Carbon defects engineering in hexagonal boron nitride for single photon emission and spin qubits

The common defects in ultrathin hexagonal boron nitride (h-BN) provide diverse color centers for quantum information applications. However, deterministic manipulation of h-BN defects spatially and spectrally remains a grand challenge. Understanding the principles for tuning the spin state, zero-phon...

Full description

Saved in:
Bibliographic Details
Published inAPL quantum Vol. 2; no. 2; pp. 026127 - 026127-10
Main Authors Du, Tingli, Yang, Xiaowei, Pei, Wei, Han, Pingping, Feng, Yonglei, Zhao, Jijun, Zhou, Si
Format Journal Article
LanguageEnglish
Published AIP Publishing LLC 01.06.2025
Online AccessGet full text

Cover

Loading…
Abstract The common defects in ultrathin hexagonal boron nitride (h-BN) provide diverse color centers for quantum information applications. However, deterministic manipulation of h-BN defects spatially and spectrally remains a grand challenge. Understanding the principles for tuning the spin state, zero-phonon line (ZPL) energy, emission intensity, and linewidth is highly sought after. Here, we showcase that substitutional carbon defects, ubiquitous in synthetic h-BN, can be engineered facilely to possess quantum emission and spin-selective luminescence properties on-demand. Within the h-BN host lattice, single carbon dimers and carbon defect complexes exhibit strong ZPL emission with wavelength and vibrational structure tunable by the size of the defect complex. The carbon impurities can also form charge-neutral spin defects with high quantum yield and prolonged spin coherence time with regard to the widely reported boron vacancy defect VB−. The essential roles of exciton nature and electron–phonon coupling in the quantum optical performance are elucidated, providing useful guidance for the design of solid-state single photon emitters and spin qubits.
AbstractList The common defects in ultrathin hexagonal boron nitride (h-BN) provide diverse color centers for quantum information applications. However, deterministic manipulation of h-BN defects spatially and spectrally remains a grand challenge. Understanding the principles for tuning the spin state, zero-phonon line (ZPL) energy, emission intensity, and linewidth is highly sought after. Here, we showcase that substitutional carbon defects, ubiquitous in synthetic h-BN, can be engineered facilely to possess quantum emission and spin-selective luminescence properties on-demand. Within the h-BN host lattice, single carbon dimers and carbon defect complexes exhibit strong ZPL emission with wavelength and vibrational structure tunable by the size of the defect complex. The carbon impurities can also form charge-neutral spin defects with high quantum yield and prolonged spin coherence time with regard to the widely reported boron vacancy defect VB−. The essential roles of exciton nature and electron–phonon coupling in the quantum optical performance are elucidated, providing useful guidance for the design of solid-state single photon emitters and spin qubits.
Author Han, Pingping
Feng, Yonglei
Yang, Xiaowei
Du, Tingli
Zhao, Jijun
Pei, Wei
Zhou, Si
Author_xml – sequence: 1
  givenname: Tingli
  orcidid: 0000-0003-3623-2420
  surname: Du
  fullname: Du, Tingli
– sequence: 2
  givenname: Xiaowei
  orcidid: 0009-0006-0696-0741
  surname: Yang
  fullname: Yang, Xiaowei
– sequence: 3
  givenname: Wei
  orcidid: 0000-0002-7367-4618
  surname: Pei
  fullname: Pei, Wei
– sequence: 4
  givenname: Pingping
  orcidid: 0009-0002-0691-042X
  surname: Han
  fullname: Han, Pingping
– sequence: 5
  givenname: Yonglei
  orcidid: 0009-0001-1888-8963
  surname: Feng
  fullname: Feng, Yonglei
– sequence: 6
  givenname: Jijun
  orcidid: 0000-0002-3263-7159
  surname: Zhao
  fullname: Zhao, Jijun
– sequence: 7
  givenname: Si
  orcidid: 0000-0002-0842-1075
  surname: Zhou
  fullname: Zhou, Si
BookMark eNpNkD1PwzAQhi1UJErpwD_wypByjhPHGVHFR6VKLDCHc3xJXbV2sYME_55AK8R0r-7ee4bnkk188MTYtYCFACVvywXkFRRKnbFprmWZgQA5-Zcv2DylLQBICZWWesrelhhN8NxSR-2QOPneeaLofM-d5xv6xD543HET4ljzbojOEu9C5Gns7IgfNmEYL7R3KbkxoLc8Hcbf9w_jhnTFzjvcJZqf5oy9Pty_LJ-y9fPjanm3zlohS5UZWWMJdWkAagOIKm_rsihAIFXW1JUiQClNJwsrtM1JGJ13JBCMKOoSjZyx1ZFrA26bQ3R7jF9NQNf8LkLsG4yDa3fU6BzQtKoaXenCWNBG60pVlWjbTgmrRtbNkdXGkFKk7o8noPkx3ZTNybT8Bpigccg
Cites_doi 10.1038/s41467-017-00810-2
10.1021/acs.jpcc.8b09087
10.1002/wcms.81
10.1021/jacs.9b07626
10.1063/1.3533804
10.1038/s41598-021-90804-4
10.1021/acs.nanolett.6b01368
10.1002/jcc.22885
10.1088/1402-4896/aceb1d
10.1038/s41563-020-00850-y
10.1088/2053-1583/ab8f61
10.1021/acs.nanolett.9b02879
10.1103/physrevlett.119.057401
10.1080/23746149.2023.2206049
10.1038/s41524-018-0132-5
10.1038/s41699-024-00455-y
10.1002/adom.201400189
10.1088/2053-1583/ac0d9c
10.1088/1367-2630/13/2/025012
10.1103/physrevmaterials.5.095201
10.1103/physrevb.87.035404
10.1021/acsnano.1c04467
10.1103/physrevlett.85.290
10.1063/1.5124153
10.1063/5.0006075
10.1126/sciadv.abf3630
10.1103/physrevlett.131.126901
10.1088/1361-6633/ab6310
10.1103/physrevmaterials.6.014005
10.1038/s41563-020-0616-9
10.1021/acs.jpcc.9b03229
10.1103/physrevb.97.214104
10.1103/physrevb.78.155204
10.1088/1367-2630/16/7/073026
10.1002/qua.25925
10.1038/nature10401
10.1103/physreva.100.063834
10.1103/physrevb.11.2370
10.1016/j.jlumin.2018.12.036
10.1039/c2jm30760j
10.1021/acsphotonics.7b01442
10.1021/acs.nanolett.1c04841
10.1039/c3mh00098b
10.1021/acs.jpcc.1c07729
10.1146/annurev-physchem-042018-052628
10.1103/physrevb.86.245406
10.1088/0034-4885/42/10/001
10.1038/ncomms3681
10.1038/ncomms6873
10.1063/1.4885819
10.1103/physrevmaterials.6.l042201
10.1146/annurev.physchem.55.091602.094449
10.1021/jacsau.2c00306
10.1021/nn103548r
10.1103/physrevb.74.165312
10.1021/acs.jpca.0c07339
10.1038/s41699-022-00336-2
10.1039/d1nr04896a
10.1103/physrevb.84.205412
10.1021/acs.nanolett.2c03743
10.1021/acs.jpclett.3c03554
10.1038/s41578-021-00306-y
10.1103/PhysRevB.103.115421
10.1021/acsnano.6b03602
10.1103/physrevb.37.785
10.1038/s42254-023-00583-2
10.1038/nnano.2015.136
10.1103/physrevb.104.075410
10.1021/acs.nanolett.1c04610
10.1038/nmat2711
10.1038/nnano.2015.242
10.1088/2633-4356/ac7e9f
10.1103/PhysRevB.50.17953
10.1021/acsami.1c16988
10.1103/physrevresearch.6.013055
10.1103/physrevb.98.085207
10.1038/s41563-020-0619-6
10.1038/s41524-021-00525-5
10.1038/s41524-020-0305-x
10.1021/acs.nanolett.3c03628
10.1103/physrevb.102.144105
10.1002/jcc.1056
10.1038/s41377-024-01630-y
10.1063/1.5143076
10.1038/nphoton.2016.186
10.1038/nature08879
10.1146/annurev.pc.34.100183.003215
10.1016/j.physrep.2013.02.001
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1063/5.0270466
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2835-0103
EndPage 026127-10
ExternalDocumentID oai_doaj_org_article_820abc6727084bd08b8876771ccf61d6
10_1063_5_0270466
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
RQS
ID FETCH-LOGICAL-c1356-b39a5095b009b0aa62c954401ae7db976e0a33bf34d18d2e1b82fe1a0b1495ab3
IEDL.DBID DOA
ISSN 2835-0103
IngestDate Wed Aug 27 01:19:41 EDT 2025
Thu Jul 03 08:22:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1356-b39a5095b009b0aa62c954401ae7db976e0a33bf34d18d2e1b82fe1a0b1495ab3
ORCID 0000-0002-3263-7159
0009-0002-0691-042X
0000-0002-0842-1075
0009-0001-1888-8963
0000-0002-7367-4618
0009-0006-0696-0741
0000-0003-3623-2420
OpenAccessLink https://doaj.org/article/820abc6727084bd08b8876771ccf61d6
ParticipantIDs doaj_primary_oai_doaj_org_article_820abc6727084bd08b8876771ccf61d6
crossref_primary_10_1063_5_0270466
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle APL quantum
PublicationYear 2025
Publisher AIP Publishing LLC
Publisher_xml – name: AIP Publishing LLC
References (2025052915065793600_c83) 2016; 10
(2025052915065793600_c58) 2024; 8
(2025052915065793600_c15) 2021; 125
(2025052915065793600_c18) 2021; 125
(2025052915065793600_c46) 2010; 9
(2025052915065793600_c61) 2015; 10
(2025052915065793600_c81) 2022; 2
(2025052915065793600_c63) 2012; 22
(2025052915065793600_c60) 2019; 208
(2025052915065793600_c35) 2014; 16
(2025052915065793600_c64) 2024; 15
(2025052915065793600_c39) 1988; 37
(2025052915065793600_c30) 2010; 464
(2025052915065793600_c76) 2021; 7
(2025052915065793600_c13) 2021; 20
(2025052915065793600_c69) 2011; 13
(2025052915065793600_c43) 2020; 152
(2025052915065793600_c17) 2021; 5
(2025052915065793600_c65) 2014; 141
(2025052915065793600_c74) 2020; 102
(2025052915065793600_c8) 2016; 10
(2025052915065793600_c44) 2012; 2
(2025052915065793600_c48) 2022; 6
(2025052915065793600_c71) 2020; 6
(2025052915065793600_c38) 2001; 22
(2025052915065793600_c59) 1975; 11
(2025052915065793600_c62) 2019; 100
(2025052915065793600_c32) 2024; 24
(2025052915065793600_c34) 2011; 84
(2025052915065793600_c40) 2004; 55
(2025052915065793600_c33) 2013; 87
(2025052915065793600_c68) 1979; 42
(2025052915065793600_c53) 2020; 7
(2025052915065793600_c80) 2011; 477
(2025052915065793600_c27) 2021; 15
(2025052915065793600_c28) 2019; 70
(2025052915065793600_c37) 1983; 34
(2025052915065793600_c52) 2012; 86
(2025052915065793600_c49) 2011; 98
(2025052915065793600_c21) 2020; 19
(2025052915065793600_c57) 2019; 119
(2025052915065793600_c78) 2018; 98
(2025052915065793600_c79) 2019; 141
(2025052915065793600_c12) 2017; 8
(2025052915065793600_c5) 2021; 11
(2025052915065793600_c10) 2021; 8
(2025052915065793600_c14) 2022; 6
(2025052915065793600_c87) 2018; 4
(2025052915065793600_c19) 2021; 6
(2025052915065793600_c31) 2019; 19
(2025052915065793600_c47) 2019; 123
(2025052915065793600_c3) 2016; 11
(2025052915065793600_c11) 2020; 19
(2025052915065793600_c1) 2000; 85
(2025052915065793600_c67) 2021; 13
(2025052915065793600_c25) 2021; 7
(2025052915065793600_c24) 2022; 6
(2025052915065793600_c82) 2023; 5
(2025052915065793600_c86) 2022; 22
(2025052915065793600_c4) 2020; 83
(2025052915065793600_c7) 2015; 6
(2025052915065793600_c54) 2020; 7
(2025052915065793600_c20) 2021; 104
(2025052915065793600_c75) 2022; 22
(2025052915065793600_c23) 2023; 8
(2025052915065793600_c55) 2019; 115
(2025052915065793600_c41) 2018; 122
(2025052915065793600_c56) 2021; 103
(2025052915065793600_c16) 2016; 16
(2025052915065793600_c85) 2023; 131
(2025052915065793600_c9) 2022; 22
(2025052915065793600_c2) 2014; 2
(2025052915065793600_c45) 1994; 50
(2025052915065793600_c73) 2023; 98
(2025052915065793600_c88) 2006; 74
(2025052915065793600_c6) 2024; 13
(2025052915065793600_c42) 2012; 33
(2025052915065793600_c51) 2018; 97
(2025052915065793600_c22) 2022; 2
(2025052915065793600_c26) 2021; 13
(2025052915065793600_c77) 2013; 528
(2025052915065793600_c66) 2014; 1
(2025052915065793600_c72) 2018; 5
(2025052915065793600_c84) 2024; 6
(2025052915065793600_c50) 2013; 4
(2025052915065793600_c70) 2008; 78
(2025052915065793600_c36) 2017; 119
(2025052915065793600_c29) 2011; 5
References_xml – volume: 8
  start-page: 705
  year: 2017
  ident: 2025052915065793600_c12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00810-2
– volume: 122
  start-page: 25524
  year: 2018
  ident: 2025052915065793600_c41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b09087
– volume: 2
  start-page: 73
  year: 2012
  ident: 2025052915065793600_c44
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
  doi: 10.1002/wcms.81
– volume: 141
  start-page: 18715
  year: 2019
  ident: 2025052915065793600_c79
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07626
– volume: 98
  start-page: 013105
  year: 2011
  ident: 2025052915065793600_c49
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3533804
– volume: 11
  start-page: 12285
  year: 2021
  ident: 2025052915065793600_c5
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-90804-4
– volume: 16
  start-page: 4317
  year: 2016
  ident: 2025052915065793600_c16
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01368
– volume: 33
  start-page: 580
  year: 2012
  ident: 2025052915065793600_c42
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 98
  start-page: 095505
  year: 2023
  ident: 2025052915065793600_c73
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/aceb1d
– volume: 20
  start-page: 321
  year: 2021
  ident: 2025052915065793600_c13
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00850-y
– volume: 7
  start-page: 031007
  year: 2020
  ident: 2025052915065793600_c53
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ab8f61
– volume: 19
  start-page: 7282
  year: 2019
  ident: 2025052915065793600_c31
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02879
– volume: 119
  start-page: 057401
  year: 2017
  ident: 2025052915065793600_c36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.119.057401
– volume: 8
  start-page: 2206049
  year: 2023
  ident: 2025052915065793600_c23
  publication-title: Adv. Phys.: X
  doi: 10.1080/23746149.2023.2206049
– volume: 4
  start-page: 76
  year: 2018
  ident: 2025052915065793600_c87
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-018-0132-5
– volume: 8
  start-page: 16
  year: 2024
  ident: 2025052915065793600_c58
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-024-00455-y
– volume: 2
  start-page: 911
  year: 2014
  ident: 2025052915065793600_c2
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201400189
– volume: 8
  start-page: 044001
  year: 2021
  ident: 2025052915065793600_c10
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ac0d9c
– volume: 13
  start-page: 025012
  year: 2011
  ident: 2025052915065793600_c69
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/2/025012
– volume: 5
  start-page: 095201
  year: 2021
  ident: 2025052915065793600_c17
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/physrevmaterials.5.095201
– volume: 87
  start-page: 035404
  year: 2013
  ident: 2025052915065793600_c33
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.87.035404
– volume: 15
  start-page: 13591
  year: 2021
  ident: 2025052915065793600_c27
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04467
– volume: 85
  start-page: 290
  year: 2000
  ident: 2025052915065793600_c1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.85.290
– volume: 115
  start-page: 212101
  year: 2019
  ident: 2025052915065793600_c55
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5124153
– volume: 7
  start-page: 031308
  year: 2020
  ident: 2025052915065793600_c54
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0006075
– volume: 7
  start-page: eabf3630
  year: 2021
  ident: 2025052915065793600_c76
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf3630
– volume: 131
  start-page: 126901
  year: 2023
  ident: 2025052915065793600_c85
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.131.126901
– volume: 83
  start-page: 044501
  year: 2020
  ident: 2025052915065793600_c4
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ab6310
– volume: 6
  start-page: 014005
  year: 2022
  ident: 2025052915065793600_c48
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/physrevmaterials.6.014005
– volume: 19
  start-page: 534
  year: 2020
  ident: 2025052915065793600_c11
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0616-9
– volume: 123
  start-page: 16731
  year: 2019
  ident: 2025052915065793600_c47
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b03229
– volume: 97
  start-page: 214104
  year: 2018
  ident: 2025052915065793600_c51
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.97.214104
– volume: 78
  start-page: 155204
  year: 2008
  ident: 2025052915065793600_c70
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.78.155204
– volume: 16
  start-page: 073026
  year: 2014
  ident: 2025052915065793600_c35
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/7/073026
– volume: 119
  start-page: e25925
  year: 2019
  ident: 2025052915065793600_c57
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25925
– volume: 477
  start-page: 574
  year: 2011
  ident: 2025052915065793600_c80
  publication-title: Nature
  doi: 10.1038/nature10401
– volume: 100
  start-page: 063834
  year: 2019
  ident: 2025052915065793600_c62
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.100.063834
– volume: 11
  start-page: 2370
  year: 1975
  ident: 2025052915065793600_c59
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.11.2370
– volume: 208
  start-page: 363
  year: 2019
  ident: 2025052915065793600_c60
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2018.12.036
– volume: 22
  start-page: 10406
  year: 2012
  ident: 2025052915065793600_c63
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30760j
– volume: 5
  start-page: 1967
  year: 2018
  ident: 2025052915065793600_c72
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01442
– volume: 22
  start-page: 3545
  year: 2022
  ident: 2025052915065793600_c75
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04841
– volume: 1
  start-page: 17
  year: 2014
  ident: 2025052915065793600_c66
  publication-title: Mater. Horiz.
  doi: 10.1039/c3mh00098b
– volume: 125
  start-page: 21791
  year: 2021
  ident: 2025052915065793600_c15
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c07729
– volume: 70
  start-page: 123
  year: 2019
  ident: 2025052915065793600_c28
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-042018-052628
– volume: 86
  start-page: 245406
  year: 2012
  ident: 2025052915065793600_c52
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.86.245406
– volume: 42
  start-page: 1605
  year: 1979
  ident: 2025052915065793600_c68
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/42/10/001
– volume: 4
  start-page: 2681
  year: 2013
  ident: 2025052915065793600_c50
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3681
– volume: 6
  start-page: 5873
  year: 2015
  ident: 2025052915065793600_c7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6873
– volume: 141
  start-page: 024106
  year: 2014
  ident: 2025052915065793600_c65
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4885819
– volume: 6
  start-page: L042201
  year: 2022
  ident: 2025052915065793600_c14
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/physrevmaterials.6.l042201
– volume: 55
  start-page: 427
  year: 2004
  ident: 2025052915065793600_c40
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.55.091602.094449
– volume: 2
  start-page: 2029
  year: 2022
  ident: 2025052915065793600_c81
  publication-title: JACS Au
  doi: 10.1021/jacsau.2c00306
– volume: 5
  start-page: 2916
  year: 2011
  ident: 2025052915065793600_c29
  publication-title: ACS Nano
  doi: 10.1021/nn103548r
– volume: 74
  start-page: 165312
  year: 2006
  ident: 2025052915065793600_c88
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.74.165312
– volume: 125
  start-page: 1325
  year: 2021
  ident: 2025052915065793600_c18
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c07339
– volume: 6
  start-page: 60
  year: 2022
  ident: 2025052915065793600_c24
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-022-00336-2
– volume: 13
  start-page: 17057
  year: 2021
  ident: 2025052915065793600_c67
  publication-title: Nanoscale
  doi: 10.1039/d1nr04896a
– volume: 84
  start-page: 205412
  year: 2011
  ident: 2025052915065793600_c34
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.84.205412
– volume: 22
  start-page: 9227
  year: 2022
  ident: 2025052915065793600_c9
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c03743
– volume: 15
  start-page: 3249
  year: 2024
  ident: 2025052915065793600_c64
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.3c03554
– volume: 6
  start-page: 906
  year: 2021
  ident: 2025052915065793600_c19
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00306-y
– volume: 103
  start-page: 115421
  year: 2021
  ident: 2025052915065793600_c56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.115421
– volume: 10
  start-page: 7331
  year: 2016
  ident: 2025052915065793600_c8
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03602
– volume: 37
  start-page: 785
  year: 1988
  ident: 2025052915065793600_c39
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.37.785
– volume: 5
  start-page: 326
  year: 2023
  ident: 2025052915065793600_c82
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-023-00583-2
– volume: 10
  start-page: 671
  year: 2015
  ident: 2025052915065793600_c61
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.136
– volume: 104
  start-page: 075410
  year: 2021
  ident: 2025052915065793600_c20
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.104.075410
– volume: 22
  start-page: 2718
  year: 2022
  ident: 2025052915065793600_c86
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04610
– volume: 9
  start-page: 430
  year: 2010
  ident: 2025052915065793600_c46
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2711
– volume: 11
  start-page: 37
  year: 2016
  ident: 2025052915065793600_c3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.242
– volume: 2
  start-page: 032002
  year: 2022
  ident: 2025052915065793600_c22
  publication-title: Mater. Quantum Technol.
  doi: 10.1088/2633-4356/ac7e9f
– volume: 50
  start-page: 17953
  year: 1994
  ident: 2025052915065793600_c45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 13
  start-page: 45768
  year: 2021
  ident: 2025052915065793600_c26
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c16988
– volume: 6
  start-page: 013055
  year: 2024
  ident: 2025052915065793600_c84
  publication-title: Phys. Rev. Res.
  doi: 10.1103/physrevresearch.6.013055
– volume: 98
  start-page: 085207
  year: 2018
  ident: 2025052915065793600_c78
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.98.085207
– volume: 19
  start-page: 540
  year: 2020
  ident: 2025052915065793600_c21
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0619-6
– volume: 7
  start-page: 59
  year: 2021
  ident: 2025052915065793600_c25
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00525-5
– volume: 6
  start-page: 41
  year: 2020
  ident: 2025052915065793600_c71
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0305-x
– volume: 24
  start-page: 1106
  year: 2024
  ident: 2025052915065793600_c32
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c03628
– volume: 102
  start-page: 144105
  year: 2020
  ident: 2025052915065793600_c74
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.102.144105
– volume: 22
  start-page: 931
  year: 2001
  ident: 2025052915065793600_c38
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.1056
– volume: 13
  start-page: 303
  year: 2024
  ident: 2025052915065793600_c6
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-024-01630-y
– volume: 152
  start-page: 084108
  year: 2020
  ident: 2025052915065793600_c43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5143076
– volume: 10
  start-page: 631
  year: 2016
  ident: 2025052915065793600_c83
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.186
– volume: 464
  start-page: 571
  year: 2010
  ident: 2025052915065793600_c30
  publication-title: Nature
  doi: 10.1038/nature08879
– volume: 34
  start-page: 631
  year: 1983
  ident: 2025052915065793600_c37
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.34.100183.003215
– volume: 528
  start-page: 1
  year: 2013
  ident: 2025052915065793600_c77
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2013.02.001
SSID ssj0003307838
Score 2.293395
Snippet The common defects in ultrathin hexagonal boron nitride (h-BN) provide diverse color centers for quantum information applications. However, deterministic...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 026127
Title Carbon defects engineering in hexagonal boron nitride for single photon emission and spin qubits
URI https://doaj.org/article/820abc6727084bd08b8876771ccf61d6
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hfLOI1dpPdbJKjlpYi1JOF3uJMdmMLktY-wJO_3dlNqvXkxUsOIbuEmZ2d79sdvmHsNrKpjjG2AUgUgVIIAYRCBIVNwJS0wJQvHh8-6cFIPY7j8VarL1cTVssD14brUIYCLNx9oUgVGpEihYVOkrAoSh0aL7ZNOW-LTLk9mFh6ksp0IyWkZSe-IwJGZFD_SkBbOv0-ofQP2H6DBPl9_QeHbMdWR2zXV2QWy2P20oUFzipurC-44PZHOJBPKz6xH_DqUDRHp0HAKTIXU2M5YVDu6P-b5fPJjIAddw3d3JEYh8rw5ZzGvq9xulqesFG_99wdBE07hKAIZawDlBlQeo8pUDIUADoqslgRPwKbGCRYYQVIiaVUJkxNZENMo9KGINCxIEB5ylrVrLJnjGOpI1CEJCATyiauf5UyhUpDIZVEMG12s7FRPq9VL3J_W61lHueNIdvswVnv-wMnVO1fkPvyxn35X-47_49JLthe5Nry-sORS9ZaLdb2irDCCq_9sqDn8LP3BQI1vQQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+defects+engineering+in+hexagonal+boron+nitride+for+single+photon+emission+and+spin+qubits&rft.jtitle=APL+quantum&rft.au=Du%2C+Tingli&rft.au=Yang%2C+Xiaowei&rft.au=Pei%2C+Wei&rft.au=Han%2C+Pingping&rft.date=2025-06-01&rft.issn=2835-0103&rft.eissn=2835-0103&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1063%2F5.0270466&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0270466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2835-0103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2835-0103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2835-0103&client=summon