CLARE: Cognitive Load Assessment in Real-time with Multimodal Data
We present a novel multimodal dataset for Cognitive Load Assessment in REal-time (CLARE). The dataset contains physiological and Gaze data from 24 participants with self-reported cognitive load scores as ground-truth labels. The dataset includes four modalities: Electrocardiography (ECG), Electroder...
Saved in:
Published in | IEEE transactions on cognitive and developmental systems pp. 1 - 13 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2379-8920 2379-8939 |
DOI | 10.1109/TCDS.2025.3555517 |
Cover
Loading…
Abstract | We present a novel multimodal dataset for Cognitive Load Assessment in REal-time (CLARE). The dataset contains physiological and Gaze data from 24 participants with self-reported cognitive load scores as ground-truth labels. The dataset includes four modalities: Electrocardiography (ECG), Electrodermal Activity (EDA), Electroencephalogram (EEG), and Gaze tracking. Each participant completed four nine-minute sessions using the MATB-II software, a computer-based mental workload task. The sessions were divided into one-minute segments of varying complexity to induce different levels of cognitive load. During the experiment, participants reported their cognitive load every 10 seconds. For the dataset, we also provide benchmark binary classification results with machine learning and deep learning models on two different evaluation schemes, namely, 10-fold and leave-one-subject-out (LOSO) cross-validation. Benchmark results show that for 10-fold evaluation, the Transformer based deep learning model achieves the best classification performance with ECG, EDA, and Gaze. In contrast, for LOSO, the best performance is achieved by the deep learning model with ECG, EDA, and EEG. |
---|---|
AbstractList | We present a novel multimodal dataset for Cognitive Load Assessment in REal-time (CLARE). The dataset contains physiological and Gaze data from 24 participants with self-reported cognitive load scores as ground-truth labels. The dataset includes four modalities: Electrocardiography (ECG), Electrodermal Activity (EDA), Electroencephalogram (EEG), and Gaze tracking. Each participant completed four nine-minute sessions using the MATB-II software, a computer-based mental workload task. The sessions were divided into one-minute segments of varying complexity to induce different levels of cognitive load. During the experiment, participants reported their cognitive load every 10 seconds. For the dataset, we also provide benchmark binary classification results with machine learning and deep learning models on two different evaluation schemes, namely, 10-fold and leave-one-subject-out (LOSO) cross-validation. Benchmark results show that for 10-fold evaluation, the Transformer based deep learning model achieves the best classification performance with ECG, EDA, and Gaze. In contrast, for LOSO, the best performance is achieved by the deep learning model with ECG, EDA, and EEG. |
Author | Bhatti, Anubhav Angkan, Prithila Ruberto, Aaron Braund, Heather Rodenburg, Dirk Harrison, Geoffery Mclellan, P. James Szulewski, Adam Howes, Dan Mahmud, Zunayed Behinaein, Behnam Etemad, Ali Wilson, Daryl Hungler, Paul |
Author_xml | – sequence: 1 givenname: Anubhav surname: Bhatti fullname: Bhatti, Anubhav email: anubhav.bhatti@queensu.ca organization: Department of Electrical and Computer Engineering and Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada – sequence: 2 givenname: Prithila surname: Angkan fullname: Angkan, Prithila email: prithila.angkan@queensu.ca organization: Department of Electrical and Computer Engineering and Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada – sequence: 3 givenname: Behnam surname: Behinaein fullname: Behinaein, Behnam email: 9hbb@queensu.ca organization: Department of Electrical and Computer Engineering and Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada – sequence: 4 givenname: Zunayed surname: Mahmud fullname: Mahmud, Zunayed email: zunayed.mahmud@queensu.ca organization: Department of Electrical and Computer Engineering and Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada – sequence: 5 givenname: Dirk surname: Rodenburg fullname: Rodenburg, Dirk email: d.rodenburg@queensu.ca organization: Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada – sequence: 6 givenname: Heather surname: Braund fullname: Braund, Heather email: heather.braund@queensu.ca organization: School of Medicine, Queen's University, Kingston, Ontario, Canada – sequence: 7 givenname: P. James surname: Mclellan fullname: Mclellan, P. James email: james.mclellan@queensu.ca organization: Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada – sequence: 8 givenname: Aaron surname: Ruberto fullname: Ruberto, Aaron email: a.ruberto@queensu.ca organization: School of Medicine, Queen's University, Kingston, Ontario, Canada – sequence: 9 givenname: Geoffery surname: Harrison fullname: Harrison, Geoffery email: 8gh3@queensu.ca@queensu.ca organization: Department of Psychology, Queen's University, Kingston, Ontario, Canada – sequence: 10 givenname: Daryl surname: Wilson fullname: Wilson, Daryl email: daryl.wilson@queensu.ca organization: Department of Psychology, Queen's University, Kingston, Ontario, Canada – sequence: 11 givenname: Adam surname: Szulewski fullname: Szulewski, Adam email: adam.szulewski@queensu.ca organization: School of Medicine, Queen's University, Kingston, Ontario, Canada – sequence: 12 givenname: Dan surname: Howes fullname: Howes, Dan email: d.howes@queensu.ca organization: School of Medicine, Queen's University, Kingston, Ontario, Canada – sequence: 13 givenname: Ali surname: Etemad fullname: Etemad, Ali email: ali.etemad@queensu.ca organization: Department of Electrical and Computer Engineering and Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada – sequence: 14 givenname: Paul surname: Hungler fullname: Hungler, Paul email: paul.hungler@queensu.ca organization: Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada |
BookMark | eNpNkM1OwzAQhC0EEqX0AZA4-AVSdtdubXMrafmRgpBKOUdO7IBRmqA4gHh7UrVCzGVntDt7-M7YcdM2nrELhCkimKtNunyeEtBsKmaDUB2xEQllEm2EOf7zBKdsEuM7AOBcKC3ViN2k2WK9uuZp-9qEPnx5nrXW8UWMPsatb3oeGr72tk76sPX8O_Rv_PGzHkLrbM2Xtrfn7KSydfSTwxyzl9vVJr1Psqe7h3SRJSWKWZ_YorRaVJKQlHaVI8Si8MaR1LpycyBPZUUKAR1KCUBUOEGgVekVGAQxZrj_W3ZtjJ2v8o8ubG33kyPkOw75jkO-45AfOAydy30neO__3Rsph734BVXIWWM |
CODEN | ITCDA4 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TCDS.2025.3555517 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2379-8939 |
EndPage | 13 |
ExternalDocumentID | 10_1109_TCDS_2025_3555517 10944551 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX AGSQL CITATION EJD |
ID | FETCH-LOGICAL-c135t-abca83f421278dfd211bbe9d2488fd602e2cf27101d1440022bd32087ce709103 |
IEDL.DBID | RIE |
ISSN | 2379-8920 |
IngestDate | Tue Jul 01 05:15:57 EDT 2025 Wed Aug 27 02:03:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c135t-abca83f421278dfd211bbe9d2488fd602e2cf27101d1440022bd32087ce709103 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TCDS_2025_3555517 ieee_primary_10944551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on cognitive and developmental systems |
PublicationTitleAbbrev | TCDS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001637847 |
Score | 2.3296626 |
Snippet | We present a novel multimodal dataset for Cognitive Load Assessment in REal-time (CLARE). The dataset contains physiological and Gaze data from 24 participants... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 1 |
SubjectTerms | Affective Computing Biomedical monitoring Cognitive load Deep learning ECG EDA EEG Electrocardiography Electroencephalography Electromyography GAZE Human factors Multimodal Dataset Physiology Real-time systems Wearable devices |
Title | CLARE: Cognitive Load Assessment in Real-time with Multimodal Data |
URI | https://ieeexplore.ieee.org/document/10944551 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kxe_NnF-kYN4EFK7NG1Sb7VuDJk7zA12K80XiKwV6Q7615ukrU5B8FZK04T3krz3e58AXAa2TBbWFOWUhIjk3NyDVBNkq4vxQGDqu2j3x2k0XpCHZbhsktVdLoxSygWfKc8-Ol--LMXamsrMCY8JCW3C9LZBbnWy1rdBJQoocw3FcEBjxGLcejHNsJt5ev9k0CAOPSNgzS_oDzm00VjFyZXRHpi2K6rDSV68dcU98fGrWOO_l7wPdhsNEyb1ljgAW6o4BN2kMOh69Q6voIv5dMb0LrhLJ8lseAvTNogITspcwuSrXCd8LuDM6JLI9qCH1mgLXcruqpRmjvu8yntgMRrO0zFquiogMQjCCuVc5CzQ1hNMmdTSIEDOVSwN05iWkY8VFhobxWMgrePXyHguA-wzKhS1ykVwBDpFWahjAAVThKiYRX4sSKgZJzzKcagJ0xFXMuqD65bG2WtdPCNzoMOPM8uQzDIkaxjSBz1Lvo0Pa8qd_PH-FOzY4bU55Ax0qre1OjcKQsUv3Mb4BO2mtBA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA8yD3rxtYnzmYN4EFK7NG1Sb3MPpnY7zA12K80LRNaKdAf9603STacgeCuhScP3Jf2ev-8D4DKwZbKwpiijJEQk4-Y_SDVBtroYDwSmvst2H46iwZQ8zMLZEqzusDBKKZd8pjz76GL5shAL6yozNzwmJLSA6c3QonEruNa3SyUKKHMtxXBAY8RivIpjmok3k073ydiDOPSMiDWL0B-SaK21ipMs_V0wWu2pSih58RYl98THr3KN_970HthZ6piwXR2KfbCh8gNQb-fGvp6_wyvosj6dO70O7jpJe9y7hZ1VGhFMikzC9lfBTvicw7HRJpHtQg-t2xY60O68kOYb3azMGmDa7006A7Tsq4BEKwhLlHGRsUDbWDBlUktjA3KuYmnYxrSMfKyw0NioHi1pQ79GynMZYJ9RoahVL4JDUMuLXB0BKJgiRMUs8mNBQs044VGGQ02YjriSURNcr2icvlblM1JndvhxahmSWoakS4Y0QcOSb-3FinLHf4xfgK3BZJikyf3o8QRs26Uq58gpqJVvC3Vm1IWSn7tD8gmEJbdY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CLARE%3A+Cognitive+Load+Assessment+in+Real-time+with+Multimodal+Data&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Bhatti%2C+Anubhav&rft.au=Angkan%2C+Prithila&rft.au=Behinaein%2C+Behnam&rft.au=Mahmud%2C+Zunayed&rft.date=2025&rft.pub=IEEE&rft.issn=2379-8920&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTCDS.2025.3555517&rft.externalDocID=10944551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon |