Physics Informed Neural Network-Estimated Circuit Parameter Adaptive Modulation of DAB

This article presents the development, implementation, and validation of a loss-optimized and circuit parameter-sensitive triple-phase-shift (TPS) modulation scheme for a dual-active-bridge (DAB) dc-dc converter. The proposed approach dynamically adjusts control parameters based on circuit parameter...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 40; no. 10; pp. 14821 - 14841
Main Authors Dey, Saikat, Mallik, Ayan
Format Journal Article
LanguageEnglish
Published IEEE 01.10.2025
Subjects
Online AccessGet full text
ISSN0885-8993
1941-0107
DOI10.1109/TPEL.2025.3574873

Cover

Loading…
Abstract This article presents the development, implementation, and validation of a loss-optimized and circuit parameter-sensitive triple-phase-shift (TPS) modulation scheme for a dual-active-bridge (DAB) dc-dc converter. The proposed approach dynamically adjusts control parameters based on circuit parameters estimated using a physics-informed neural network (PINN). For this purpose, first, a precise frequency-domain model for the DAB converter is developed, incorporating resistive and capacitive nonidealities, deadtime effects, and switching network losses. This model closely mimics real hardware behavior with a power flow absolute error margin of within 5%. Secondly, such an analytical model is utilized to synthesize overall system loss optimized TPS control variables as polynomial fitted functions of the converter's output voltage, power, and parameters that are subject to uncertainty such as power transfer inductances and device on-state resistances. Following this, combining a data-driven neural net (NN) and analytical DAB physics model, a PINN architecture is constructed with the purpose of estimating DAB circuit parameters with inputs of dc side voltages and currents, and modulation variables. Notably, the data-light PINN is trained with a mixed dataset collected from real hardware and the analytical DAB model. Furthermore, the trained NN is implemented in a Python environment, with serial peripheral interface (SPI) communication established with the DAB controller enabling real-time updates of the TPS modulation variables based on NN-predicted circuit parameters. The proposed NN-in-loop, parameter-sensitive TPS modulation is validated and benchmarked in a 2 kW/100 kHz GaN-based DAB converter. With an experimentally emulated 30% reduction in series inductance, the converter achieves a peak efficiency of 98.3%, representing an average efficiency improvement of approximately 1.4% compared to conventional nonadaptive TPS modulation.
AbstractList This article presents the development, implementation, and validation of a loss-optimized and circuit parameter-sensitive triple-phase-shift (TPS) modulation scheme for a dual-active-bridge (DAB) dc-dc converter. The proposed approach dynamically adjusts control parameters based on circuit parameters estimated using a physics-informed neural network (PINN). For this purpose, first, a precise frequency-domain model for the DAB converter is developed, incorporating resistive and capacitive nonidealities, deadtime effects, and switching network losses. This model closely mimics real hardware behavior with a power flow absolute error margin of within 5%. Secondly, such an analytical model is utilized to synthesize overall system loss optimized TPS control variables as polynomial fitted functions of the converter's output voltage, power, and parameters that are subject to uncertainty such as power transfer inductances and device on-state resistances. Following this, combining a data-driven neural net (NN) and analytical DAB physics model, a PINN architecture is constructed with the purpose of estimating DAB circuit parameters with inputs of dc side voltages and currents, and modulation variables. Notably, the data-light PINN is trained with a mixed dataset collected from real hardware and the analytical DAB model. Furthermore, the trained NN is implemented in a Python environment, with serial peripheral interface (SPI) communication established with the DAB controller enabling real-time updates of the TPS modulation variables based on NN-predicted circuit parameters. The proposed NN-in-loop, parameter-sensitive TPS modulation is validated and benchmarked in a 2 kW/100 kHz GaN-based DAB converter. With an experimentally emulated 30% reduction in series inductance, the converter achieves a peak efficiency of 98.3%, representing an average efficiency improvement of approximately 1.4% compared to conventional nonadaptive TPS modulation.
Author Dey, Saikat
Mallik, Ayan
Author_xml – sequence: 1
  givenname: Saikat
  orcidid: 0000-0002-5672-7693
  surname: Dey
  fullname: Dey, Saikat
  email: sdey27@asu.edu
  organization: Systems Engineering Department, Polytechnic School, Arizona State University, Mesa, AZ, USA
– sequence: 2
  givenname: Ayan
  orcidid: 0000-0002-4007-662X
  surname: Mallik
  fullname: Mallik, Ayan
  email: ayan.mallik@asu.edu
  organization: Systems Engineering Department, Polytechnic School, Arizona State University, Mesa, AZ, USA
BookMark eNpFkM1OAjEUhRuDiYA-gImLvsDgvdPpzywRQUlQWaDbSZlpYxWmpC0a3t4hkLg6i3u-m5NvQHqtbw0htwgjRCjvV8vpYpRDzkeMy0JJdkH6WBaYAYLskT4oxTNVluyKDGL8AsCCA_bJx_LzEF0d6by1PmxNQ1_NPuhNF-nXh-9sGpPb6tQdJi7Ue5foUge9NckEOm70LrkfQ198s9_o5HxLvaWP44drcmn1Jpqbcw7J-2y6mjxni7en-WS8yGpkPGVMN6qUKHJlQQquUK6t5brU2li5FsBYw20BuRFCS1FwxYRFLrhYy6boODYkePpbBx9jMLbahW5uOFQI1VFMdRRTHcVUZzEdc3dinDHmv4-AUqic_QH3p2C_
CODEN ITPEE8
Cites_doi 10.1109/tpel.2020.3019761
10.1109/tpel.2010.2070519
10.1109/jestie.2023.3327050
10.1109/jestpe.2023.3328271
10.1109/jestpe.2022.3232534
10.1109/28.67533
10.1109/ojpel.2023.3319970
10.1038/s41598-023-37154-5
10.1109/tpel.2011.2157976
10.1109/tie.2020.3044781
10.1109/jestpe.2023.3302839
10.1109/TPEL.2009.2020902
10.1109/tpel.2009.2027904
10.1109/PEAC56338.2022.9959303
10.1109/tpel.2022.3228338
10.1109/tpel.2020.3045931
10.1109/tpel.2024.3429278
10.1109/tpel.2021.3073350
10.1109/TPEL.2016.2521410
10.1109/jestpe.2017.2736166
10.1109/apec43599.2022.9773377
10.1109/ecce.2013.6647338
10.1109/TPEL.2010.2072966
10.1109/TPEL.2017.2692276
10.1109/AERO.2000.878364
10.1109/tpel.2016.2574998
10.1109/tie.2011.2112312
10.1109/tia.2018.2819120
10.1109/intelec60315.2024.10679034
10.1109/tpel.2020.3024914
10.1109/tpel.2022.3176468
10.1109/tie.2010.2046005
10.1109/tpel.2024.3378184
10.1109/tte.2023.3234198
10.1109/tpel.2023.3290671
10.1016/j.energy.2022.125448
10.1109/jestpe.2021.3105522
10.1109/tpel.2016.2633507
10.1109/tie.2024.3390731
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TPEL.2025.3574873
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0107
EndPage 14841
ExternalDocumentID 10_1109_TPEL_2025_3574873
11017682
Genre orig-research
GroupedDBID -~X
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c135t-3ad8971628f0765817bff5a9aaef7b6033d5f402e66a7645836f15656b7d47163
IEDL.DBID RIE
ISSN 0885-8993
IngestDate Wed Aug 06 19:25:48 EDT 2025
Wed Aug 27 02:00:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-3ad8971628f0765817bff5a9aaef7b6033d5f402e66a7645836f15656b7d47163
ORCID 0000-0002-4007-662X
0000-0002-5672-7693
PageCount 21
ParticipantIDs crossref_primary_10_1109_TPEL_2025_3574873
ieee_primary_11017682
PublicationCentury 2000
PublicationDate 2025-Oct.
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-Oct.
PublicationDecade 2020
PublicationTitle IEEE transactions on power electronics
PublicationTitleAbbrev TPEL
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
(ref35) 2024
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Mallik (ref33)
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref7
  doi: 10.1109/tpel.2020.3019761
– ident: ref11
  doi: 10.1109/tpel.2010.2070519
– ident: ref36
  doi: 10.1109/jestie.2023.3327050
– ident: ref9
  doi: 10.1109/jestpe.2023.3328271
– ident: ref25
  doi: 10.1109/jestpe.2022.3232534
– ident: ref1
  doi: 10.1109/28.67533
– ident: ref22
  doi: 10.1109/ojpel.2023.3319970
– ident: ref31
  doi: 10.1038/s41598-023-37154-5
– ident: ref12
  doi: 10.1109/tpel.2011.2157976
– ident: ref19
  doi: 10.1109/tie.2020.3044781
– ident: ref10
  doi: 10.1109/jestpe.2023.3302839
– ident: ref41
  doi: 10.1109/TPEL.2009.2020902
– ident: ref2
  doi: 10.1109/tpel.2009.2027904
– ident: ref29
  doi: 10.1109/PEAC56338.2022.9959303
– ident: ref33
  article-title: Lecture notes, power electronics EGR 494598, switching loss modeling and calculation
– ident: ref15
  doi: 10.1109/tpel.2022.3228338
– ident: ref26
  doi: 10.1109/tpel.2020.3045931
– ident: ref38
  doi: 10.1109/tpel.2024.3429278
– ident: ref8
  doi: 10.1109/tpel.2021.3073350
– ident: ref17
  doi: 10.1109/TPEL.2016.2521410
– ident: ref4
  doi: 10.1109/jestpe.2017.2736166
– ident: ref13
  doi: 10.1109/apec43599.2022.9773377
– ident: ref5
  doi: 10.1109/ecce.2013.6647338
– ident: ref21
  doi: 10.1109/TPEL.2010.2072966
– ident: ref20
  doi: 10.1109/TPEL.2017.2692276
– ident: ref37
  doi: 10.1109/AERO.2000.878364
– ident: ref34
  doi: 10.1109/tpel.2016.2574998
– ident: ref24
  doi: 10.1109/tie.2011.2112312
– ident: ref6
  doi: 10.1109/tia.2018.2819120
– ident: ref16
  doi: 10.1109/intelec60315.2024.10679034
– ident: ref28
  doi: 10.1109/tpel.2020.3024914
– ident: ref30
  doi: 10.1109/tpel.2022.3176468
– ident: ref32
  doi: 10.1109/tie.2010.2046005
– ident: ref18
  doi: 10.1109/tpel.2024.3378184
– ident: ref3
  doi: 10.1109/tte.2023.3234198
– ident: ref27
  doi: 10.1109/tpel.2023.3290671
– ident: ref39
  doi: 10.1016/j.energy.2022.125448
– ident: ref40
  doi: 10.1109/jestpe.2021.3105522
– ident: ref14
  doi: 10.1109/tpel.2016.2633507
– year: 2024
  ident: ref35
  article-title: Ferrite loss calculator
– ident: ref23
  doi: 10.1109/tie.2024.3390731
SSID ssj0014501
Score 2.4885387
Snippet This article presents the development, implementation, and validation of a loss-optimized and circuit parameter-sensitive triple-phase-shift (TPS) modulation...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 14821
SubjectTerms Analytical models
Artificial neural networks
Bridge circuits
Computational modeling
Dual-active-bridge (DAB)
efficiency optimization
Hardware
Inductance
Integrated circuit modeling
Mathematical models
Modulation
parameter estimation
physics informed neural network (PINN)
triple-phase-shift modulation (TPS)
Voltage control
zero-voltage-switching (ZVS)
Title Physics Informed Neural Network-Estimated Circuit Parameter Adaptive Modulation of DAB
URI https://ieeexplore.ieee.org/document/11017682
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDi_yMGT0K5dmqQ5zrkxxI0dNtmtJE0CQ9jGbC_-9b6knU5B8FbaBMJ7L-_9Xt8XQveUczB8MQnyWIggSW0nEJZ1AiOoAOUYR6lyBc6jMRvOkuc5ndfF6r4Wxhjjk89M6B59LF-v8tL9KmvHTn5YChp3Hzy3qljrK2SQUD_rGG4NDcCJIHUIM45Eezrpv4Ar2KEhoRwQOvlhhHamqnijMjhG4-1xqlySt7AsVJh__OrU-O_znqCjGl7ibiUPp2jPLM_Q4U7TwXP06pM-83dcVSIZjV2DDtg0rjLCgz7cesCx8KG32OTlosAT6VK4gAO4q-XaKUg8Wul68BdeWfzUfWyi2aA_7Q2DeroCsIXQIiBSp75_VGojDjgk5spaKoWUxnLFIkI0teBdGsYkZy68ymzs4J_iGiwaIxeosVwtzSXCcWIpd1hKKJJIo5W2XFoQD8uZSglpoYctubN11UQj885HJDLHm8zxJqt500JNR8nvhTURr_54f40O3PYqwe4GNYpNaW4BKBTqzgvIJ1ziuJY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA6iB_XgW6zPHDwJWzfNJtkca22p2hYPrfS2JJsEitCWur34651kt75A8LbsizAzmfkm80LomgkBho_QKCdSRknqGpF0vBFZySQoRxKn2hc49we8O0oex2xcFauHWhhrbUg-s3V_GWL5ZpYv_VHZLfHyw1PQuBtg-Bkpy7U-gwYJC9OOYd-wCNwIWgUxSSxvh8_tHjiDDVanTABGpz_M0Le5KsGsdHbRYLWgMpvktb4sdD1__9Wr8d8r3kM7FcDEzVIi9tGanR6g7W9tBw_RS0j7zN9wWYtkDfYtOuCjQZkTHrVh3wOShQetySJfTgr8rHwSF_AAN42aexWJ-zNTjf7CM4fvm3dHaNRpD1vdqJqvAIyhrIioMmnoIJW6WAASIUI7x5RUyjqheUypYQ78S8u5EtwHWLkjHgBqYcCmcXqM1qezqT1BmCSOCY-mpKaJskYbJ5QDAXGC65TSGrpZkTubl200suB-xDLzvMk8b7KKNzV05Cn59WJFxNM_7l-hze6w38t6D4OnM7Tlf1Wm252j9WKxtBcAGwp9GYTlAy6Hu98
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+Informed+Neural+Network%E2%80%94Estimated+Circuit+Parameter+Adaptive+Modulation+of+DAB&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Dey%2C+Saikat&rft.au=Mallik%2C+Ayan&rft.date=2025-10-01&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=40&rft.issue=10&rft.spage=14821&rft.epage=14841&rft_id=info:doi/10.1109%2FTPEL.2025.3574873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPEL_2025_3574873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon