CLARE: Cognitive Load Assessment in Real-time with Multimodal Data

We present a novel multimodal dataset for Cognitive Load Assessment in REal-time (CLARE). The dataset contains physiological and Gaze data from 24 participants with self-reported cognitive load scores as ground-truth labels. The dataset includes four modalities: Electrocardiography (ECG), Electroder...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive and developmental systems pp. 1 - 13
Main Authors Bhatti, Anubhav, Angkan, Prithila, Behinaein, Behnam, Mahmud, Zunayed, Rodenburg, Dirk, Braund, Heather, Mclellan, P. James, Ruberto, Aaron, Harrison, Geoffery, Wilson, Daryl, Szulewski, Adam, Howes, Dan, Etemad, Ali, Hungler, Paul
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN2379-8920
2379-8939
DOI10.1109/TCDS.2025.3555517

Cover

Loading…
Abstract We present a novel multimodal dataset for Cognitive Load Assessment in REal-time (CLARE). The dataset contains physiological and Gaze data from 24 participants with self-reported cognitive load scores as ground-truth labels. The dataset includes four modalities: Electrocardiography (ECG), Electrodermal Activity (EDA), Electroencephalogram (EEG), and Gaze tracking. Each participant completed four nine-minute sessions using the MATB-II software, a computer-based mental workload task. The sessions were divided into one-minute segments of varying complexity to induce different levels of cognitive load. During the experiment, participants reported their cognitive load every 10 seconds. For the dataset, we also provide benchmark binary classification results with machine learning and deep learning models on two different evaluation schemes, namely, 10-fold and leave-one-subject-out (LOSO) cross-validation. Benchmark results show that for 10-fold evaluation, the Transformer based deep learning model achieves the best classification performance with ECG, EDA, and Gaze. In contrast, for LOSO, the best performance is achieved by the deep learning model with ECG, EDA, and EEG.
AbstractList We present a novel multimodal dataset for Cognitive Load Assessment in REal-time (CLARE). The dataset contains physiological and Gaze data from 24 participants with self-reported cognitive load scores as ground-truth labels. The dataset includes four modalities: Electrocardiography (ECG), Electrodermal Activity (EDA), Electroencephalogram (EEG), and Gaze tracking. Each participant completed four nine-minute sessions using the MATB-II software, a computer-based mental workload task. The sessions were divided into one-minute segments of varying complexity to induce different levels of cognitive load. During the experiment, participants reported their cognitive load every 10 seconds. For the dataset, we also provide benchmark binary classification results with machine learning and deep learning models on two different evaluation schemes, namely, 10-fold and leave-one-subject-out (LOSO) cross-validation. Benchmark results show that for 10-fold evaluation, the Transformer based deep learning model achieves the best classification performance with ECG, EDA, and Gaze. In contrast, for LOSO, the best performance is achieved by the deep learning model with ECG, EDA, and EEG.
Author Bhatti, Anubhav
Angkan, Prithila
Ruberto, Aaron
Braund, Heather
Rodenburg, Dirk
Harrison, Geoffery
Mclellan, P. James
Szulewski, Adam
Howes, Dan
Mahmud, Zunayed
Behinaein, Behnam
Etemad, Ali
Wilson, Daryl
Hungler, Paul
Author_xml – sequence: 1
  givenname: Anubhav
  surname: Bhatti
  fullname: Bhatti, Anubhav
  email: anubhav.bhatti@queensu.ca
  organization: Department of Electrical and Computer Engineering and Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada
– sequence: 2
  givenname: Prithila
  surname: Angkan
  fullname: Angkan, Prithila
  email: prithila.angkan@queensu.ca
  organization: Department of Electrical and Computer Engineering and Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada
– sequence: 3
  givenname: Behnam
  surname: Behinaein
  fullname: Behinaein, Behnam
  email: 9hbb@queensu.ca
  organization: Department of Electrical and Computer Engineering and Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada
– sequence: 4
  givenname: Zunayed
  surname: Mahmud
  fullname: Mahmud, Zunayed
  email: zunayed.mahmud@queensu.ca
  organization: Department of Electrical and Computer Engineering and Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada
– sequence: 5
  givenname: Dirk
  surname: Rodenburg
  fullname: Rodenburg, Dirk
  email: d.rodenburg@queensu.ca
  organization: Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada
– sequence: 6
  givenname: Heather
  surname: Braund
  fullname: Braund, Heather
  email: heather.braund@queensu.ca
  organization: School of Medicine, Queen's University, Kingston, Ontario, Canada
– sequence: 7
  givenname: P. James
  surname: Mclellan
  fullname: Mclellan, P. James
  email: james.mclellan@queensu.ca
  organization: Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada
– sequence: 8
  givenname: Aaron
  surname: Ruberto
  fullname: Ruberto, Aaron
  email: a.ruberto@queensu.ca
  organization: School of Medicine, Queen's University, Kingston, Ontario, Canada
– sequence: 9
  givenname: Geoffery
  surname: Harrison
  fullname: Harrison, Geoffery
  email: 8gh3@queensu.ca@queensu.ca
  organization: Department of Psychology, Queen's University, Kingston, Ontario, Canada
– sequence: 10
  givenname: Daryl
  surname: Wilson
  fullname: Wilson, Daryl
  email: daryl.wilson@queensu.ca
  organization: Department of Psychology, Queen's University, Kingston, Ontario, Canada
– sequence: 11
  givenname: Adam
  surname: Szulewski
  fullname: Szulewski, Adam
  email: adam.szulewski@queensu.ca
  organization: School of Medicine, Queen's University, Kingston, Ontario, Canada
– sequence: 12
  givenname: Dan
  surname: Howes
  fullname: Howes, Dan
  email: d.howes@queensu.ca
  organization: School of Medicine, Queen's University, Kingston, Ontario, Canada
– sequence: 13
  givenname: Ali
  surname: Etemad
  fullname: Etemad, Ali
  email: ali.etemad@queensu.ca
  organization: Department of Electrical and Computer Engineering and Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada
– sequence: 14
  givenname: Paul
  surname: Hungler
  fullname: Hungler, Paul
  email: paul.hungler@queensu.ca
  organization: Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, Canada
BookMark eNpNkM1OwzAQhC0EEqX0AZA4-AVSdtdubXMrafmRgpBKOUdO7IBRmqA4gHh7UrVCzGVntDt7-M7YcdM2nrELhCkimKtNunyeEtBsKmaDUB2xEQllEm2EOf7zBKdsEuM7AOBcKC3ViN2k2WK9uuZp-9qEPnx5nrXW8UWMPsatb3oeGr72tk76sPX8O_Rv_PGzHkLrbM2Xtrfn7KSydfSTwxyzl9vVJr1Psqe7h3SRJSWKWZ_YorRaVJKQlHaVI8Si8MaR1LpycyBPZUUKAR1KCUBUOEGgVekVGAQxZrj_W3ZtjJ2v8o8ubG33kyPkOw75jkO-45AfOAydy30neO__3Rsph734BVXIWWM
CODEN ITCDA4
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCDS.2025.3555517
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 13
ExternalDocumentID 10_1109_TCDS_2025_3555517
10944551
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
AGSQL
CITATION
EJD
ID FETCH-LOGICAL-c135t-abca83f421278dfd211bbe9d2488fd602e2cf27101d1440022bd32087ce709103
IEDL.DBID RIE
ISSN 2379-8920
IngestDate Tue Jul 01 05:15:57 EDT 2025
Wed Aug 27 02:03:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-abca83f421278dfd211bbe9d2488fd602e2cf27101d1440022bd32087ce709103
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCDS_2025_3555517
ieee_primary_10944551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001637847
Score 2.3296626
Snippet We present a novel multimodal dataset for Cognitive Load Assessment in REal-time (CLARE). The dataset contains physiological and Gaze data from 24 participants...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Affective Computing
Biomedical monitoring
Cognitive load
Deep learning
ECG
EDA
EEG
Electrocardiography
Electroencephalography
Electromyography
GAZE
Human factors
Multimodal Dataset
Physiology
Real-time systems
Wearable devices
Title CLARE: Cognitive Load Assessment in Real-time with Multimodal Data
URI https://ieeexplore.ieee.org/document/10944551
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kxe_NnF-kYN4EFK7NG1Sb7VuDJk7zA12K80XiKwV6Q7615ukrU5B8FZK04T3krz3e58AXAa2TBbWFOWUhIjk3NyDVBNkq4vxQGDqu2j3x2k0XpCHZbhsktVdLoxSygWfKc8-Ol--LMXamsrMCY8JCW3C9LZBbnWy1rdBJQoocw3FcEBjxGLcejHNsJt5ev9k0CAOPSNgzS_oDzm00VjFyZXRHpi2K6rDSV68dcU98fGrWOO_l7wPdhsNEyb1ljgAW6o4BN2kMOh69Q6voIv5dMb0LrhLJ8lseAvTNogITspcwuSrXCd8LuDM6JLI9qCH1mgLXcruqpRmjvu8yntgMRrO0zFquiogMQjCCuVc5CzQ1hNMmdTSIEDOVSwN05iWkY8VFhobxWMgrePXyHguA-wzKhS1ykVwBDpFWahjAAVThKiYRX4sSKgZJzzKcagJ0xFXMuqD65bG2WtdPCNzoMOPM8uQzDIkaxjSBz1Lvo0Pa8qd_PH-FOzY4bU55Ax0qre1OjcKQsUv3Mb4BO2mtBA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA8yD3rxtYnzmYN4EFK7NG1Sb3MPpnY7zA12K80LRNaKdAf9603STacgeCuhScP3Jf2ev-8D4DKwZbKwpiijJEQk4-Y_SDVBtroYDwSmvst2H46iwZQ8zMLZEqzusDBKKZd8pjz76GL5shAL6yozNzwmJLSA6c3QonEruNa3SyUKKHMtxXBAY8RivIpjmok3k073ydiDOPSMiDWL0B-SaK21ipMs_V0wWu2pSih58RYl98THr3KN_970HthZ6piwXR2KfbCh8gNQb-fGvp6_wyvosj6dO70O7jpJe9y7hZ1VGhFMikzC9lfBTvicw7HRJpHtQg-t2xY60O68kOYb3azMGmDa7006A7Tsq4BEKwhLlHGRsUDbWDBlUktjA3KuYmnYxrSMfKyw0NioHi1pQ79GynMZYJ9RoahVL4JDUMuLXB0BKJgiRMUs8mNBQs044VGGQ02YjriSURNcr2icvlblM1JndvhxahmSWoakS4Y0QcOSb-3FinLHf4xfgK3BZJikyf3o8QRs26Uq58gpqJVvC3Vm1IWSn7tD8gmEJbdY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CLARE%3A+Cognitive+Load+Assessment+in+Real-time+with+Multimodal+Data&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Bhatti%2C+Anubhav&rft.au=Angkan%2C+Prithila&rft.au=Behinaein%2C+Behnam&rft.au=Mahmud%2C+Zunayed&rft.date=2025&rft.pub=IEEE&rft.issn=2379-8920&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTCDS.2025.3555517&rft.externalDocID=10944551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon