Physics Informed Neural Network-Estimated Circuit Parameter Adaptive Modulation of DAB
This article presents the development, implementation, and validation of a loss-optimized and circuit parameter-sensitive triple-phase-shift (TPS) modulation scheme for a dual-active-bridge (DAB) dc-dc converter. The proposed approach dynamically adjusts control parameters based on circuit parameter...
Saved in:
Published in | IEEE transactions on power electronics Vol. 40; no. 10; pp. 14821 - 14841 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.10.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0885-8993 1941-0107 |
DOI | 10.1109/TPEL.2025.3574873 |
Cover
Loading…
Abstract | This article presents the development, implementation, and validation of a loss-optimized and circuit parameter-sensitive triple-phase-shift (TPS) modulation scheme for a dual-active-bridge (DAB) dc-dc converter. The proposed approach dynamically adjusts control parameters based on circuit parameters estimated using a physics-informed neural network (PINN). For this purpose, first, a precise frequency-domain model for the DAB converter is developed, incorporating resistive and capacitive nonidealities, deadtime effects, and switching network losses. This model closely mimics real hardware behavior with a power flow absolute error margin of within 5%. Secondly, such an analytical model is utilized to synthesize overall system loss optimized TPS control variables as polynomial fitted functions of the converter's output voltage, power, and parameters that are subject to uncertainty such as power transfer inductances and device on-state resistances. Following this, combining a data-driven neural net (NN) and analytical DAB physics model, a PINN architecture is constructed with the purpose of estimating DAB circuit parameters with inputs of dc side voltages and currents, and modulation variables. Notably, the data-light PINN is trained with a mixed dataset collected from real hardware and the analytical DAB model. Furthermore, the trained NN is implemented in a Python environment, with serial peripheral interface (SPI) communication established with the DAB controller enabling real-time updates of the TPS modulation variables based on NN-predicted circuit parameters. The proposed NN-in-loop, parameter-sensitive TPS modulation is validated and benchmarked in a 2 kW/100 kHz GaN-based DAB converter. With an experimentally emulated 30% reduction in series inductance, the converter achieves a peak efficiency of 98.3%, representing an average efficiency improvement of approximately 1.4% compared to conventional nonadaptive TPS modulation. |
---|---|
AbstractList | This article presents the development, implementation, and validation of a loss-optimized and circuit parameter-sensitive triple-phase-shift (TPS) modulation scheme for a dual-active-bridge (DAB) dc-dc converter. The proposed approach dynamically adjusts control parameters based on circuit parameters estimated using a physics-informed neural network (PINN). For this purpose, first, a precise frequency-domain model for the DAB converter is developed, incorporating resistive and capacitive nonidealities, deadtime effects, and switching network losses. This model closely mimics real hardware behavior with a power flow absolute error margin of within 5%. Secondly, such an analytical model is utilized to synthesize overall system loss optimized TPS control variables as polynomial fitted functions of the converter's output voltage, power, and parameters that are subject to uncertainty such as power transfer inductances and device on-state resistances. Following this, combining a data-driven neural net (NN) and analytical DAB physics model, a PINN architecture is constructed with the purpose of estimating DAB circuit parameters with inputs of dc side voltages and currents, and modulation variables. Notably, the data-light PINN is trained with a mixed dataset collected from real hardware and the analytical DAB model. Furthermore, the trained NN is implemented in a Python environment, with serial peripheral interface (SPI) communication established with the DAB controller enabling real-time updates of the TPS modulation variables based on NN-predicted circuit parameters. The proposed NN-in-loop, parameter-sensitive TPS modulation is validated and benchmarked in a 2 kW/100 kHz GaN-based DAB converter. With an experimentally emulated 30% reduction in series inductance, the converter achieves a peak efficiency of 98.3%, representing an average efficiency improvement of approximately 1.4% compared to conventional nonadaptive TPS modulation. |
Author | Dey, Saikat Mallik, Ayan |
Author_xml | – sequence: 1 givenname: Saikat orcidid: 0000-0002-5672-7693 surname: Dey fullname: Dey, Saikat email: sdey27@asu.edu organization: Systems Engineering Department, Polytechnic School, Arizona State University, Mesa, AZ, USA – sequence: 2 givenname: Ayan orcidid: 0000-0002-4007-662X surname: Mallik fullname: Mallik, Ayan email: ayan.mallik@asu.edu organization: Systems Engineering Department, Polytechnic School, Arizona State University, Mesa, AZ, USA |
BookMark | eNpFkM1OAjEUhRuDiYA-gImLvsDgvdPpzywRQUlQWaDbSZlpYxWmpC0a3t4hkLg6i3u-m5NvQHqtbw0htwgjRCjvV8vpYpRDzkeMy0JJdkH6WBaYAYLskT4oxTNVluyKDGL8AsCCA_bJx_LzEF0d6by1PmxNQ1_NPuhNF-nXh-9sGpPb6tQdJi7Ue5foUge9NckEOm70LrkfQ198s9_o5HxLvaWP44drcmn1Jpqbcw7J-2y6mjxni7en-WS8yGpkPGVMN6qUKHJlQQquUK6t5brU2li5FsBYw20BuRFCS1FwxYRFLrhYy6boODYkePpbBx9jMLbahW5uOFQI1VFMdRRTHcVUZzEdc3dinDHmv4-AUqic_QH3p2C_ |
CODEN | ITPEE8 |
Cites_doi | 10.1109/tpel.2020.3019761 10.1109/tpel.2010.2070519 10.1109/jestie.2023.3327050 10.1109/jestpe.2023.3328271 10.1109/jestpe.2022.3232534 10.1109/28.67533 10.1109/ojpel.2023.3319970 10.1038/s41598-023-37154-5 10.1109/tpel.2011.2157976 10.1109/tie.2020.3044781 10.1109/jestpe.2023.3302839 10.1109/TPEL.2009.2020902 10.1109/tpel.2009.2027904 10.1109/PEAC56338.2022.9959303 10.1109/tpel.2022.3228338 10.1109/tpel.2020.3045931 10.1109/tpel.2024.3429278 10.1109/tpel.2021.3073350 10.1109/TPEL.2016.2521410 10.1109/jestpe.2017.2736166 10.1109/apec43599.2022.9773377 10.1109/ecce.2013.6647338 10.1109/TPEL.2010.2072966 10.1109/TPEL.2017.2692276 10.1109/AERO.2000.878364 10.1109/tpel.2016.2574998 10.1109/tie.2011.2112312 10.1109/tia.2018.2819120 10.1109/intelec60315.2024.10679034 10.1109/tpel.2020.3024914 10.1109/tpel.2022.3176468 10.1109/tie.2010.2046005 10.1109/tpel.2024.3378184 10.1109/tte.2023.3234198 10.1109/tpel.2023.3290671 10.1016/j.energy.2022.125448 10.1109/jestpe.2021.3105522 10.1109/tpel.2016.2633507 10.1109/tie.2024.3390731 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TPEL.2025.3574873 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0107 |
EndPage | 14841 |
ExternalDocumentID | 10_1109_TPEL_2025_3574873 11017682 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TAF TN5 VH1 VJK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c135t-3ad8971628f0765817bff5a9aaef7b6033d5f402e66a7645836f15656b7d47163 |
IEDL.DBID | RIE |
ISSN | 0885-8993 |
IngestDate | Wed Aug 06 19:25:48 EDT 2025 Wed Aug 27 02:00:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c135t-3ad8971628f0765817bff5a9aaef7b6033d5f402e66a7645836f15656b7d47163 |
ORCID | 0000-0002-4007-662X 0000-0002-5672-7693 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1109_TPEL_2025_3574873 ieee_primary_11017682 |
PublicationCentury | 2000 |
PublicationDate | 2025-Oct. |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-Oct. |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on power electronics |
PublicationTitleAbbrev | TPEL |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 (ref35) 2024 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Mallik (ref33) ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref7 doi: 10.1109/tpel.2020.3019761 – ident: ref11 doi: 10.1109/tpel.2010.2070519 – ident: ref36 doi: 10.1109/jestie.2023.3327050 – ident: ref9 doi: 10.1109/jestpe.2023.3328271 – ident: ref25 doi: 10.1109/jestpe.2022.3232534 – ident: ref1 doi: 10.1109/28.67533 – ident: ref22 doi: 10.1109/ojpel.2023.3319970 – ident: ref31 doi: 10.1038/s41598-023-37154-5 – ident: ref12 doi: 10.1109/tpel.2011.2157976 – ident: ref19 doi: 10.1109/tie.2020.3044781 – ident: ref10 doi: 10.1109/jestpe.2023.3302839 – ident: ref41 doi: 10.1109/TPEL.2009.2020902 – ident: ref2 doi: 10.1109/tpel.2009.2027904 – ident: ref29 doi: 10.1109/PEAC56338.2022.9959303 – ident: ref33 article-title: Lecture notes, power electronics EGR 494598, switching loss modeling and calculation – ident: ref15 doi: 10.1109/tpel.2022.3228338 – ident: ref26 doi: 10.1109/tpel.2020.3045931 – ident: ref38 doi: 10.1109/tpel.2024.3429278 – ident: ref8 doi: 10.1109/tpel.2021.3073350 – ident: ref17 doi: 10.1109/TPEL.2016.2521410 – ident: ref4 doi: 10.1109/jestpe.2017.2736166 – ident: ref13 doi: 10.1109/apec43599.2022.9773377 – ident: ref5 doi: 10.1109/ecce.2013.6647338 – ident: ref21 doi: 10.1109/TPEL.2010.2072966 – ident: ref20 doi: 10.1109/TPEL.2017.2692276 – ident: ref37 doi: 10.1109/AERO.2000.878364 – ident: ref34 doi: 10.1109/tpel.2016.2574998 – ident: ref24 doi: 10.1109/tie.2011.2112312 – ident: ref6 doi: 10.1109/tia.2018.2819120 – ident: ref16 doi: 10.1109/intelec60315.2024.10679034 – ident: ref28 doi: 10.1109/tpel.2020.3024914 – ident: ref30 doi: 10.1109/tpel.2022.3176468 – ident: ref32 doi: 10.1109/tie.2010.2046005 – ident: ref18 doi: 10.1109/tpel.2024.3378184 – ident: ref3 doi: 10.1109/tte.2023.3234198 – ident: ref27 doi: 10.1109/tpel.2023.3290671 – ident: ref39 doi: 10.1016/j.energy.2022.125448 – ident: ref40 doi: 10.1109/jestpe.2021.3105522 – ident: ref14 doi: 10.1109/tpel.2016.2633507 – year: 2024 ident: ref35 article-title: Ferrite loss calculator – ident: ref23 doi: 10.1109/tie.2024.3390731 |
SSID | ssj0014501 |
Score | 2.4885387 |
Snippet | This article presents the development, implementation, and validation of a loss-optimized and circuit parameter-sensitive triple-phase-shift (TPS) modulation... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 14821 |
SubjectTerms | Analytical models Artificial neural networks Bridge circuits Computational modeling Dual-active-bridge (DAB) efficiency optimization Hardware Inductance Integrated circuit modeling Mathematical models Modulation parameter estimation physics informed neural network (PINN) triple-phase-shift modulation (TPS) Voltage control zero-voltage-switching (ZVS) |
Title | Physics Informed Neural Network-Estimated Circuit Parameter Adaptive Modulation of DAB |
URI | https://ieeexplore.ieee.org/document/11017682 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDi_yMGT0K5dmqQ5zrkxxI0dNtmtJE0CQ9jGbC_-9b6knU5B8FbaBMJ7L-_9Xt8XQveUczB8MQnyWIggSW0nEJZ1AiOoAOUYR6lyBc6jMRvOkuc5ndfF6r4Wxhjjk89M6B59LF-v8tL9KmvHTn5YChp3Hzy3qljrK2SQUD_rGG4NDcCJIHUIM45Eezrpv4Ar2KEhoRwQOvlhhHamqnijMjhG4-1xqlySt7AsVJh__OrU-O_znqCjGl7ibiUPp2jPLM_Q4U7TwXP06pM-83dcVSIZjV2DDtg0rjLCgz7cesCx8KG32OTlosAT6VK4gAO4q-XaKUg8Wul68BdeWfzUfWyi2aA_7Q2DeroCsIXQIiBSp75_VGojDjgk5spaKoWUxnLFIkI0teBdGsYkZy68ymzs4J_iGiwaIxeosVwtzSXCcWIpd1hKKJJIo5W2XFoQD8uZSglpoYctubN11UQj885HJDLHm8zxJqt500JNR8nvhTURr_54f40O3PYqwe4GNYpNaW4BKBTqzgvIJ1ziuJY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA6iB_XgW6zPHDwJWzfNJtkca22p2hYPrfS2JJsEitCWur34651kt75A8LbsizAzmfkm80LomgkBho_QKCdSRknqGpF0vBFZySQoRxKn2hc49we8O0oex2xcFauHWhhrbUg-s3V_GWL5ZpYv_VHZLfHyw1PQuBtg-Bkpy7U-gwYJC9OOYd-wCNwIWgUxSSxvh8_tHjiDDVanTABGpz_M0Le5KsGsdHbRYLWgMpvktb4sdD1__9Wr8d8r3kM7FcDEzVIi9tGanR6g7W9tBw_RS0j7zN9wWYtkDfYtOuCjQZkTHrVh3wOShQetySJfTgr8rHwSF_AAN42aexWJ-zNTjf7CM4fvm3dHaNRpD1vdqJqvAIyhrIioMmnoIJW6WAASIUI7x5RUyjqheUypYQ78S8u5EtwHWLkjHgBqYcCmcXqM1qezqT1BmCSOCY-mpKaJskYbJ5QDAXGC65TSGrpZkTubl200suB-xDLzvMk8b7KKNzV05Cn59WJFxNM_7l-hze6w38t6D4OnM7Tlf1Wm252j9WKxtBcAGwp9GYTlAy6Hu98 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+Informed+Neural+Network%E2%80%94Estimated+Circuit+Parameter+Adaptive+Modulation+of+DAB&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Dey%2C+Saikat&rft.au=Mallik%2C+Ayan&rft.date=2025-10-01&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=40&rft.issue=10&rft.spage=14821&rft.epage=14841&rft_id=info:doi/10.1109%2FTPEL.2025.3574873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPEL_2025_3574873 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon |