fNIRS-Based Action Detection for Lower Limb Amputees in Sit-to-Stand Tasks
Traditional transfemoral lower-limb prostheses often overlook the intuitive neuronal connections between the brain and prosthetic actuators. This study bridges this gap by integrating a functional near-infrared spectroscopy (fNIRS) into real-time lower-limb prosthesis control with preliminary clinic...
Saved in:
Published in | IEEE transactions on medical robotics and bionics Vol. 7; no. 3; pp. 1248 - 1262 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2576-3202 2576-3202 |
DOI | 10.1109/TMRB.2025.3573411 |
Cover
Loading…
Abstract | Traditional transfemoral lower-limb prostheses often overlook the intuitive neuronal connections between the brain and prosthetic actuators. This study bridges this gap by integrating a functional near-infrared spectroscopy (fNIRS) into real-time lower-limb prosthesis control with preliminary clinical tests on the above-knee amputee, enabling a more reliable volitional control of the prosthesis. Cerebral hemodynamic responses were measured using a 56-channel fNIRS headset, and lower-limb kinematics were recorded with a optical motion capture system. Artifacts in fNIRS were mitigated using short-separation regression, and eight features of the fNIRS data were extracted. ANOVA revealed the means, slope, and entropy as top-performing features across all subjects. Among eight classifiers tested, k-nearest neighbor (KNN) emerged as the most accurate. In this study, we recruited eleven healthy subjects and one unilateral transfemoral amputee. Classification rates surpassed 97% for all classes, maintaining an average accuracy of <inline-formula> <tex-math notation="LaTeX">99.86\pm 0.01 </tex-math></inline-formula>%. Notably, the amputee exhibited higher precision, sensitivity, and F1 scores than healthy subjects. Maximum temporal latencies for healthy subjects were <inline-formula> <tex-math notation="LaTeX">120.00\pm 49.40 </tex-math></inline-formula> ms during sit-down and <inline-formula> <tex-math notation="LaTeX">119.09\pm 45.71 </tex-math></inline-formula> ms during stand-up, while the amputee showed maximum temporal latencies of 90 ms and 190 ms, respectively. This study marks the first application of action detection in sit-to-stand tasks for transfemoral amputees via fNIRS, which underscores the potential of fNIRS in neuroprostheses control. |
---|---|
AbstractList | Traditional transfemoral lower-limb prostheses often overlook the intuitive neuronal connections between the brain and prosthetic actuators. This study bridges this gap by integrating a functional near-infrared spectroscopy (fNIRS) into real-time lower-limb prosthesis control with preliminary clinical tests on the above-knee amputee, enabling a more reliable volitional control of the prosthesis. Cerebral hemodynamic responses were measured using a 56-channel fNIRS headset, and lower-limb kinematics were recorded with a optical motion capture system. Artifacts in fNIRS were mitigated using short-separation regression, and eight features of the fNIRS data were extracted. ANOVA revealed the means, slope, and entropy as top-performing features across all subjects. Among eight classifiers tested, k-nearest neighbor (KNN) emerged as the most accurate. In this study, we recruited eleven healthy subjects and one unilateral transfemoral amputee. Classification rates surpassed 97% for all classes, maintaining an average accuracy of <inline-formula> <tex-math notation="LaTeX">99.86\pm 0.01 </tex-math></inline-formula>%. Notably, the amputee exhibited higher precision, sensitivity, and F1 scores than healthy subjects. Maximum temporal latencies for healthy subjects were <inline-formula> <tex-math notation="LaTeX">120.00\pm 49.40 </tex-math></inline-formula> ms during sit-down and <inline-formula> <tex-math notation="LaTeX">119.09\pm 45.71 </tex-math></inline-formula> ms during stand-up, while the amputee showed maximum temporal latencies of 90 ms and 190 ms, respectively. This study marks the first application of action detection in sit-to-stand tasks for transfemoral amputees via fNIRS, which underscores the potential of fNIRS in neuroprostheses control. |
Author | Huang, Ruisen Gao, Fei Li, Yongchen Wu, Xinyu Shang, Wenze Li, Guanglin |
Author_xml | – sequence: 1 givenname: Ruisen orcidid: 0000-0003-1043-2395 surname: Huang fullname: Huang, Ruisen organization: Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guangdong, China – sequence: 2 givenname: Wenze surname: Shang fullname: Shang, Wenze organization: Institute of Advanced Integration Technology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong, China – sequence: 3 givenname: Yongchen orcidid: 0009-0002-6570-6445 surname: Li fullname: Li, Yongchen organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China – sequence: 4 givenname: Guanglin orcidid: 0000-0001-9016-2617 surname: Li fullname: Li, Guanglin organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China – sequence: 5 givenname: Xinyu orcidid: 0000-0001-6130-7821 surname: Wu fullname: Wu, Xinyu organization: Institute of Advanced Integration Technology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong, China – sequence: 6 givenname: Fei orcidid: 0000-0001-9637-6114 surname: Gao fullname: Gao, Fei email: fei.gao@siat.ac.cn organization: Institute of Advanced Integration Technology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong, China |
BookMark | eNpNkNFKwzAUhoNMcM49gOBFXiA1aXrS5nKbTidVYZ3XJU1PoOra0UTEt7ejA7055-Pn_OfiuySTtmuRkGvBIyG4vt09b5dRzGOIJKQyEeKMTGNIFZNDOPnHF2Tu_TvnPBbAU6mm5Mm9bLYFWxqPNV3Y0HQtvcOAI7mup3n3jcNs9hVd7A9fAdHTpqVFE1joWBFMW9Od8R_-ipw78-lxftoz8ra-360eWf76sFktcmaFhMBEpQG1zRRX2kJWxcpmlUuT2kmrVTywrRKntZJQG1NBkkKWSM51ArVStpYzIsa_tu-879GVh77Zm_6nFLw8-iiPPsqjj_LkY-jcjJ0GEf_uBRcAWSZ_AYUnXGs |
CODEN | ITMRBT |
Cites_doi | 10.3389/fnins.2020.00534 10.1186/s12984-022-01097-1 10.3390/bios13070679 10.3389/fnins.2022.878750 10.1109/TNSRE.2019.2959243 10.1109/ACCESS.2021.3099973 10.1016/j.jbiomech.2024.112225 10.1038/nature11076 10.1109/EMBC.2012.6346806 10.3389/fnins.2014.00376 10.1109/TMECH.2012.2200498 10.1109/TBME.2008.2003293 10.1109/LRA.2019.2892204 10.1109/TNSRE.2022.3202658 10.1038/s41586-023-05964-2 10.1016/j.neubiorev.2018.08.003 10.1016/j.sna.2015.09.028 10.3389/fnagi.2020.00141 10.1056/NEJMoa1300126 10.1109/TMECH.2019.2928892 10.1016/j.clinph.2018.11.019 10.1007/s11571-019-09560-x 10.3389/fninf.2022.961089 10.1186/s12938-016-0284-9 10.1109/TNSRE.2014.2305111 10.1177/0278364907084588 10.1136/bmj.321.7266.913 10.3390/diagnostics12112607 10.1109/EMBC53108.2024.10782845 10.1109/TNSRE.2020.2986787 10.1016/j.gaitpost.2021.06.015 10.1109/TNSRE.2017.2750113 10.1109/TMECH.2014.2365877 10.3389/fneur.2017.00696 10.1109/ICMA54519.2022.9856182 10.1109/TBME.2009.2034734 10.1109/TRO.2020.3005533 10.3389/fnhum.2015.00003 10.3389/fnbot.2017.00025 10.1098/rsos.220651 10.1117/1.JBO.19.6.067009 10.1016/j.tibtech.2010.08.002 10.3389/fnins.2022.799995 10.1109/TNSRE.2012.2225640 10.1109/TBME.2022.3140269 10.1109/TMECH.2023.3276710 10.1109/TNSRE.2013.2285101 10.1109/TNSRE.2020.2987155 10.1016/j.bspc.2020.102074 10.1109/TNSRE.2019.2909585 10.1155/2018/7068349 10.1109/JSEN.2020.3005968 10.1109/ACCESS.2021.3063120 10.1016/j.arcontrol.2023.03.003 10.1016/j.bbe.2020.05.010 10.1186/1743-0003-12-1 10.1038/s41551-020-00619-3 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TMRB.2025.3573411 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-3202 |
EndPage | 1262 |
ExternalDocumentID | 10_1109_TMRB_2025_3573411 11015588 |
Genre | orig-research |
GrantInformation_xml | – fundername: Shenzhen Basic Research Key Project grantid: JCYJ20220818101407016 funderid: 10.13039/501100002858 – fundername: Key Research and Development Project of Hainan Province grantid: ZDYF2022SHFZ302; ZDYF2022SHFZ275 funderid: 10.13039/501100013142 – fundername: Postdoctoral Overseas Academic Exchange Program – fundername: Basic and Applied Basic Research Fund of Guangdong Province: Regional Joint Fund Project Youth Fund grantid: 2021A1515110356 – fundername: China Postdoctoral – fundername: China Postdoctoral Science Foundation grantid: 2023M733653 funderid: 10.13039/501100002858 – fundername: Shenzhen-Hong Kong-Macao Science and Technology Project (Category C) grantid: SGDX20220530111005036 funderid: 10.13039/501100002858 |
GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c135t-1b95e9c86069c58b26c8bf74df3c9628bfcb4f99635daab547584300945d66cd3 |
IEDL.DBID | RIE |
ISSN | 2576-3202 |
IngestDate | Wed Aug 27 16:39:45 EDT 2025 Wed Aug 27 07:37:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c135t-1b95e9c86069c58b26c8bf74df3c9628bfcb4f99635daab547584300945d66cd3 |
ORCID | 0000-0001-9637-6114 0000-0001-6130-7821 0009-0002-6570-6445 0000-0001-9016-2617 0000-0003-1043-2395 |
PageCount | 15 |
ParticipantIDs | ieee_primary_11015588 crossref_primary_10_1109_TMRB_2025_3573411 |
PublicationCentury | 2000 |
PublicationDate | 2025-Aug. |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug. |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on medical robotics and bionics |
PublicationTitleAbbrev | TMRB |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref11 doi: 10.3389/fnins.2020.00534 – ident: ref51 doi: 10.1186/s12984-022-01097-1 – ident: ref30 doi: 10.3390/bios13070679 – ident: ref49 doi: 10.3389/fnins.2022.878750 – ident: ref21 doi: 10.1109/TNSRE.2019.2959243 – ident: ref18 doi: 10.1109/ACCESS.2021.3099973 – ident: ref28 doi: 10.1016/j.jbiomech.2024.112225 – ident: ref39 doi: 10.1038/nature11076 – ident: ref43 doi: 10.1109/EMBC.2012.6346806 – ident: ref53 doi: 10.3389/fnins.2014.00376 – ident: ref8 doi: 10.1109/TMECH.2012.2200498 – ident: ref19 doi: 10.1109/TBME.2008.2003293 – ident: ref20 doi: 10.1109/LRA.2019.2892204 – ident: ref14 doi: 10.1109/TNSRE.2022.3202658 – ident: ref37 doi: 10.1038/s41586-023-05964-2 – ident: ref41 doi: 10.1016/j.neubiorev.2018.08.003 – ident: ref29 doi: 10.1016/j.sna.2015.09.028 – ident: ref56 doi: 10.3389/fnagi.2020.00141 – ident: ref17 doi: 10.1056/NEJMoa1300126 – ident: ref25 doi: 10.1109/TMECH.2019.2928892 – ident: ref44 doi: 10.1016/j.clinph.2018.11.019 – ident: ref46 doi: 10.1007/s11571-019-09560-x – ident: ref57 doi: 10.3389/fninf.2022.961089 – ident: ref5 doi: 10.1186/s12938-016-0284-9 – ident: ref34 doi: 10.1109/TNSRE.2014.2305111 – ident: ref15 doi: 10.1177/0278364907084588 – ident: ref54 doi: 10.1136/bmj.321.7266.913 – ident: ref45 doi: 10.3390/diagnostics12112607 – ident: ref35 doi: 10.1109/EMBC53108.2024.10782845 – ident: ref23 doi: 10.1109/TNSRE.2020.2986787 – ident: ref27 doi: 10.1016/j.gaitpost.2021.06.015 – ident: ref4 doi: 10.1109/TNSRE.2017.2750113 – ident: ref16 doi: 10.1109/TMECH.2014.2365877 – ident: ref38 doi: 10.3389/fneur.2017.00696 – ident: ref24 doi: 10.1109/ICMA54519.2022.9856182 – ident: ref52 doi: 10.1109/TBME.2009.2034734 – ident: ref12 doi: 10.1109/TRO.2020.3005533 – ident: ref47 doi: 10.3389/fnhum.2015.00003 – ident: ref33 doi: 10.3389/fnbot.2017.00025 – ident: ref3 doi: 10.1098/rsos.220651 – ident: ref50 doi: 10.1117/1.JBO.19.6.067009 – ident: ref36 doi: 10.1016/j.tibtech.2010.08.002 – ident: ref42 doi: 10.3389/fnins.2022.799995 – ident: ref7 doi: 10.1109/TNSRE.2012.2225640 – ident: ref22 doi: 10.1109/TBME.2022.3140269 – ident: ref2 doi: 10.1109/TMECH.2023.3276710 – ident: ref6 doi: 10.1109/TNSRE.2013.2285101 – ident: ref26 doi: 10.1109/TNSRE.2020.2987155 – ident: ref31 doi: 10.1016/j.bspc.2020.102074 – ident: ref13 doi: 10.1109/TNSRE.2019.2909585 – ident: ref32 doi: 10.1155/2018/7068349 – ident: ref40 doi: 10.1109/JSEN.2020.3005968 – ident: ref48 doi: 10.1109/ACCESS.2021.3063120 – ident: ref9 doi: 10.1016/j.arcontrol.2023.03.003 – ident: ref55 doi: 10.1016/j.bbe.2020.05.010 – ident: ref1 doi: 10.1186/1743-0003-12-1 – ident: ref10 doi: 10.1038/s41551-020-00619-3 |
SSID | ssj0002150736 |
Score | 2.2989864 |
Snippet | Traditional transfemoral lower-limb prostheses often overlook the intuitive neuronal connections between the brain and prosthetic actuators. This study bridges... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 1248 |
SubjectTerms | Accuracy Electromyography Functional near-infrared spectroscopy Legged locomotion machine learning Motion capture Motors Neuroprostheses Robot sensing systems Sensors sit-to-stand Synchronization transfemoral prostheses |
Title | fNIRS-Based Action Detection for Lower Limb Amputees in Sit-to-Stand Tasks |
URI | https://ieeexplore.ieee.org/document/11015588 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja8JAFB6qp_bQ1VK7yBx6Kkw0mSXJUVvFinpwAW9hVhBpLDVeeuhv70wSW1so9DaEBIb3hnzvm7d8ANwb6stQ-QpJC0eIaMKRYEGETMi5NNwIHLpG4dGY9edksKCLslk974XRWufFZ9pzyzyXr9Zy667KmhaqLPxFUQVULHMrmrW-LlQCF9pgVmYu_VbcnI0mHcsAA-phGtq_tf8De_bEVHIs6Z2A8W4XRQnJyttmwpPvvwY0_nubp-C4jCphuzgGZ-BAp-fgaG_W4AUYmPHzZIo6FrUUbOfdDPBJZ7pY2dAVDp1gGhwuXwRs51IPegOXKZwuM5StkZMbVnDGN6tNDcx73dljH5VCCkj6mGbIFzHVsYwsWYkljUTAZCRMSJTBMraeEUYKYizzwVRxLiixJIJgV3RIFWNS4UtQTdepvgJQMqEYD3krED4Rln1xGvOAWRZnApfTrIOHnYmT12JeRpLzjFacOH8kzh9J6Y86qDnrfb9YGu76j-c34NB9XtTf3YJq9rbVdzYmyEQDVEYf3UZ-Ij4BU020lg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4UD-rBbyN-9uDJpEC3tduOoBLAsQOMhNvSz4QQh5Fx8dfbbkPRxMRbsyxL877Nnvfp-_EAcK8JFr7EEgkDR8hTHkOcOgHSPmNCM81d3zYKD2Pam3iDKZlWzepFL4xSqig-Uw27LHL5ciFW9qqsaaDKwF8QbIMdA_wEl-1aX1cqjg1uXFrlLnErbCbDUcdwQIc0XOKb_zX-gT4bcioFmnQPQbzeR1lEMm-sct4QH79GNP57o0fgoIorYbs8CMdgS2UnYH9j2uApGOi4PxqjjsEtCdtFPwN8UrkqVyZ4hZGVTIPR7JXDdiH2oJZwlsHxLEf5AlnBYQkTtpwvz8Ck-5w89lAlpYAEdkmOMA-JCkVg6EooSMAdKgKufU9qV4TGN1wL7mnDfVwiGePEMzTCc23ZIZGUCumeg1q2yNQFgIJySZnPWg7HHjf8i5GQOdTwOO3YrGYdPKxNnL6VEzPSgmm0wtT6I7X-SCt_1MGZtd73i5XhLv94fgd2e8kwSqN-_HIF9uynymq8a1DL31fqxkQIOb8tzsUnqcK2rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=fNIRS-Based+Action+Detection+for+Lower+Limb+Amputees+in+Sit-to-Stand+Tasks&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Huang%2C+Ruisen&rft.au=Shang%2C+Wenze&rft.au=Li%2C+Yongchen&rft.au=Li%2C+Guanglin&rft.date=2025-08-01&rft.issn=2576-3202&rft.eissn=2576-3202&rft.volume=7&rft.issue=3&rft.spage=1248&rft.epage=1262&rft_id=info:doi/10.1109%2FTMRB.2025.3573411&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMRB_2025_3573411 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon |