DARN: A Dual Attention Refinement Network for Enhancing Feature Robustness in VEP-Based EEG Biometrics

Visual evoked potential (VEP)-based EEG biometrics provide a secure, spoof-resistant approach for identification and authentication; however, cross-session variability, driven by temporal fluctuations in neural responses, often undermines feature stability and degrades performance. To tackle this, w...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 20; pp. 7166 - 7180
Main Authors Liu, Honggang, Yang, Han, Liu, Dongjun, Yi, Hangjie, He, Bingfeng, Peng, Yong, Kong, Wanzeng
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN1556-6013
1556-6021
DOI10.1109/TIFS.2025.3587181

Cover

Loading…
Abstract Visual evoked potential (VEP)-based EEG biometrics provide a secure, spoof-resistant approach for identification and authentication; however, cross-session variability, driven by temporal fluctuations in neural responses, often undermines feature stability and degrades performance. To tackle this, we propose the Dual Attention Refinement Network (DARN), a novel method that enhances the spatiotemporal consistency of EEG representations without requiring frequent retraining. DARN combines a lightweight CNN backbone with two complementary attention modules: the Spatial Feature Refinement Unit (SFRU), which prioritizes consistent spatial patterns, and the Inter-channel Refinement Unit (ICRU), which captures stable inter-channel dependencies, jointly refining the spatial and channel dimensions of extracted EEG feature maps. Evaluated on two public multi-session VEP datasets with 30 and 54 subjects, with sample durations of 6 seconds for the 30-class dataset and 4 seconds for the 54-class dataset, DARN surpasses state-of-the-art baselines, achieving identification accuracies of 93.83% (30 classes) and 84.55% (54 classes), and authentication equal error rates of 3.05% and 3.85%, respectively. Moreover, our analysis highlights the pivotal role of visual stimulus diversity in improving cross-session generalization, offering practical insights for designing robust VEP-based biometric systems. The source code is available at https://github.com/Ultramua/DARN .
AbstractList Visual evoked potential (VEP)-based EEG biometrics provide a secure, spoof-resistant approach for identification and authentication; however, cross-session variability, driven by temporal fluctuations in neural responses, often undermines feature stability and degrades performance. To tackle this, we propose the Dual Attention Refinement Network (DARN), a novel method that enhances the spatiotemporal consistency of EEG representations without requiring frequent retraining. DARN combines a lightweight CNN backbone with two complementary attention modules: the Spatial Feature Refinement Unit (SFRU), which prioritizes consistent spatial patterns, and the Inter-channel Refinement Unit (ICRU), which captures stable inter-channel dependencies, jointly refining the spatial and channel dimensions of extracted EEG feature maps. Evaluated on two public multi-session VEP datasets with 30 and 54 subjects, with sample durations of 6 seconds for the 30-class dataset and 4 seconds for the 54-class dataset, DARN surpasses state-of-the-art baselines, achieving identification accuracies of 93.83% (30 classes) and 84.55% (54 classes), and authentication equal error rates of 3.05% and 3.85%, respectively. Moreover, our analysis highlights the pivotal role of visual stimulus diversity in improving cross-session generalization, offering practical insights for designing robust VEP-based biometric systems. The source code is available at https://github.com/Ultramua/DARN .
Author Liu, Dongjun
Liu, Honggang
He, Bingfeng
Yang, Han
Peng, Yong
Kong, Wanzeng
Yi, Hangjie
Author_xml – sequence: 1
  givenname: Honggang
  orcidid: 0009-0007-9157-6863
  surname: Liu
  fullname: Liu, Honggang
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
– sequence: 2
  givenname: Han
  surname: Yang
  fullname: Yang, Han
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
– sequence: 3
  givenname: Dongjun
  orcidid: 0000-0001-9364-9228
  surname: Liu
  fullname: Liu, Dongjun
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
– sequence: 4
  givenname: Hangjie
  orcidid: 0009-0008-1513-3793
  surname: Yi
  fullname: Yi, Hangjie
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
– sequence: 5
  givenname: Bingfeng
  orcidid: 0009-0005-3584-6019
  surname: He
  fullname: He, Bingfeng
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
– sequence: 6
  givenname: Yong
  orcidid: 0000-0003-1208-972X
  surname: Peng
  fullname: Peng, Yong
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
– sequence: 7
  givenname: Wanzeng
  orcidid: 0000-0002-0113-6968
  surname: Kong
  fullname: Kong, Wanzeng
  email: kongwanzeng@hdu.edu.cn
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
BookMark eNpFkNFOwjAUhhuDiYA-gIkXfYFhT9d2nXcDBpIYNIjeLt12plXozFpifHshEL36z5-c75zkG5Ceax0Scg1sBMDS2_Vi9jzijMtRLHUCGs5IH6RUkWIcen8zxBdk4P0HY0KA0n3STLPV8o5mdLozG5qFgC7Y1tEVNtbhdt_oEsN3233Spu1o7t6Nq6x7ozM0YdchXbXlzgeH3lPr6Gv-FI2Nx5rm-ZyObbvF0NnKX5Lzxmw8Xp1ySF5m-XpyHz08zheT7CGqIJYhEqCrkpWybjBRaakSw2IQHITWiTGxRoa8QlHWaZUCk2nJGmU4L7mqtRJSxEMCx7tV13rfYVN8dXZrup8CWHEQVRxEFQdRxUnUnrk5MhYR__eBJXL_Nv4F2BBlgw
CODEN ITIFA6
Cites_doi 10.1109/TIFS.2017.2778010
10.1007/11875581_73
10.1002/hbm.23730
10.1109/TBME.1968.4502560
10.1109/TIFS.2022.3204222
10.1016/j.patcog.2021.108202
10.1109/TBME.2024.3404131
10.1093/gigascience/giz002
10.1109/TIFS.2024.3452628
10.1109/TIFS.2017.2763124
10.1109/ijcnn48605.2020.9206750
10.1109/TIFS.2014.2308640
10.1109/TNNLS.2021.3100583
10.1016/j.compbiomed.2022.105238
10.1016/j.patcog.2024.110726
10.1109/TMM.2021.3104379
10.1109/TIFS.2024.3414667
10.1109/PERCOM56429.2023.10099367
10.1145/3230632
10.1109/TIFS.2020.3001729
10.1109/LSP.2020.3020215
10.1088/1741-2552/aace8c
10.1109/taffc.2024.3514635
10.1093/gigascience/giz133
10.1016/j.bspc.2021.102739
10.1109/TIFS.2019.2912272
10.1109/ICASSP39728.2021.9414568
10.1088/1741-2552/ad5761
10.1109/TCDS.2023.3343469
10.1109/CVPR.2018.00745
10.1109/TIFS.2019.2916403
10.1109/TDSC.2021.3060775
10.1007/978-3-030-01264-9_8
10.1109/TNSRE.2024.3415474
10.1109/TNNLS.2023.3236635
10.1109/TBME.2021.3110440
10.1109/SMC.2018.00188
10.1109/TCDS.2023.3314155
10.1109/TAFFC.2021.3133443
10.1109/TIFS.2024.3369405
10.1109/TIFS.2015.2481870
10.1109/LSP.2019.2906826
10.23919/BIOSIG.2017.8053521
10.1109/CVPR.2019.00060
10.1016/j.eswa.2021.114961
10.1109/CVPR52729.2023.00596
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIFS.2025.3587181
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 7180
ExternalDocumentID 10_1109_TIFS_2025_3587181
11075887
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U20B2074; 62471169; 62306096
  funderid: 10.13039/501100001809
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LQ22F030022
– fundername: Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province
  grantid: 2020E10010
– fundername: Key Research and Development Project of Zhejiang Province
  grantid: 2023C03026
  funderid: 10.13039/501100013142
– fundername: National Science and Technology Innovation 2030—Major Project
  grantid: 2022ZD0208800
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c135t-418cb0b5dfe769b67a0314214887aa38e0e2ce4bd9c91059b0f6a22b26d864543
IEDL.DBID RIE
ISSN 1556-6013
IngestDate Thu Jul 24 02:05:13 EDT 2025
Wed Aug 27 02:13:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-418cb0b5dfe769b67a0314214887aa38e0e2ce4bd9c91059b0f6a22b26d864543
ORCID 0000-0002-0113-6968
0009-0005-3584-6019
0009-0007-9157-6863
0009-0008-1513-3793
0000-0003-1208-972X
0000-0001-9364-9228
PageCount 15
ParticipantIDs crossref_primary_10_1109_TIFS_2025_3587181
ieee_primary_11075887
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
Liu (ref15)
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
Van der Maaten (ref49) 2008; 9
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Xu (ref30)
References_xml – ident: ref25
  doi: 10.1109/TIFS.2017.2778010
– ident: ref1
  doi: 10.1007/11875581_73
– ident: ref17
  doi: 10.1002/hbm.23730
– ident: ref18
  doi: 10.1109/TBME.1968.4502560
– ident: ref26
  doi: 10.1109/TIFS.2022.3204222
– ident: ref27
  doi: 10.1016/j.patcog.2021.108202
– ident: ref41
  doi: 10.1109/TBME.2024.3404131
– ident: ref36
  doi: 10.1093/gigascience/giz002
– ident: ref10
  doi: 10.1109/TIFS.2024.3452628
– ident: ref5
  doi: 10.1109/TIFS.2017.2763124
– ident: ref47
  doi: 10.1109/ijcnn48605.2020.9206750
– ident: ref3
  doi: 10.1109/TIFS.2014.2308640
– start-page: 4383
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref30
  article-title: Understanding and improving layer normalization
– ident: ref14
  doi: 10.1109/TNNLS.2021.3100583
– ident: ref28
  doi: 10.1016/j.compbiomed.2022.105238
– ident: ref43
  doi: 10.1016/j.patcog.2024.110726
– ident: ref46
  doi: 10.1109/TMM.2021.3104379
– ident: ref42
  doi: 10.1109/TIFS.2024.3414667
– ident: ref38
  doi: 10.1109/PERCOM56429.2023.10099367
– ident: ref19
  doi: 10.1145/3230632
– ident: ref6
  doi: 10.1109/TIFS.2020.3001729
– ident: ref12
  doi: 10.1109/LSP.2020.3020215
– ident: ref16
  doi: 10.1088/1741-2552/aace8c
– ident: ref39
  doi: 10.1109/taffc.2024.3514635
– ident: ref35
  doi: 10.1093/gigascience/giz133
– start-page: 4013
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref15
  article-title: Transferable adversarial training: A general approach to adapting deep classifiers
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: ref49
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref21
  doi: 10.1016/j.bspc.2021.102739
– ident: ref8
  doi: 10.1109/TIFS.2019.2912272
– ident: ref32
  doi: 10.1109/ICASSP39728.2021.9414568
– ident: ref13
  doi: 10.1088/1741-2552/ad5761
– ident: ref7
  doi: 10.1109/TCDS.2023.3343469
– ident: ref31
  doi: 10.1109/CVPR.2018.00745
– ident: ref4
  doi: 10.1109/TIFS.2019.2916403
– ident: ref24
  doi: 10.1109/TDSC.2021.3060775
– ident: ref34
  doi: 10.1007/978-3-030-01264-9_8
– ident: ref40
  doi: 10.1109/TNSRE.2024.3415474
– ident: ref44
  doi: 10.1109/TNNLS.2023.3236635
– ident: ref48
  doi: 10.1109/TBME.2021.3110440
– ident: ref23
  doi: 10.1109/SMC.2018.00188
– ident: ref20
  doi: 10.1109/TCDS.2023.3314155
– ident: ref29
  doi: 10.1109/TAFFC.2021.3133443
– ident: ref2
  doi: 10.1109/TIFS.2024.3369405
– ident: ref9
  doi: 10.1109/TIFS.2015.2481870
– ident: ref11
  doi: 10.1109/LSP.2019.2906826
– ident: ref22
  doi: 10.23919/BIOSIG.2017.8053521
– ident: ref33
  doi: 10.1109/CVPR.2019.00060
– ident: ref37
  doi: 10.1016/j.eswa.2021.114961
– ident: ref45
  doi: 10.1109/CVPR52729.2023.00596
SSID ssj0044168
Score 2.4142377
Snippet Visual evoked potential (VEP)-based EEG biometrics provide a secure, spoof-resistant approach for identification and authentication; however, cross-session...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 7166
SubjectTerms Accuracy
Authentication
Biometrics
Brain modeling
Data mining
Deep learning
Electroencephalogram(EEG)
Electroencephalography
Feature extraction
person identification
Robustness
visual evoked potentials
Visualization
Title DARN: A Dual Attention Refinement Network for Enhancing Feature Robustness in VEP-Based EEG Biometrics
URI https://ieeexplore.ieee.org/document/11075887
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx6czonzixw8Ce36lTb1trnOKVhkbrJbaT6qInSytRf_evOaFqcgeCuloSEvyfv9kvd-D6FLZWQv5U6q1nfmG57HMyPkKcSI0VAwbge2hEThh9ifzL37BVnUyepVLoyUsgo-kyY8Vnf5YslLOCrrA1chalVso23F3HSyVrPtKreu894I8Q3FMtz6CtO2wv7sbvykqKBDTJcogkDtH05oo6pK5VTGbRQ33dGxJO9mWTCTf_5Savx3f_fRXg0v8UDPhwO0JfMOajelG3C9kjtod0OH8BBlo8E0vsYDPCqhcVHoGEg8lZn6CH6CYx0ujhXGxVH-Ciod-QsGAFmuJJ4uWbkuYNfEbzl-jh6NofKOAkfRLR5Cgj_UAVh30XwczW4mRl2AweC2SwrDsylnFiMik4EfMj9IQezeUQyKBmnqUmlJh0uPiZCHgNOYlfmp4zDHFxSUwtwj1MqXuTxGOHPgfpVRUJzzAFdaLGM0JEIBFJsx0UNXjUWSD62zkVT8xAoTMF8C5ktq8_VQFwb7-8N6nE_-eH-KdqC5Pjk5Q61iVcpzhSUKdlHNoS_Pt8O_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4oHtSDKGLE5x48mRT62j68gRRBoTEIhlvT3W7VmBQD7cVf705bIpqYeGua3Xazs7vzzc7MNwBXUshmyPVQ7u_YUkyTx4rLQ4wRc9yIcc3WBCYKj3yrPzXvZ3RWJqvnuTBCiDz4TDTxMfflR3Oe4VVZC20VKnfFJmxJxU-1Il1rdfBKxV5kvlFqKdLOMEonpqa6rcmg9ySNQZ02DSpNBEf7oYbW6qrkaqVXBX81oCKa5L2ZpazJP39xNf57xPuwVwJM0i5WxAFsiKQG1VXxBlLu5RrsrjERHkLcbY_9G9Im3Qw7p2kRBUnGIpaN8CfELwLGiUS5xEtekacjeSEIIbOFIOM5y5YpnpvkLSHP3qPSkfoxIp53RzqY4o-VAJZ1mPa8yW1fKUswKFwzaKqYmsOZymgUC9tymWWHSHevSxvKscPQcIQqdC5MFrncRaTG1NgKdZ3pVuQgV5hxBJVknohjILGOHlbmIOecichSZTFzXBpJiKIxFjXgeiWR4KNg2ghyC0V1AxRfgOILSvE1oI6T_d2wnOeTP95fwnZ_MhoGw4H_cAo7-KniHuUMKukiE-cSWaTsIl9PXza8xwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DARN%3A+A+Dual+Attention+Refinement+Network+for+Enhancing+Feature+Robustness+in+VEP-Based+EEG+Biometrics&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Liu%2C+Honggang&rft.au=Yang%2C+Han&rft.au=Liu%2C+Dongjun&rft.au=Yi%2C+Hangjie&rft.date=2025&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=20&rft.spage=7166&rft.epage=7180&rft_id=info:doi/10.1109%2FTIFS.2025.3587181&rft.externalDocID=11075887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon