fNIRS-Based Action Detection for Lower Limb Amputees in Sit-to-Stand Tasks

Traditional transfemoral lower-limb prostheses often overlook the intuitive neuronal connections between the brain and prosthetic actuators. This study bridges this gap by integrating a functional near-infrared spectroscopy (fNIRS) into real-time lower-limb prosthesis control with preliminary clinic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical robotics and bionics Vol. 7; no. 3; pp. 1248 - 1262
Main Authors Huang, Ruisen, Shang, Wenze, Li, Yongchen, Li, Guanglin, Wu, Xinyu, Gao, Fei
Format Journal Article
LanguageEnglish
Published IEEE 01.08.2025
Subjects
Online AccessGet full text
ISSN2576-3202
2576-3202
DOI10.1109/TMRB.2025.3573411

Cover

Loading…
Abstract Traditional transfemoral lower-limb prostheses often overlook the intuitive neuronal connections between the brain and prosthetic actuators. This study bridges this gap by integrating a functional near-infrared spectroscopy (fNIRS) into real-time lower-limb prosthesis control with preliminary clinical tests on the above-knee amputee, enabling a more reliable volitional control of the prosthesis. Cerebral hemodynamic responses were measured using a 56-channel fNIRS headset, and lower-limb kinematics were recorded with a optical motion capture system. Artifacts in fNIRS were mitigated using short-separation regression, and eight features of the fNIRS data were extracted. ANOVA revealed the means, slope, and entropy as top-performing features across all subjects. Among eight classifiers tested, k-nearest neighbor (KNN) emerged as the most accurate. In this study, we recruited eleven healthy subjects and one unilateral transfemoral amputee. Classification rates surpassed 97% for all classes, maintaining an average accuracy of <inline-formula> <tex-math notation="LaTeX">99.86\pm 0.01 </tex-math></inline-formula>%. Notably, the amputee exhibited higher precision, sensitivity, and F1 scores than healthy subjects. Maximum temporal latencies for healthy subjects were <inline-formula> <tex-math notation="LaTeX">120.00\pm 49.40 </tex-math></inline-formula> ms during sit-down and <inline-formula> <tex-math notation="LaTeX">119.09\pm 45.71 </tex-math></inline-formula> ms during stand-up, while the amputee showed maximum temporal latencies of 90 ms and 190 ms, respectively. This study marks the first application of action detection in sit-to-stand tasks for transfemoral amputees via fNIRS, which underscores the potential of fNIRS in neuroprostheses control.
AbstractList Traditional transfemoral lower-limb prostheses often overlook the intuitive neuronal connections between the brain and prosthetic actuators. This study bridges this gap by integrating a functional near-infrared spectroscopy (fNIRS) into real-time lower-limb prosthesis control with preliminary clinical tests on the above-knee amputee, enabling a more reliable volitional control of the prosthesis. Cerebral hemodynamic responses were measured using a 56-channel fNIRS headset, and lower-limb kinematics were recorded with a optical motion capture system. Artifacts in fNIRS were mitigated using short-separation regression, and eight features of the fNIRS data were extracted. ANOVA revealed the means, slope, and entropy as top-performing features across all subjects. Among eight classifiers tested, k-nearest neighbor (KNN) emerged as the most accurate. In this study, we recruited eleven healthy subjects and one unilateral transfemoral amputee. Classification rates surpassed 97% for all classes, maintaining an average accuracy of <inline-formula> <tex-math notation="LaTeX">99.86\pm 0.01 </tex-math></inline-formula>%. Notably, the amputee exhibited higher precision, sensitivity, and F1 scores than healthy subjects. Maximum temporal latencies for healthy subjects were <inline-formula> <tex-math notation="LaTeX">120.00\pm 49.40 </tex-math></inline-formula> ms during sit-down and <inline-formula> <tex-math notation="LaTeX">119.09\pm 45.71 </tex-math></inline-formula> ms during stand-up, while the amputee showed maximum temporal latencies of 90 ms and 190 ms, respectively. This study marks the first application of action detection in sit-to-stand tasks for transfemoral amputees via fNIRS, which underscores the potential of fNIRS in neuroprostheses control.
Author Huang, Ruisen
Gao, Fei
Li, Yongchen
Wu, Xinyu
Shang, Wenze
Li, Guanglin
Author_xml – sequence: 1
  givenname: Ruisen
  orcidid: 0000-0003-1043-2395
  surname: Huang
  fullname: Huang, Ruisen
  organization: Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guangdong, China
– sequence: 2
  givenname: Wenze
  surname: Shang
  fullname: Shang, Wenze
  organization: Institute of Advanced Integration Technology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong, China
– sequence: 3
  givenname: Yongchen
  orcidid: 0009-0002-6570-6445
  surname: Li
  fullname: Li, Yongchen
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
– sequence: 4
  givenname: Guanglin
  orcidid: 0000-0001-9016-2617
  surname: Li
  fullname: Li, Guanglin
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
– sequence: 5
  givenname: Xinyu
  orcidid: 0000-0001-6130-7821
  surname: Wu
  fullname: Wu, Xinyu
  organization: Institute of Advanced Integration Technology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong, China
– sequence: 6
  givenname: Fei
  orcidid: 0000-0001-9637-6114
  surname: Gao
  fullname: Gao, Fei
  email: fei.gao@siat.ac.cn
  organization: Institute of Advanced Integration Technology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong, China
BookMark eNpNkNFKwzAUhoNMcM49gOBFXiA1aXrS5nKbTidVYZ3XJU1PoOra0UTEt7ejA7055-Pn_OfiuySTtmuRkGvBIyG4vt09b5dRzGOIJKQyEeKMTGNIFZNDOPnHF2Tu_TvnPBbAU6mm5Mm9bLYFWxqPNV3Y0HQtvcOAI7mup3n3jcNs9hVd7A9fAdHTpqVFE1joWBFMW9Od8R_-ipw78-lxftoz8ra-360eWf76sFktcmaFhMBEpQG1zRRX2kJWxcpmlUuT2kmrVTywrRKntZJQG1NBkkKWSM51ArVStpYzIsa_tu-879GVh77Zm_6nFLw8-iiPPsqjj_LkY-jcjJ0GEf_uBRcAWSZ_AYUnXGs
CODEN ITMRBT
Cites_doi 10.3389/fnins.2020.00534
10.1186/s12984-022-01097-1
10.3390/bios13070679
10.3389/fnins.2022.878750
10.1109/TNSRE.2019.2959243
10.1109/ACCESS.2021.3099973
10.1016/j.jbiomech.2024.112225
10.1038/nature11076
10.1109/EMBC.2012.6346806
10.3389/fnins.2014.00376
10.1109/TMECH.2012.2200498
10.1109/TBME.2008.2003293
10.1109/LRA.2019.2892204
10.1109/TNSRE.2022.3202658
10.1038/s41586-023-05964-2
10.1016/j.neubiorev.2018.08.003
10.1016/j.sna.2015.09.028
10.3389/fnagi.2020.00141
10.1056/NEJMoa1300126
10.1109/TMECH.2019.2928892
10.1016/j.clinph.2018.11.019
10.1007/s11571-019-09560-x
10.3389/fninf.2022.961089
10.1186/s12938-016-0284-9
10.1109/TNSRE.2014.2305111
10.1177/0278364907084588
10.1136/bmj.321.7266.913
10.3390/diagnostics12112607
10.1109/EMBC53108.2024.10782845
10.1109/TNSRE.2020.2986787
10.1016/j.gaitpost.2021.06.015
10.1109/TNSRE.2017.2750113
10.1109/TMECH.2014.2365877
10.3389/fneur.2017.00696
10.1109/ICMA54519.2022.9856182
10.1109/TBME.2009.2034734
10.1109/TRO.2020.3005533
10.3389/fnhum.2015.00003
10.3389/fnbot.2017.00025
10.1098/rsos.220651
10.1117/1.JBO.19.6.067009
10.1016/j.tibtech.2010.08.002
10.3389/fnins.2022.799995
10.1109/TNSRE.2012.2225640
10.1109/TBME.2022.3140269
10.1109/TMECH.2023.3276710
10.1109/TNSRE.2013.2285101
10.1109/TNSRE.2020.2987155
10.1016/j.bspc.2020.102074
10.1109/TNSRE.2019.2909585
10.1155/2018/7068349
10.1109/JSEN.2020.3005968
10.1109/ACCESS.2021.3063120
10.1016/j.arcontrol.2023.03.003
10.1016/j.bbe.2020.05.010
10.1186/1743-0003-12-1
10.1038/s41551-020-00619-3
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TMRB.2025.3573411
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-3202
EndPage 1262
ExternalDocumentID 10_1109_TMRB_2025_3573411
11015588
Genre orig-research
GrantInformation_xml – fundername: Shenzhen Basic Research Key Project
  grantid: JCYJ20220818101407016
  funderid: 10.13039/501100002858
– fundername: Key Research and Development Project of Hainan Province
  grantid: ZDYF2022SHFZ302; ZDYF2022SHFZ275
  funderid: 10.13039/501100013142
– fundername: Postdoctoral Overseas Academic Exchange Program
– fundername: Basic and Applied Basic Research Fund of Guangdong Province: Regional Joint Fund Project Youth Fund
  grantid: 2021A1515110356
– fundername: China Postdoctoral
– fundername: China Postdoctoral Science Foundation
  grantid: 2023M733653
  funderid: 10.13039/501100002858
– fundername: Shenzhen-Hong Kong-Macao Science and Technology Project (Category C)
  grantid: SGDX20220530111005036
  funderid: 10.13039/501100002858
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c135t-1b95e9c86069c58b26c8bf74df3c9628bfcb4f99635daab547584300945d66cd3
IEDL.DBID RIE
ISSN 2576-3202
IngestDate Wed Aug 27 16:39:45 EDT 2025
Wed Aug 27 07:37:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-1b95e9c86069c58b26c8bf74df3c9628bfcb4f99635daab547584300945d66cd3
ORCID 0000-0001-9637-6114
0000-0001-6130-7821
0009-0002-6570-6445
0000-0001-9016-2617
0000-0003-1043-2395
PageCount 15
ParticipantIDs ieee_primary_11015588
crossref_primary_10_1109_TMRB_2025_3573411
PublicationCentury 2000
PublicationDate 2025-Aug.
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug.
PublicationDecade 2020
PublicationTitle IEEE transactions on medical robotics and bionics
PublicationTitleAbbrev TMRB
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref11
  doi: 10.3389/fnins.2020.00534
– ident: ref51
  doi: 10.1186/s12984-022-01097-1
– ident: ref30
  doi: 10.3390/bios13070679
– ident: ref49
  doi: 10.3389/fnins.2022.878750
– ident: ref21
  doi: 10.1109/TNSRE.2019.2959243
– ident: ref18
  doi: 10.1109/ACCESS.2021.3099973
– ident: ref28
  doi: 10.1016/j.jbiomech.2024.112225
– ident: ref39
  doi: 10.1038/nature11076
– ident: ref43
  doi: 10.1109/EMBC.2012.6346806
– ident: ref53
  doi: 10.3389/fnins.2014.00376
– ident: ref8
  doi: 10.1109/TMECH.2012.2200498
– ident: ref19
  doi: 10.1109/TBME.2008.2003293
– ident: ref20
  doi: 10.1109/LRA.2019.2892204
– ident: ref14
  doi: 10.1109/TNSRE.2022.3202658
– ident: ref37
  doi: 10.1038/s41586-023-05964-2
– ident: ref41
  doi: 10.1016/j.neubiorev.2018.08.003
– ident: ref29
  doi: 10.1016/j.sna.2015.09.028
– ident: ref56
  doi: 10.3389/fnagi.2020.00141
– ident: ref17
  doi: 10.1056/NEJMoa1300126
– ident: ref25
  doi: 10.1109/TMECH.2019.2928892
– ident: ref44
  doi: 10.1016/j.clinph.2018.11.019
– ident: ref46
  doi: 10.1007/s11571-019-09560-x
– ident: ref57
  doi: 10.3389/fninf.2022.961089
– ident: ref5
  doi: 10.1186/s12938-016-0284-9
– ident: ref34
  doi: 10.1109/TNSRE.2014.2305111
– ident: ref15
  doi: 10.1177/0278364907084588
– ident: ref54
  doi: 10.1136/bmj.321.7266.913
– ident: ref45
  doi: 10.3390/diagnostics12112607
– ident: ref35
  doi: 10.1109/EMBC53108.2024.10782845
– ident: ref23
  doi: 10.1109/TNSRE.2020.2986787
– ident: ref27
  doi: 10.1016/j.gaitpost.2021.06.015
– ident: ref4
  doi: 10.1109/TNSRE.2017.2750113
– ident: ref16
  doi: 10.1109/TMECH.2014.2365877
– ident: ref38
  doi: 10.3389/fneur.2017.00696
– ident: ref24
  doi: 10.1109/ICMA54519.2022.9856182
– ident: ref52
  doi: 10.1109/TBME.2009.2034734
– ident: ref12
  doi: 10.1109/TRO.2020.3005533
– ident: ref47
  doi: 10.3389/fnhum.2015.00003
– ident: ref33
  doi: 10.3389/fnbot.2017.00025
– ident: ref3
  doi: 10.1098/rsos.220651
– ident: ref50
  doi: 10.1117/1.JBO.19.6.067009
– ident: ref36
  doi: 10.1016/j.tibtech.2010.08.002
– ident: ref42
  doi: 10.3389/fnins.2022.799995
– ident: ref7
  doi: 10.1109/TNSRE.2012.2225640
– ident: ref22
  doi: 10.1109/TBME.2022.3140269
– ident: ref2
  doi: 10.1109/TMECH.2023.3276710
– ident: ref6
  doi: 10.1109/TNSRE.2013.2285101
– ident: ref26
  doi: 10.1109/TNSRE.2020.2987155
– ident: ref31
  doi: 10.1016/j.bspc.2020.102074
– ident: ref13
  doi: 10.1109/TNSRE.2019.2909585
– ident: ref32
  doi: 10.1155/2018/7068349
– ident: ref40
  doi: 10.1109/JSEN.2020.3005968
– ident: ref48
  doi: 10.1109/ACCESS.2021.3063120
– ident: ref9
  doi: 10.1016/j.arcontrol.2023.03.003
– ident: ref55
  doi: 10.1016/j.bbe.2020.05.010
– ident: ref1
  doi: 10.1186/1743-0003-12-1
– ident: ref10
  doi: 10.1038/s41551-020-00619-3
SSID ssj0002150736
Score 2.2989864
Snippet Traditional transfemoral lower-limb prostheses often overlook the intuitive neuronal connections between the brain and prosthetic actuators. This study bridges...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1248
SubjectTerms Accuracy
Electromyography
Functional near-infrared spectroscopy
Legged locomotion
machine learning
Motion capture
Motors
Neuroprostheses
Robot sensing systems
Sensors
sit-to-stand
Synchronization
transfemoral prostheses
Title fNIRS-Based Action Detection for Lower Limb Amputees in Sit-to-Stand Tasks
URI https://ieeexplore.ieee.org/document/11015588
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja8JAFB6qp_bQ1VK7yBx6Kkw0mSXJUVvFinpwAW9hVhBpLDVeeuhv70wSW1so9DaEBIb3hnzvm7d8ANwb6stQ-QpJC0eIaMKRYEGETMi5NNwIHLpG4dGY9edksKCLslk974XRWufFZ9pzyzyXr9Zy667KmhaqLPxFUQVULHMrmrW-LlQCF9pgVmYu_VbcnI0mHcsAA-phGtq_tf8De_bEVHIs6Z2A8W4XRQnJyttmwpPvvwY0_nubp-C4jCphuzgGZ-BAp-fgaG_W4AUYmPHzZIo6FrUUbOfdDPBJZ7pY2dAVDp1gGhwuXwRs51IPegOXKZwuM5StkZMbVnDGN6tNDcx73dljH5VCCkj6mGbIFzHVsYwsWYkljUTAZCRMSJTBMraeEUYKYizzwVRxLiixJIJgV3RIFWNS4UtQTdepvgJQMqEYD3krED4Rln1xGvOAWRZnApfTrIOHnYmT12JeRpLzjFacOH8kzh9J6Y86qDnrfb9YGu76j-c34NB9XtTf3YJq9rbVdzYmyEQDVEYf3UZ-Ij4BU020lg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4UD-rBbyN-9uDJpEC3tduOoBLAsQOMhNvSz4QQh5Fx8dfbbkPRxMRbsyxL877Nnvfp-_EAcK8JFr7EEgkDR8hTHkOcOgHSPmNCM81d3zYKD2Pam3iDKZlWzepFL4xSqig-Uw27LHL5ciFW9qqsaaDKwF8QbIMdA_wEl-1aX1cqjg1uXFrlLnErbCbDUcdwQIc0XOKb_zX-gT4bcioFmnQPQbzeR1lEMm-sct4QH79GNP57o0fgoIorYbs8CMdgS2UnYH9j2uApGOi4PxqjjsEtCdtFPwN8UrkqVyZ4hZGVTIPR7JXDdiH2oJZwlsHxLEf5AlnBYQkTtpwvz8Ck-5w89lAlpYAEdkmOMA-JCkVg6EooSMAdKgKufU9qV4TGN1wL7mnDfVwiGePEMzTCc23ZIZGUCumeg1q2yNQFgIJySZnPWg7HHjf8i5GQOdTwOO3YrGYdPKxNnL6VEzPSgmm0wtT6I7X-SCt_1MGZtd73i5XhLv94fgd2e8kwSqN-_HIF9uynymq8a1DL31fqxkQIOb8tzsUnqcK2rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=fNIRS-Based+Action+Detection+for+Lower+Limb+Amputees+in+Sit-to-Stand+Tasks&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Huang%2C+Ruisen&rft.au=Shang%2C+Wenze&rft.au=Li%2C+Yongchen&rft.au=Li%2C+Guanglin&rft.date=2025-08-01&rft.issn=2576-3202&rft.eissn=2576-3202&rft.volume=7&rft.issue=3&rft.spage=1248&rft.epage=1262&rft_id=info:doi/10.1109%2FTMRB.2025.3573411&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMRB_2025_3573411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon