252
  start-page: 2596
  issue: 23
  year: 2008
  publication-title: Coord. Chem. Rev.
– ident: e_1_2_8_2_1
  doi: 10.1039/C5SC03766B
– ident: e_1_2_8_6_1
  doi: 10.1039/C9QI00844F
– ident: e_1_2_8_14_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_27_1
  doi: 10.1021/ic100872w
– ident: e_1_2_8_13_1
  doi: 10.1063/1.478522
– ident: e_1_2_8_22_1
– volume: 5739
  year: 2020
  ident: e_1_2_8_10_1
  publication-title: Appl. Organomet. Chem.
  contributor:
    fullname: Kang G.‐J.
– ident: e_1_2_8_17_1
  doi: 10.1063/1.448799
– ident: e_1_2_8_5_1
  doi: 10.1021/ic400732g
– ident: e_1_2_8_18_1
  doi: 10.1063/1.448800
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.inorgchem.7b00946
– ident: e_1_2_8_25_1
  doi: 10.1063/1.124258
– ident: e_1_2_8_3_1
  doi: 10.1039/C8CS00075A
– ident: e_1_2_8_12_1
  doi: 10.1021/ic501430x
– start-page: 1
  volume-title: In Highly Efficient OLEDs with Phosphorescent Materials
  year: 2008
  ident: e_1_2_8_26_1
  contributor:
    fullname: Yersin H.
– volume: 252
  start-page: 2596
  issue: 23
  year: 2008
  ident: e_1_2_8_4_1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2008.03.014
  contributor:
    fullname: Gareth Williams J. A.
– ident: e_1_2_8_9_1
  doi: 10.1002/aoc.4879
– ident: e_1_2_8_21_1
  doi: 10.1007/s002140050309
– ident: e_1_2_8_20_1
  doi: 10.1039/a907723e
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cplett.2019.137077
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.jpcc.8b02768
– ident: e_1_2_8_19_1
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_8_11_1
  doi: 10.1016/j.orgel.2016.11.012
– ident: e_1_2_8_7_1
  doi: 10.1002/chem.201806174
– ident: e_1_2_8_23_1
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.inorgchem.8b01828
SSID ssj0009614
Score 2.3035688
Snippet In this study, green phosphorescent Pt(II) complexes with N,N‐diphenyl‐6‐(1H‐pyrazol‐1‐yl)pyridin‐2‐amine (Ndpp) coordinated ligands, [Pt (Ndpp)Cl] 2a, [Pt...
In this study, green phosphorescent Pt(II) complexes with N,N‐diphenyl‐6‐(1H‐pyrazol‐1‐yl)pyridin‐2‐amine (Ndpp) coordinated ligands, [Pt (Ndpp)Cl] 2a , [Pt...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms 3MC
Absorption spectra
Benzene
Chemistry
Conjugation
Decay
Density functional theory
Dipole moments
Electric dipoles
Ligands
MECP
Oscillator strengths
Phosphorescence
phosphorescence quantum yields
Title Revealing the marked differences of phosphorescence efficiencies on C˄N˄N‐coordinated Pt(II) complexes: A theoretical study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faoc.6072
https://www.proquest.com/docview/2471742216/abstract/
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iRS--xfVFBBE97G6TNmn1tiwuruAqoiB4KHkVRWyX7SriRQ_-AP-X_8Jf4iRtXRUEEVp6aALNY2a-SWe-QWhTC6G0oazOCOf1ICICZM63XgqJEkMSsBH2j-5Rjx-cB4cX7KKMqrS5MAU_xOeBm5UMp6-tgAuZN0ekoSJTDe6FVv1aHj2Lh05HzFG7vKD1phw2AkD2infWo82q43dLNIKXX0GqszKdaXRZfV8RXHLTuBvKhnr8Qd34vwHMoKkSfOJWsVtm0ZhJ59BEu6r5No-eTs09IEcwZxiAIb61sTsaV0VUQKXgLMH9qyyHe-CIoJTBxrFQGFvlF96nuP320oPr_flVZeDaXqcAZzU-GW53uzvYhbCbB5Pv4Rb-kkWJHc_tAjrv7J-1D-pliYa6IjbfihkSGN8HH4YRUFWKi0AJABUJODphErHI136UMBlwopRUIky49HUiaEg19KH-IhpPs9QsIRxxxTxPSh_aBkxEEqZGS48aEWlpRFhDG9Vyxf2CiSMuOJdpDFMZ26msodVqHeNSFvOYgv0NA0oJr6EttyC_9o9bx237XP5rwxU0SW2QizuTWUXjw8GdWQOUMpTrbj9-AAtt5g4
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5ED-7F58qOz15YZD3MmO6kO1FPw6DM7OqsiIKHhdCvoIiJOKOIFz34A_xf_gt_idWdiaPCwiIk5JBuSD-q6qtO1VcAP4yU2ljG65wKUY8SKlHmQuel0CSzNEMb4f7o7nVF-yj6dcyPR2CryoUp-SFeD9ycZHh97QTcHUivD1lDZaEbIohR_46htHPvTx0MuaM2REnszQRuBQTtFfNswNarnu9t0RBgvoWp3s7sTMLf6gvL8JKzxlVfNfTtB_LGTw5hCiYG-JM0yw0zDSM2n4HxVlX2bRbuDuw1gke0aASxITl34TuGVHVUUKuQIiMXJ0UP70vPBaUtsZ6IwrpCv_g-J62nhy5ez_ePukDv9jRHRGvIfv9np7NGfBS7vbG9TdIkbxIpiae6_QpHO9uHrXZ9UKWhrqlLueKWRjYM0Y3hFLWVFjLSEnFFhr5OnCU8CU2YZFxFgmqttIwzoUKTSRYzg31YOAejeZHbb0ASoXkQKBVi24jLROHUGBUwKxOjrIxr8L1ar_SiJONIS9plluJUpm4qa7BYLWQ6EMdeytAExxFjVNRg1a_IP_unzT8t95z_34YrMN4-3NtNdzvd3wvwhbmYF39Eswij_csru4Sgpa-W_eZ8AXUn6jA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datswFBalhW4369ptLG22alDGduHUkizZ211IFpK1y0pZobALo182Su3QJKXsZrvoA_S99hZ9kh7JdtMVBmNg4wtLYEnn5zvy0XcQ2jFSamMpjzgRIkoyIkHnmI9SSOYsceAj_B_dT2MxPEo-HvPjOqvSn4Wp-CFuN9y8ZgR77RV8YtzugjRUlroj4hTM70oiGPUS3T9cUEe9ExWvNxUgCYDZG-LZmO42Pf90RQt8eRelBjczWENfmw-ssktOOvOZ6ugf97gb_28Ej9GjGn3ibiUu62jJFhvoQa8p-vYE_Ty05wAdwZ9hQIb41CfvGNxUUQGbgkuHJ9_KKdxngQlKW2wDDYX1ZX7hfYF7vy_HcF3_utIlxLbfC8CzBh_M3oxGb3HIYbcXdvoed_GdY5Q4EN0-RUeDD196w6iu0RBp4g9ccUsSyxgEMZyArdJCJloCqnAQ6aQu4xkzLHNcJYJorbRMnVDMOElTaqAPZc_QclEW9jnCmdA8jpVi0DbhMlMwNUbF1MrMKCvTFnrVLFc-qag48op0meYwlbmfyhZqN-uY18o4zSk44DShlIgWeh0W5K_98-7nnn9u_mvDbbR60B_k-6Px3hZ6SH3CS9ifaaPl2dncvgDEMlMvg2jeANcj6N8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+marked+differences+of+phosphorescence+efficiencies+on+C+%CB%84+N+%CB%84+N%E2%80%90coordinated+Pt%28II%29+complexes%3A+A+theoretical+study&rft.jtitle=Applied+organometallic+chemistry&rft.au=Ren%2C+Xue%E2%80%90Feng&rft.au=Liu%2C+Xia&rft.au=Kang%2C+Guo%E2%80%90Jun&rft.au=Li%2C+Ke&rft.date=2021-01-01&rft.issn=0268-2605&rft.eissn=1099-0739&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1002%2Faoc.6072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aoc_6072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2605&client=summon