DARN: A Dual Attention Refinement Network for Enhancing Feature Robustness in VEP-Based EEG Biometrics
Visual evoked potential (VEP)-based EEG biometrics provide a secure, spoof-resistant approach for identification and authentication; however, cross-session variability, driven by temporal fluctuations in neural responses, often undermines feature stability and degrades performance. To tackle this, w...
Saved in:
Published in | IEEE transactions on information forensics and security Vol. 20; pp. 7166 - 7180 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1556-6013 1556-6021 |
DOI | 10.1109/TIFS.2025.3587181 |
Cover
Loading…
Abstract | Visual evoked potential (VEP)-based EEG biometrics provide a secure, spoof-resistant approach for identification and authentication; however, cross-session variability, driven by temporal fluctuations in neural responses, often undermines feature stability and degrades performance. To tackle this, we propose the Dual Attention Refinement Network (DARN), a novel method that enhances the spatiotemporal consistency of EEG representations without requiring frequent retraining. DARN combines a lightweight CNN backbone with two complementary attention modules: the Spatial Feature Refinement Unit (SFRU), which prioritizes consistent spatial patterns, and the Inter-channel Refinement Unit (ICRU), which captures stable inter-channel dependencies, jointly refining the spatial and channel dimensions of extracted EEG feature maps. Evaluated on two public multi-session VEP datasets with 30 and 54 subjects, with sample durations of 6 seconds for the 30-class dataset and 4 seconds for the 54-class dataset, DARN surpasses state-of-the-art baselines, achieving identification accuracies of 93.83% (30 classes) and 84.55% (54 classes), and authentication equal error rates of 3.05% and 3.85%, respectively. Moreover, our analysis highlights the pivotal role of visual stimulus diversity in improving cross-session generalization, offering practical insights for designing robust VEP-based biometric systems. The source code is available at https://github.com/Ultramua/DARN . |
---|---|
AbstractList | Visual evoked potential (VEP)-based EEG biometrics provide a secure, spoof-resistant approach for identification and authentication; however, cross-session variability, driven by temporal fluctuations in neural responses, often undermines feature stability and degrades performance. To tackle this, we propose the Dual Attention Refinement Network (DARN), a novel method that enhances the spatiotemporal consistency of EEG representations without requiring frequent retraining. DARN combines a lightweight CNN backbone with two complementary attention modules: the Spatial Feature Refinement Unit (SFRU), which prioritizes consistent spatial patterns, and the Inter-channel Refinement Unit (ICRU), which captures stable inter-channel dependencies, jointly refining the spatial and channel dimensions of extracted EEG feature maps. Evaluated on two public multi-session VEP datasets with 30 and 54 subjects, with sample durations of 6 seconds for the 30-class dataset and 4 seconds for the 54-class dataset, DARN surpasses state-of-the-art baselines, achieving identification accuracies of 93.83% (30 classes) and 84.55% (54 classes), and authentication equal error rates of 3.05% and 3.85%, respectively. Moreover, our analysis highlights the pivotal role of visual stimulus diversity in improving cross-session generalization, offering practical insights for designing robust VEP-based biometric systems. The source code is available at https://github.com/Ultramua/DARN . |
Author | Liu, Dongjun Liu, Honggang He, Bingfeng Yang, Han Peng, Yong Kong, Wanzeng Yi, Hangjie |
Author_xml | – sequence: 1 givenname: Honggang orcidid: 0009-0007-9157-6863 surname: Liu fullname: Liu, Honggang organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China – sequence: 2 givenname: Han surname: Yang fullname: Yang, Han organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China – sequence: 3 givenname: Dongjun orcidid: 0000-0001-9364-9228 surname: Liu fullname: Liu, Dongjun organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China – sequence: 4 givenname: Hangjie orcidid: 0009-0008-1513-3793 surname: Yi fullname: Yi, Hangjie organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China – sequence: 5 givenname: Bingfeng orcidid: 0009-0005-3584-6019 surname: He fullname: He, Bingfeng organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China – sequence: 6 givenname: Yong orcidid: 0000-0003-1208-972X surname: Peng fullname: Peng, Yong organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China – sequence: 7 givenname: Wanzeng orcidid: 0000-0002-0113-6968 surname: Kong fullname: Kong, Wanzeng email: kongwanzeng@hdu.edu.cn organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, China |
BookMark | eNpFkNFOwjAUhhuDiYA-gIkXfYFhT9d2nXcDBpIYNIjeLt12plXozFpifHshEL36z5-c75zkG5Ceax0Scg1sBMDS2_Vi9jzijMtRLHUCGs5IH6RUkWIcen8zxBdk4P0HY0KA0n3STLPV8o5mdLozG5qFgC7Y1tEVNtbhdt_oEsN3233Spu1o7t6Nq6x7ozM0YdchXbXlzgeH3lPr6Gv-FI2Nx5rm-ZyObbvF0NnKX5Lzxmw8Xp1ySF5m-XpyHz08zheT7CGqIJYhEqCrkpWybjBRaakSw2IQHITWiTGxRoa8QlHWaZUCk2nJGmU4L7mqtRJSxEMCx7tV13rfYVN8dXZrup8CWHEQVRxEFQdRxUnUnrk5MhYR__eBJXL_Nv4F2BBlgw |
CODEN | ITIFA6 |
Cites_doi | 10.1109/TIFS.2017.2778010 10.1007/11875581_73 10.1002/hbm.23730 10.1109/TBME.1968.4502560 10.1109/TIFS.2022.3204222 10.1016/j.patcog.2021.108202 10.1109/TBME.2024.3404131 10.1093/gigascience/giz002 10.1109/TIFS.2024.3452628 10.1109/TIFS.2017.2763124 10.1109/ijcnn48605.2020.9206750 10.1109/TIFS.2014.2308640 10.1109/TNNLS.2021.3100583 10.1016/j.compbiomed.2022.105238 10.1016/j.patcog.2024.110726 10.1109/TMM.2021.3104379 10.1109/TIFS.2024.3414667 10.1109/PERCOM56429.2023.10099367 10.1145/3230632 10.1109/TIFS.2020.3001729 10.1109/LSP.2020.3020215 10.1088/1741-2552/aace8c 10.1109/taffc.2024.3514635 10.1093/gigascience/giz133 10.1016/j.bspc.2021.102739 10.1109/TIFS.2019.2912272 10.1109/ICASSP39728.2021.9414568 10.1088/1741-2552/ad5761 10.1109/TCDS.2023.3343469 10.1109/CVPR.2018.00745 10.1109/TIFS.2019.2916403 10.1109/TDSC.2021.3060775 10.1007/978-3-030-01264-9_8 10.1109/TNSRE.2024.3415474 10.1109/TNNLS.2023.3236635 10.1109/TBME.2021.3110440 10.1109/SMC.2018.00188 10.1109/TCDS.2023.3314155 10.1109/TAFFC.2021.3133443 10.1109/TIFS.2024.3369405 10.1109/TIFS.2015.2481870 10.1109/LSP.2019.2906826 10.23919/BIOSIG.2017.8053521 10.1109/CVPR.2019.00060 10.1016/j.eswa.2021.114961 10.1109/CVPR52729.2023.00596 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TIFS.2025.3587181 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1556-6021 |
EndPage | 7180 |
ExternalDocumentID | 10_1109_TIFS_2025_3587181 11075887 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U20B2074; 62471169; 62306096 funderid: 10.13039/501100001809 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LQ22F030022 – fundername: Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province grantid: 2020E10010 – fundername: Key Research and Development Project of Zhejiang Province grantid: 2023C03026 funderid: 10.13039/501100013142 – fundername: National Science and Technology Innovation 2030—Major Project grantid: 2022ZD0208800 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c135t-418cb0b5dfe769b67a0314214887aa38e0e2ce4bd9c91059b0f6a22b26d864543 |
IEDL.DBID | RIE |
ISSN | 1556-6013 |
IngestDate | Thu Jul 24 02:05:13 EDT 2025 Wed Aug 27 02:13:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c135t-418cb0b5dfe769b67a0314214887aa38e0e2ce4bd9c91059b0f6a22b26d864543 |
ORCID | 0000-0002-0113-6968 0009-0005-3584-6019 0009-0007-9157-6863 0009-0008-1513-3793 0000-0003-1208-972X 0000-0001-9364-9228 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TIFS_2025_3587181 ieee_primary_11075887 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on information forensics and security |
PublicationTitleAbbrev | TIFS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 Liu (ref15) ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 Van der Maaten (ref49) 2008; 9 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Xu (ref30) |
References_xml | – ident: ref25 doi: 10.1109/TIFS.2017.2778010 – ident: ref1 doi: 10.1007/11875581_73 – ident: ref17 doi: 10.1002/hbm.23730 – ident: ref18 doi: 10.1109/TBME.1968.4502560 – ident: ref26 doi: 10.1109/TIFS.2022.3204222 – ident: ref27 doi: 10.1016/j.patcog.2021.108202 – ident: ref41 doi: 10.1109/TBME.2024.3404131 – ident: ref36 doi: 10.1093/gigascience/giz002 – ident: ref10 doi: 10.1109/TIFS.2024.3452628 – ident: ref5 doi: 10.1109/TIFS.2017.2763124 – ident: ref47 doi: 10.1109/ijcnn48605.2020.9206750 – ident: ref3 doi: 10.1109/TIFS.2014.2308640 – start-page: 4383 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref30 article-title: Understanding and improving layer normalization – ident: ref14 doi: 10.1109/TNNLS.2021.3100583 – ident: ref28 doi: 10.1016/j.compbiomed.2022.105238 – ident: ref43 doi: 10.1016/j.patcog.2024.110726 – ident: ref46 doi: 10.1109/TMM.2021.3104379 – ident: ref42 doi: 10.1109/TIFS.2024.3414667 – ident: ref38 doi: 10.1109/PERCOM56429.2023.10099367 – ident: ref19 doi: 10.1145/3230632 – ident: ref6 doi: 10.1109/TIFS.2020.3001729 – ident: ref12 doi: 10.1109/LSP.2020.3020215 – ident: ref16 doi: 10.1088/1741-2552/aace8c – ident: ref39 doi: 10.1109/taffc.2024.3514635 – ident: ref35 doi: 10.1093/gigascience/giz133 – start-page: 4013 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref15 article-title: Transferable adversarial training: A general approach to adapting deep classifiers – volume: 9 start-page: 2579 issue: 86 year: 2008 ident: ref49 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref21 doi: 10.1016/j.bspc.2021.102739 – ident: ref8 doi: 10.1109/TIFS.2019.2912272 – ident: ref32 doi: 10.1109/ICASSP39728.2021.9414568 – ident: ref13 doi: 10.1088/1741-2552/ad5761 – ident: ref7 doi: 10.1109/TCDS.2023.3343469 – ident: ref31 doi: 10.1109/CVPR.2018.00745 – ident: ref4 doi: 10.1109/TIFS.2019.2916403 – ident: ref24 doi: 10.1109/TDSC.2021.3060775 – ident: ref34 doi: 10.1007/978-3-030-01264-9_8 – ident: ref40 doi: 10.1109/TNSRE.2024.3415474 – ident: ref44 doi: 10.1109/TNNLS.2023.3236635 – ident: ref48 doi: 10.1109/TBME.2021.3110440 – ident: ref23 doi: 10.1109/SMC.2018.00188 – ident: ref20 doi: 10.1109/TCDS.2023.3314155 – ident: ref29 doi: 10.1109/TAFFC.2021.3133443 – ident: ref2 doi: 10.1109/TIFS.2024.3369405 – ident: ref9 doi: 10.1109/TIFS.2015.2481870 – ident: ref11 doi: 10.1109/LSP.2019.2906826 – ident: ref22 doi: 10.23919/BIOSIG.2017.8053521 – ident: ref33 doi: 10.1109/CVPR.2019.00060 – ident: ref37 doi: 10.1016/j.eswa.2021.114961 – ident: ref45 doi: 10.1109/CVPR52729.2023.00596 |
SSID | ssj0044168 |
Score | 2.4142377 |
Snippet | Visual evoked potential (VEP)-based EEG biometrics provide a secure, spoof-resistant approach for identification and authentication; however, cross-session... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 7166 |
SubjectTerms | Accuracy Authentication Biometrics Brain modeling Data mining Deep learning Electroencephalogram(EEG) Electroencephalography Feature extraction person identification Robustness visual evoked potentials Visualization |
Title | DARN: A Dual Attention Refinement Network for Enhancing Feature Robustness in VEP-Based EEG Biometrics |
URI | https://ieeexplore.ieee.org/document/11075887 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx6czonzixw8Ce36lTb1trnOKVhkbrJbaT6qInSytRf_evOaFqcgeCuloSEvyfv9kvd-D6FLZWQv5U6q1nfmG57HMyPkKcSI0VAwbge2hEThh9ifzL37BVnUyepVLoyUsgo-kyY8Vnf5YslLOCrrA1chalVso23F3HSyVrPtKreu894I8Q3FMtz6CtO2wv7sbvykqKBDTJcogkDtH05oo6pK5VTGbRQ33dGxJO9mWTCTf_5Savx3f_fRXg0v8UDPhwO0JfMOajelG3C9kjtod0OH8BBlo8E0vsYDPCqhcVHoGEg8lZn6CH6CYx0ujhXGxVH-Ciod-QsGAFmuJJ4uWbkuYNfEbzl-jh6NofKOAkfRLR5Cgj_UAVh30XwczW4mRl2AweC2SwrDsylnFiMik4EfMj9IQezeUQyKBmnqUmlJh0uPiZCHgNOYlfmp4zDHFxSUwtwj1MqXuTxGOHPgfpVRUJzzAFdaLGM0JEIBFJsx0UNXjUWSD62zkVT8xAoTMF8C5ktq8_VQFwb7-8N6nE_-eH-KdqC5Pjk5Q61iVcpzhSUKdlHNoS_Pt8O_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4oHtSDKGLE5x48mRT62j68gRRBoTEIhlvT3W7VmBQD7cVf705bIpqYeGua3Xazs7vzzc7MNwBXUshmyPVQ7u_YUkyTx4rLQ4wRc9yIcc3WBCYKj3yrPzXvZ3RWJqvnuTBCiDz4TDTxMfflR3Oe4VVZC20VKnfFJmxJxU-1Il1rdfBKxV5kvlFqKdLOMEonpqa6rcmg9ySNQZ02DSpNBEf7oYbW6qrkaqVXBX81oCKa5L2ZpazJP39xNf57xPuwVwJM0i5WxAFsiKQG1VXxBlLu5RrsrjERHkLcbY_9G9Im3Qw7p2kRBUnGIpaN8CfELwLGiUS5xEtekacjeSEIIbOFIOM5y5YpnpvkLSHP3qPSkfoxIp53RzqY4o-VAJZ1mPa8yW1fKUswKFwzaKqYmsOZymgUC9tymWWHSHevSxvKscPQcIQqdC5MFrncRaTG1NgKdZ3pVuQgV5hxBJVknohjILGOHlbmIOecichSZTFzXBpJiKIxFjXgeiWR4KNg2ghyC0V1AxRfgOILSvE1oI6T_d2wnOeTP95fwnZ_MhoGw4H_cAo7-KniHuUMKukiE-cSWaTsIl9PXza8xwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DARN%3A+A+Dual+Attention+Refinement+Network+for+Enhancing+Feature+Robustness+in+VEP-Based+EEG+Biometrics&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Liu%2C+Honggang&rft.au=Yang%2C+Han&rft.au=Liu%2C+Dongjun&rft.au=Yi%2C+Hangjie&rft.date=2025&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=20&rft.spage=7166&rft.epage=7180&rft_id=info:doi/10.1109%2FTIFS.2025.3587181&rft.externalDocID=11075887 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |