Carbon defects engineering in hexagonal boron nitride for single photon emission and spin qubits
The common defects in ultrathin hexagonal boron nitride (h-BN) provide diverse color centers for quantum information applications. However, deterministic manipulation of h-BN defects spatially and spectrally remains a grand challenge. Understanding the principles for tuning the spin state, zero-phon...
Saved in:
Published in | APL quantum Vol. 2; no. 2; pp. 026127 - 026127-10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
AIP Publishing LLC
01.06.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | The common defects in ultrathin hexagonal boron nitride (h-BN) provide diverse color centers for quantum information applications. However, deterministic manipulation of h-BN defects spatially and spectrally remains a grand challenge. Understanding the principles for tuning the spin state, zero-phonon line (ZPL) energy, emission intensity, and linewidth is highly sought after. Here, we showcase that substitutional carbon defects, ubiquitous in synthetic h-BN, can be engineered facilely to possess quantum emission and spin-selective luminescence properties on-demand. Within the h-BN host lattice, single carbon dimers and carbon defect complexes exhibit strong ZPL emission with wavelength and vibrational structure tunable by the size of the defect complex. The carbon impurities can also form charge-neutral spin defects with high quantum yield and prolonged spin coherence time with regard to the widely reported boron vacancy defect VB−. The essential roles of exciton nature and electron–phonon coupling in the quantum optical performance are elucidated, providing useful guidance for the design of solid-state single photon emitters and spin qubits. |
---|---|
AbstractList | The common defects in ultrathin hexagonal boron nitride (h-BN) provide diverse color centers for quantum information applications. However, deterministic manipulation of h-BN defects spatially and spectrally remains a grand challenge. Understanding the principles for tuning the spin state, zero-phonon line (ZPL) energy, emission intensity, and linewidth is highly sought after. Here, we showcase that substitutional carbon defects, ubiquitous in synthetic h-BN, can be engineered facilely to possess quantum emission and spin-selective luminescence properties on-demand. Within the h-BN host lattice, single carbon dimers and carbon defect complexes exhibit strong ZPL emission with wavelength and vibrational structure tunable by the size of the defect complex. The carbon impurities can also form charge-neutral spin defects with high quantum yield and prolonged spin coherence time with regard to the widely reported boron vacancy defect VB−. The essential roles of exciton nature and electron–phonon coupling in the quantum optical performance are elucidated, providing useful guidance for the design of solid-state single photon emitters and spin qubits. |
Author | Han, Pingping Feng, Yonglei Yang, Xiaowei Du, Tingli Zhao, Jijun Pei, Wei Zhou, Si |
Author_xml | – sequence: 1 givenname: Tingli orcidid: 0000-0003-3623-2420 surname: Du fullname: Du, Tingli – sequence: 2 givenname: Xiaowei orcidid: 0009-0006-0696-0741 surname: Yang fullname: Yang, Xiaowei – sequence: 3 givenname: Wei orcidid: 0000-0002-7367-4618 surname: Pei fullname: Pei, Wei – sequence: 4 givenname: Pingping orcidid: 0009-0002-0691-042X surname: Han fullname: Han, Pingping – sequence: 5 givenname: Yonglei orcidid: 0009-0001-1888-8963 surname: Feng fullname: Feng, Yonglei – sequence: 6 givenname: Jijun orcidid: 0000-0002-3263-7159 surname: Zhao fullname: Zhao, Jijun – sequence: 7 givenname: Si orcidid: 0000-0002-0842-1075 surname: Zhou fullname: Zhou, Si |
BookMark | eNpNkD1PwzAQhi1UJErpwD_wypByjhPHGVHFR6VKLDCHc3xJXbV2sYME_55AK8R0r-7ee4bnkk188MTYtYCFACVvywXkFRRKnbFprmWZgQA5-Zcv2DylLQBICZWWesrelhhN8NxSR-2QOPneeaLofM-d5xv6xD543HET4ljzbojOEu9C5Gns7IgfNmEYL7R3KbkxoLc8Hcbf9w_jhnTFzjvcJZqf5oy9Pty_LJ-y9fPjanm3zlohS5UZWWMJdWkAagOIKm_rsihAIFXW1JUiQClNJwsrtM1JGJ13JBCMKOoSjZyx1ZFrA26bQ3R7jF9NQNf8LkLsG4yDa3fU6BzQtKoaXenCWNBG60pVlWjbTgmrRtbNkdXGkFKk7o8noPkx3ZTNybT8Bpigccg |
Cites_doi | 10.1038/s41467-017-00810-2 10.1021/acs.jpcc.8b09087 10.1002/wcms.81 10.1021/jacs.9b07626 10.1063/1.3533804 10.1038/s41598-021-90804-4 10.1021/acs.nanolett.6b01368 10.1002/jcc.22885 10.1088/1402-4896/aceb1d 10.1038/s41563-020-00850-y 10.1088/2053-1583/ab8f61 10.1021/acs.nanolett.9b02879 10.1103/physrevlett.119.057401 10.1080/23746149.2023.2206049 10.1038/s41524-018-0132-5 10.1038/s41699-024-00455-y 10.1002/adom.201400189 10.1088/2053-1583/ac0d9c 10.1088/1367-2630/13/2/025012 10.1103/physrevmaterials.5.095201 10.1103/physrevb.87.035404 10.1021/acsnano.1c04467 10.1103/physrevlett.85.290 10.1063/1.5124153 10.1063/5.0006075 10.1126/sciadv.abf3630 10.1103/physrevlett.131.126901 10.1088/1361-6633/ab6310 10.1103/physrevmaterials.6.014005 10.1038/s41563-020-0616-9 10.1021/acs.jpcc.9b03229 10.1103/physrevb.97.214104 10.1103/physrevb.78.155204 10.1088/1367-2630/16/7/073026 10.1002/qua.25925 10.1038/nature10401 10.1103/physreva.100.063834 10.1103/physrevb.11.2370 10.1016/j.jlumin.2018.12.036 10.1039/c2jm30760j 10.1021/acsphotonics.7b01442 10.1021/acs.nanolett.1c04841 10.1039/c3mh00098b 10.1021/acs.jpcc.1c07729 10.1146/annurev-physchem-042018-052628 10.1103/physrevb.86.245406 10.1088/0034-4885/42/10/001 10.1038/ncomms3681 10.1038/ncomms6873 10.1063/1.4885819 10.1103/physrevmaterials.6.l042201 10.1146/annurev.physchem.55.091602.094449 10.1021/jacsau.2c00306 10.1021/nn103548r 10.1103/physrevb.74.165312 10.1021/acs.jpca.0c07339 10.1038/s41699-022-00336-2 10.1039/d1nr04896a 10.1103/physrevb.84.205412 10.1021/acs.nanolett.2c03743 10.1021/acs.jpclett.3c03554 10.1038/s41578-021-00306-y 10.1103/PhysRevB.103.115421 10.1021/acsnano.6b03602 10.1103/physrevb.37.785 10.1038/s42254-023-00583-2 10.1038/nnano.2015.136 10.1103/physrevb.104.075410 10.1021/acs.nanolett.1c04610 10.1038/nmat2711 10.1038/nnano.2015.242 10.1088/2633-4356/ac7e9f 10.1103/PhysRevB.50.17953 10.1021/acsami.1c16988 10.1103/physrevresearch.6.013055 10.1103/physrevb.98.085207 10.1038/s41563-020-0619-6 10.1038/s41524-021-00525-5 10.1038/s41524-020-0305-x 10.1021/acs.nanolett.3c03628 10.1103/physrevb.102.144105 10.1002/jcc.1056 10.1038/s41377-024-01630-y 10.1063/1.5143076 10.1038/nphoton.2016.186 10.1038/nature08879 10.1146/annurev.pc.34.100183.003215 10.1016/j.physrep.2013.02.001 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1063/5.0270466 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2835-0103 |
EndPage | 026127-10 |
ExternalDocumentID | oai_doaj_org_article_820abc6727084bd08b8876771ccf61d6 10_1063_5_0270466 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E RQS |
ID | FETCH-LOGICAL-c1356-b39a5095b009b0aa62c954401ae7db976e0a33bf34d18d2e1b82fe1a0b1495ab3 |
IEDL.DBID | DOA |
ISSN | 2835-0103 |
IngestDate | Wed Aug 27 01:19:41 EDT 2025 Thu Jul 03 08:22:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1356-b39a5095b009b0aa62c954401ae7db976e0a33bf34d18d2e1b82fe1a0b1495ab3 |
ORCID | 0000-0002-3263-7159 0009-0002-0691-042X 0000-0002-0842-1075 0009-0001-1888-8963 0000-0002-7367-4618 0009-0006-0696-0741 0000-0003-3623-2420 |
OpenAccessLink | https://doaj.org/article/820abc6727084bd08b8876771ccf61d6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_820abc6727084bd08b8876771ccf61d6 crossref_primary_10_1063_5_0270466 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | APL quantum |
PublicationYear | 2025 |
Publisher | AIP Publishing LLC |
Publisher_xml | – name: AIP Publishing LLC |
References | (2025052915065793600_c83) 2016; 10 (2025052915065793600_c58) 2024; 8 (2025052915065793600_c15) 2021; 125 (2025052915065793600_c18) 2021; 125 (2025052915065793600_c46) 2010; 9 (2025052915065793600_c61) 2015; 10 (2025052915065793600_c81) 2022; 2 (2025052915065793600_c63) 2012; 22 (2025052915065793600_c60) 2019; 208 (2025052915065793600_c35) 2014; 16 (2025052915065793600_c64) 2024; 15 (2025052915065793600_c39) 1988; 37 (2025052915065793600_c30) 2010; 464 (2025052915065793600_c76) 2021; 7 (2025052915065793600_c13) 2021; 20 (2025052915065793600_c69) 2011; 13 (2025052915065793600_c43) 2020; 152 (2025052915065793600_c17) 2021; 5 (2025052915065793600_c65) 2014; 141 (2025052915065793600_c74) 2020; 102 (2025052915065793600_c8) 2016; 10 (2025052915065793600_c44) 2012; 2 (2025052915065793600_c48) 2022; 6 (2025052915065793600_c71) 2020; 6 (2025052915065793600_c38) 2001; 22 (2025052915065793600_c59) 1975; 11 (2025052915065793600_c62) 2019; 100 (2025052915065793600_c32) 2024; 24 (2025052915065793600_c34) 2011; 84 (2025052915065793600_c40) 2004; 55 (2025052915065793600_c33) 2013; 87 (2025052915065793600_c68) 1979; 42 (2025052915065793600_c53) 2020; 7 (2025052915065793600_c80) 2011; 477 (2025052915065793600_c27) 2021; 15 (2025052915065793600_c28) 2019; 70 (2025052915065793600_c37) 1983; 34 (2025052915065793600_c52) 2012; 86 (2025052915065793600_c49) 2011; 98 (2025052915065793600_c21) 2020; 19 (2025052915065793600_c57) 2019; 119 (2025052915065793600_c78) 2018; 98 (2025052915065793600_c79) 2019; 141 (2025052915065793600_c12) 2017; 8 (2025052915065793600_c5) 2021; 11 (2025052915065793600_c10) 2021; 8 (2025052915065793600_c14) 2022; 6 (2025052915065793600_c87) 2018; 4 (2025052915065793600_c19) 2021; 6 (2025052915065793600_c31) 2019; 19 (2025052915065793600_c47) 2019; 123 (2025052915065793600_c3) 2016; 11 (2025052915065793600_c11) 2020; 19 (2025052915065793600_c1) 2000; 85 (2025052915065793600_c67) 2021; 13 (2025052915065793600_c25) 2021; 7 (2025052915065793600_c24) 2022; 6 (2025052915065793600_c82) 2023; 5 (2025052915065793600_c86) 2022; 22 (2025052915065793600_c4) 2020; 83 (2025052915065793600_c7) 2015; 6 (2025052915065793600_c54) 2020; 7 (2025052915065793600_c20) 2021; 104 (2025052915065793600_c75) 2022; 22 (2025052915065793600_c23) 2023; 8 (2025052915065793600_c55) 2019; 115 (2025052915065793600_c41) 2018; 122 (2025052915065793600_c56) 2021; 103 (2025052915065793600_c16) 2016; 16 (2025052915065793600_c85) 2023; 131 (2025052915065793600_c9) 2022; 22 (2025052915065793600_c2) 2014; 2 (2025052915065793600_c45) 1994; 50 (2025052915065793600_c73) 2023; 98 (2025052915065793600_c88) 2006; 74 (2025052915065793600_c6) 2024; 13 (2025052915065793600_c42) 2012; 33 (2025052915065793600_c51) 2018; 97 (2025052915065793600_c22) 2022; 2 (2025052915065793600_c26) 2021; 13 (2025052915065793600_c77) 2013; 528 (2025052915065793600_c66) 2014; 1 (2025052915065793600_c72) 2018; 5 (2025052915065793600_c84) 2024; 6 (2025052915065793600_c50) 2013; 4 (2025052915065793600_c70) 2008; 78 (2025052915065793600_c36) 2017; 119 (2025052915065793600_c29) 2011; 5 |
References_xml | – volume: 8 start-page: 705 year: 2017 ident: 2025052915065793600_c12 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00810-2 – volume: 122 start-page: 25524 year: 2018 ident: 2025052915065793600_c41 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b09087 – volume: 2 start-page: 73 year: 2012 ident: 2025052915065793600_c44 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. doi: 10.1002/wcms.81 – volume: 141 start-page: 18715 year: 2019 ident: 2025052915065793600_c79 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07626 – volume: 98 start-page: 013105 year: 2011 ident: 2025052915065793600_c49 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3533804 – volume: 11 start-page: 12285 year: 2021 ident: 2025052915065793600_c5 publication-title: Sci. Rep. doi: 10.1038/s41598-021-90804-4 – volume: 16 start-page: 4317 year: 2016 ident: 2025052915065793600_c16 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01368 – volume: 33 start-page: 580 year: 2012 ident: 2025052915065793600_c42 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 98 start-page: 095505 year: 2023 ident: 2025052915065793600_c73 publication-title: Phys. Scr. doi: 10.1088/1402-4896/aceb1d – volume: 20 start-page: 321 year: 2021 ident: 2025052915065793600_c13 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00850-y – volume: 7 start-page: 031007 year: 2020 ident: 2025052915065793600_c53 publication-title: 2D Mater. doi: 10.1088/2053-1583/ab8f61 – volume: 19 start-page: 7282 year: 2019 ident: 2025052915065793600_c31 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02879 – volume: 119 start-page: 057401 year: 2017 ident: 2025052915065793600_c36 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.119.057401 – volume: 8 start-page: 2206049 year: 2023 ident: 2025052915065793600_c23 publication-title: Adv. Phys.: X doi: 10.1080/23746149.2023.2206049 – volume: 4 start-page: 76 year: 2018 ident: 2025052915065793600_c87 publication-title: npj Comput. Mater. doi: 10.1038/s41524-018-0132-5 – volume: 8 start-page: 16 year: 2024 ident: 2025052915065793600_c58 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-024-00455-y – volume: 2 start-page: 911 year: 2014 ident: 2025052915065793600_c2 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201400189 – volume: 8 start-page: 044001 year: 2021 ident: 2025052915065793600_c10 publication-title: 2D Mater. doi: 10.1088/2053-1583/ac0d9c – volume: 13 start-page: 025012 year: 2011 ident: 2025052915065793600_c69 publication-title: New J. Phys. doi: 10.1088/1367-2630/13/2/025012 – volume: 5 start-page: 095201 year: 2021 ident: 2025052915065793600_c17 publication-title: Phys. Rev. Mater. doi: 10.1103/physrevmaterials.5.095201 – volume: 87 start-page: 035404 year: 2013 ident: 2025052915065793600_c33 publication-title: Phys. Rev. B doi: 10.1103/physrevb.87.035404 – volume: 15 start-page: 13591 year: 2021 ident: 2025052915065793600_c27 publication-title: ACS Nano doi: 10.1021/acsnano.1c04467 – volume: 85 start-page: 290 year: 2000 ident: 2025052915065793600_c1 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.85.290 – volume: 115 start-page: 212101 year: 2019 ident: 2025052915065793600_c55 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5124153 – volume: 7 start-page: 031308 year: 2020 ident: 2025052915065793600_c54 publication-title: Appl. Phys. Rev. doi: 10.1063/5.0006075 – volume: 7 start-page: eabf3630 year: 2021 ident: 2025052915065793600_c76 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf3630 – volume: 131 start-page: 126901 year: 2023 ident: 2025052915065793600_c85 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.131.126901 – volume: 83 start-page: 044501 year: 2020 ident: 2025052915065793600_c4 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ab6310 – volume: 6 start-page: 014005 year: 2022 ident: 2025052915065793600_c48 publication-title: Phys. Rev. Mater. doi: 10.1103/physrevmaterials.6.014005 – volume: 19 start-page: 534 year: 2020 ident: 2025052915065793600_c11 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0616-9 – volume: 123 start-page: 16731 year: 2019 ident: 2025052915065793600_c47 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b03229 – volume: 97 start-page: 214104 year: 2018 ident: 2025052915065793600_c51 publication-title: Phys. Rev. B doi: 10.1103/physrevb.97.214104 – volume: 78 start-page: 155204 year: 2008 ident: 2025052915065793600_c70 publication-title: Phys. Rev. B doi: 10.1103/physrevb.78.155204 – volume: 16 start-page: 073026 year: 2014 ident: 2025052915065793600_c35 publication-title: New J. Phys. doi: 10.1088/1367-2630/16/7/073026 – volume: 119 start-page: e25925 year: 2019 ident: 2025052915065793600_c57 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.25925 – volume: 477 start-page: 574 year: 2011 ident: 2025052915065793600_c80 publication-title: Nature doi: 10.1038/nature10401 – volume: 100 start-page: 063834 year: 2019 ident: 2025052915065793600_c62 publication-title: Phys. Rev. A doi: 10.1103/physreva.100.063834 – volume: 11 start-page: 2370 year: 1975 ident: 2025052915065793600_c59 publication-title: Phys. Rev. B doi: 10.1103/physrevb.11.2370 – volume: 208 start-page: 363 year: 2019 ident: 2025052915065793600_c60 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.12.036 – volume: 22 start-page: 10406 year: 2012 ident: 2025052915065793600_c63 publication-title: J. Mater. Chem. doi: 10.1039/c2jm30760j – volume: 5 start-page: 1967 year: 2018 ident: 2025052915065793600_c72 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01442 – volume: 22 start-page: 3545 year: 2022 ident: 2025052915065793600_c75 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04841 – volume: 1 start-page: 17 year: 2014 ident: 2025052915065793600_c66 publication-title: Mater. Horiz. doi: 10.1039/c3mh00098b – volume: 125 start-page: 21791 year: 2021 ident: 2025052915065793600_c15 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c07729 – volume: 70 start-page: 123 year: 2019 ident: 2025052915065793600_c28 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-042018-052628 – volume: 86 start-page: 245406 year: 2012 ident: 2025052915065793600_c52 publication-title: Phys. Rev. B doi: 10.1103/physrevb.86.245406 – volume: 42 start-page: 1605 year: 1979 ident: 2025052915065793600_c68 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/42/10/001 – volume: 4 start-page: 2681 year: 2013 ident: 2025052915065793600_c50 publication-title: Nat. Commun. doi: 10.1038/ncomms3681 – volume: 6 start-page: 5873 year: 2015 ident: 2025052915065793600_c7 publication-title: Nat. Commun. doi: 10.1038/ncomms6873 – volume: 141 start-page: 024106 year: 2014 ident: 2025052915065793600_c65 publication-title: J. Chem. Phys. doi: 10.1063/1.4885819 – volume: 6 start-page: L042201 year: 2022 ident: 2025052915065793600_c14 publication-title: Phys. Rev. Mater. doi: 10.1103/physrevmaterials.6.l042201 – volume: 55 start-page: 427 year: 2004 ident: 2025052915065793600_c40 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.55.091602.094449 – volume: 2 start-page: 2029 year: 2022 ident: 2025052915065793600_c81 publication-title: JACS Au doi: 10.1021/jacsau.2c00306 – volume: 5 start-page: 2916 year: 2011 ident: 2025052915065793600_c29 publication-title: ACS Nano doi: 10.1021/nn103548r – volume: 74 start-page: 165312 year: 2006 ident: 2025052915065793600_c88 publication-title: Phys. Rev. B doi: 10.1103/physrevb.74.165312 – volume: 125 start-page: 1325 year: 2021 ident: 2025052915065793600_c18 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c07339 – volume: 6 start-page: 60 year: 2022 ident: 2025052915065793600_c24 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-022-00336-2 – volume: 13 start-page: 17057 year: 2021 ident: 2025052915065793600_c67 publication-title: Nanoscale doi: 10.1039/d1nr04896a – volume: 84 start-page: 205412 year: 2011 ident: 2025052915065793600_c34 publication-title: Phys. Rev. B doi: 10.1103/physrevb.84.205412 – volume: 22 start-page: 9227 year: 2022 ident: 2025052915065793600_c9 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c03743 – volume: 15 start-page: 3249 year: 2024 ident: 2025052915065793600_c64 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.3c03554 – volume: 6 start-page: 906 year: 2021 ident: 2025052915065793600_c19 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00306-y – volume: 103 start-page: 115421 year: 2021 ident: 2025052915065793600_c56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.115421 – volume: 10 start-page: 7331 year: 2016 ident: 2025052915065793600_c8 publication-title: ACS Nano doi: 10.1021/acsnano.6b03602 – volume: 37 start-page: 785 year: 1988 ident: 2025052915065793600_c39 publication-title: Phys. Rev. B doi: 10.1103/physrevb.37.785 – volume: 5 start-page: 326 year: 2023 ident: 2025052915065793600_c82 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-023-00583-2 – volume: 10 start-page: 671 year: 2015 ident: 2025052915065793600_c61 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.136 – volume: 104 start-page: 075410 year: 2021 ident: 2025052915065793600_c20 publication-title: Phys. Rev. B doi: 10.1103/physrevb.104.075410 – volume: 22 start-page: 2718 year: 2022 ident: 2025052915065793600_c86 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04610 – volume: 9 start-page: 430 year: 2010 ident: 2025052915065793600_c46 publication-title: Nat. Mater. doi: 10.1038/nmat2711 – volume: 11 start-page: 37 year: 2016 ident: 2025052915065793600_c3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.242 – volume: 2 start-page: 032002 year: 2022 ident: 2025052915065793600_c22 publication-title: Mater. Quantum Technol. doi: 10.1088/2633-4356/ac7e9f – volume: 50 start-page: 17953 year: 1994 ident: 2025052915065793600_c45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 13 start-page: 45768 year: 2021 ident: 2025052915065793600_c26 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c16988 – volume: 6 start-page: 013055 year: 2024 ident: 2025052915065793600_c84 publication-title: Phys. Rev. Res. doi: 10.1103/physrevresearch.6.013055 – volume: 98 start-page: 085207 year: 2018 ident: 2025052915065793600_c78 publication-title: Phys. Rev. B doi: 10.1103/physrevb.98.085207 – volume: 19 start-page: 540 year: 2020 ident: 2025052915065793600_c21 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0619-6 – volume: 7 start-page: 59 year: 2021 ident: 2025052915065793600_c25 publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00525-5 – volume: 6 start-page: 41 year: 2020 ident: 2025052915065793600_c71 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-0305-x – volume: 24 start-page: 1106 year: 2024 ident: 2025052915065793600_c32 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c03628 – volume: 102 start-page: 144105 year: 2020 ident: 2025052915065793600_c74 publication-title: Phys. Rev. B doi: 10.1103/physrevb.102.144105 – volume: 22 start-page: 931 year: 2001 ident: 2025052915065793600_c38 publication-title: J. Comput. Chem. doi: 10.1002/jcc.1056 – volume: 13 start-page: 303 year: 2024 ident: 2025052915065793600_c6 publication-title: Light: Sci. Appl. doi: 10.1038/s41377-024-01630-y – volume: 152 start-page: 084108 year: 2020 ident: 2025052915065793600_c43 publication-title: J. Chem. Phys. doi: 10.1063/1.5143076 – volume: 10 start-page: 631 year: 2016 ident: 2025052915065793600_c83 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.186 – volume: 464 start-page: 571 year: 2010 ident: 2025052915065793600_c30 publication-title: Nature doi: 10.1038/nature08879 – volume: 34 start-page: 631 year: 1983 ident: 2025052915065793600_c37 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.34.100183.003215 – volume: 528 start-page: 1 year: 2013 ident: 2025052915065793600_c77 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2013.02.001 |
SSID | ssj0003307838 |
Score | 2.293395 |
Snippet | The common defects in ultrathin hexagonal boron nitride (h-BN) provide diverse color centers for quantum information applications. However, deterministic... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 026127 |
Title | Carbon defects engineering in hexagonal boron nitride for single photon emission and spin qubits |
URI | https://doaj.org/article/820abc6727084bd08b8876771ccf61d6 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hfLOI1dpPdbJKjlpYi1JOF3uJMdmMLktY-wJO_3dlNqvXkxUsOIbuEmZ2d79sdvmHsNrKpjjG2AUgUgVIIAYRCBIVNwJS0wJQvHh8-6cFIPY7j8VarL1cTVssD14brUIYCLNx9oUgVGpEihYVOkrAoSh0aL7ZNOW-LTLk9mFh6ksp0IyWkZSe-IwJGZFD_SkBbOv0-ofQP2H6DBPl9_QeHbMdWR2zXV2QWy2P20oUFzipurC-44PZHOJBPKz6xH_DqUDRHp0HAKTIXU2M5YVDu6P-b5fPJjIAddw3d3JEYh8rw5ZzGvq9xulqesFG_99wdBE07hKAIZawDlBlQeo8pUDIUADoqslgRPwKbGCRYYQVIiaVUJkxNZENMo9KGINCxIEB5ylrVrLJnjGOpI1CEJCATyiauf5UyhUpDIZVEMG12s7FRPq9VL3J_W61lHueNIdvswVnv-wMnVO1fkPvyxn35X-47_49JLthe5Nry-sORS9ZaLdb2irDCCq_9sqDn8LP3BQI1vQQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+defects+engineering+in+hexagonal+boron+nitride+for+single+photon+emission+and+spin+qubits&rft.jtitle=APL+quantum&rft.au=Du%2C+Tingli&rft.au=Yang%2C+Xiaowei&rft.au=Pei%2C+Wei&rft.au=Han%2C+Pingping&rft.date=2025-06-01&rft.issn=2835-0103&rft.eissn=2835-0103&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1063%2F5.0270466&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0270466 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2835-0103&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2835-0103&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2835-0103&client=summon |