Ebers–Moll model inspired equivalent circuit for quantum thermal transistors

The widespread success of electronic transistors is partly due to their ability to be modeled using equivalent circuits, which not only enables detailed analysis and efficient design but also provides greater insight for designers, facilitating the development of complex electronic systems. The Eber...

Full description

Saved in:
Bibliographic Details
Published inAPL quantum Vol. 2; no. 2; pp. 026119 - 026119-14
Main Authors Rajapaksha, Anuradhi, Gunapala, Sarath D., Premaratne, Malin
Format Journal Article
LanguageEnglish
Published AIP Publishing LLC 01.06.2025
Online AccessGet full text

Cover

Loading…
Abstract The widespread success of electronic transistors is partly due to their ability to be modeled using equivalent circuits, which not only enables detailed analysis and efficient design but also provides greater insight for designers, facilitating the development of complex electronic systems. The Ebers–Moll model, for example, is a widely used large-signal equivalent circuit that replicates the operational characteristics of bipolar junction transistors. Similar to electronic transistors, research on quantum thermal transistors has gained considerable attention in recent years; however, minimal focus has been placed on developing equivalent circuit representations. Drawing inspiration from equivalent models of electronic transistors, our study proposes an equivalent model for a quantum thermal transistor built on a strongly coupled qubit–qutrit–qubit architecture. This configuration allows replication of its transistor behavior using a diode-based equivalent model, leveraging its property of splitting the qutrit into two individual qubits. The proposed quantum thermal diode-based equivalent model closely mirrors the diode-based representation of an electronic transistor. Using frameworks of open quantum systems and the quantum Markovian master equation, along with the Born approximation and rotating wave approximation, we conduct a comprehensive analysis and comparison of our quantum thermal diode-based equivalent model with an established quantum thermal transistor model. Furthermore, we discuss the intrinsic internal coupling between the two diodes and determine the optimum coupling strength necessary for efficient heat amplification. This equivalent model provides greater insight into the analysis of quantum thermal transistors and significantly contributes to the advancement of nanoscale thermal circuit designs.
AbstractList The widespread success of electronic transistors is partly due to their ability to be modeled using equivalent circuits, which not only enables detailed analysis and efficient design but also provides greater insight for designers, facilitating the development of complex electronic systems. The Ebers–Moll model, for example, is a widely used large-signal equivalent circuit that replicates the operational characteristics of bipolar junction transistors. Similar to electronic transistors, research on quantum thermal transistors has gained considerable attention in recent years; however, minimal focus has been placed on developing equivalent circuit representations. Drawing inspiration from equivalent models of electronic transistors, our study proposes an equivalent model for a quantum thermal transistor built on a strongly coupled qubit–qutrit–qubit architecture. This configuration allows replication of its transistor behavior using a diode-based equivalent model, leveraging its property of splitting the qutrit into two individual qubits. The proposed quantum thermal diode-based equivalent model closely mirrors the diode-based representation of an electronic transistor. Using frameworks of open quantum systems and the quantum Markovian master equation, along with the Born approximation and rotating wave approximation, we conduct a comprehensive analysis and comparison of our quantum thermal diode-based equivalent model with an established quantum thermal transistor model. Furthermore, we discuss the intrinsic internal coupling between the two diodes and determine the optimum coupling strength necessary for efficient heat amplification. This equivalent model provides greater insight into the analysis of quantum thermal transistors and significantly contributes to the advancement of nanoscale thermal circuit designs.
Author Premaratne, Malin
Gunapala, Sarath D.
Rajapaksha, Anuradhi
Author_xml – sequence: 1
  givenname: Anuradhi
  orcidid: 0009-0009-3476-6577
  surname: Rajapaksha
  fullname: Rajapaksha, Anuradhi
– sequence: 2
  givenname: Sarath D.
  orcidid: 0000-0001-8107-1051
  surname: Gunapala
  fullname: Gunapala, Sarath D.
– sequence: 3
  givenname: Malin
  orcidid: 0000-0002-2419-4431
  surname: Premaratne
  fullname: Premaratne, Malin
BookMark eNpNkDFOwzAYRi1UJErpwA28MqT8tuPEGVFVaKUCC8yW7djgKolbO0Fi4w7ckJNQaIWY3qdveMM7R6MudBahSwIzAgW75jOgJeS8OEFjKhjPgAAb_dtnaJrSBgAYg1IwMUYPC21j-vr4vA9Ng9tQ2wb7Lm19tDW2u8G_qcZ2PTY-msH32IWId4Pq-qHF_auNrWpwH1WXfOpDTBfo1Kkm2emRE_R8u3iaL7P1491qfrPODGG8yEpGtRa1qeieOXeVZkIRC47XlBakcqZUBKgWzgolFDfEUAulrgpeMs0pm6DVwVsHtZHb6FsV32VQXv4eIb5IFXtvGispYwIoc2C1yxU1WlNOXF0UVOSE5vnedXVwmRhSitb9-QjIn66Sy2NX9g1A3GyP
Cites_doi 10.1039/c3cs00009e
10.1103/physrevapplied.15.054050
10.1103/physrevlett.116.200601
10.1103/PhysRevResearch.2.033285
10.1515/zna-2016-0358
10.1088/0305-4470/12/5/007
10.3390/e24010032
10.1038/nphys3169
10.1103/physreve.106.034116
10.1103/physreve.95.022128
10.1103/physreve.109.064146
10.1063/1.4893931
10.1103/revmodphys.59.1
10.1088/1367-2630/ab54ac
10.1103/physreve.89.062109
10.1103/physrevb.107.075440
10.1103/physreve.109.014142
10.1103/physrevb.103.155434
10.1103/physreve.106.024110
10.1080/00107514.2016.1201896
10.1088/1367-2630/ab5c58
10.1126/science.1141324
10.1088/1751-8121/ac8bb4
10.1109/OJCOMS.2025.3559376
10.1103/physreve.107.064125
10.3390/en9090690
10.1038/s41567-024-02764-x
10.1063/5.0229630
10.1088/2058-7058/21/03/31
10.1016/0003-4916(83)90202-6
10.1103/physrevlett.94.034301
10.1103/physrevb.105.235412
10.1103/physrevb.104.045405
10.1088/2631-7990/acfd68
10.1109/proc.1964.2867
10.1007/s11128-018-1825-x
10.1126/science.abp8278
10.1126/science.aan8285
10.1063/5.0237842
10.1109/5.658766
10.1103/physreve.99.062123
10.1103/physreve.104.054137
10.1103/physrevb.108.235421
10.1088/1367-2630/ad8eea
10.1063/1.4764100
10.1103/physrevb.101.245402
10.1088/0957-4484/26/3/032001
10.1038/nnano.2010.220
10.1126/science.1191922
10.1103/physrevlett.90.127901
10.1088/1361-6633/acb06b
10.3390/en9090756
10.1103/physreva.25.2168
10.1103/physreve.99.042121
10.1103/physreve.98.022118
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1063/5.0270456
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2835-0103
EndPage 026119-14
ExternalDocumentID oai_doaj_org_article_2338023f0ebf4a2cbb251fd662841244
10_1063_5_0270456
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
RQS
ID FETCH-LOGICAL-c1356-732bb8dc922bb45f9b38a1e0f5d22619fc7a102b8fe8a8a5c1c2e07b96573b523
IEDL.DBID DOA
ISSN 2835-0103
IngestDate Wed Aug 27 01:24:09 EDT 2025
Tue Jul 01 04:57:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1356-732bb8dc922bb45f9b38a1e0f5d22619fc7a102b8fe8a8a5c1c2e07b96573b523
ORCID 0000-0001-8107-1051
0009-0009-3476-6577
0000-0002-2419-4431
OpenAccessLink https://doaj.org/article/2338023f0ebf4a2cbb251fd662841244
ParticipantIDs doaj_primary_oai_doaj_org_article_2338023f0ebf4a2cbb251fd662841244
crossref_primary_10_1063_5_0270456
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle APL quantum
PublicationYear 2025
Publisher AIP Publishing LLC
Publisher_xml – name: AIP Publishing LLC
References (2025051309374785700_c36) 2024; 109
2025051309374785700_c62
(2025051309374785700_c51) 2018; 17
2025051309374785700_c61
(2025051309374785700_c37) 2020; 101
(2025051309374785700_c63) 2022; 55
(2025051309374785700_c24) 2019; 99
(2025051309374785700_c44) 2021
(2025051309374785700_c28) 2022; 106
(2025051309374785700_c5) 2022; 378
(2025051309374785700_c60) 2015
(2025051309374785700_c42) 1964; 52
(2025051309374785700_c46) 2023; 107
(2025051309374785700_c11) 2016; 9
(2025051309374785700_c21) 2005; 94
(2025051309374785700_c3) 2012
(2025051309374785700_c38) 2021; 104
(2025051309374785700_c33) 2022; 106
(2025051309374785700_c25) 2021; 15
(2025051309374785700_c8) 2010; 329
(2025051309374785700_c43) 2016
(2025051309374785700_c27) 2021; 104
(2025051309374785700_c59) 2022; 24
(2025051309374785700_c35) 2024; 26
(2025051309374785700_c1) 1949
(2025051309374785700_c15) 2023; 86
(2025051309374785700_c16) 2025; 21
(2025051309374785700_c39) 2022; 105
(2025051309374785700_c57) 1979; 12
(2025051309374785700_c12) 2015; 11
(2025051309374785700_c68) 2003
(2025051309374785700_c66) 2003; 90
(2025051309374785700_c10) 2016; 9
(2025051309374785700_c58) 2007
(2025051309374785700_c64) 2019; 21
(2025051309374785700_c26) 2021; 103
(2025051309374785700_c49) 1982; 25
(2025051309374785700_c50) 1983; 149
(2025051309374785700_c54) 1987; 59
(2025051309374785700_c14) 2014; 26
(2025051309374785700_c4) 2010; 5
(2025051309374785700_c22) 2014; 89
(2025051309374785700_c67) 2007; 316
(2025051309374785700_c47) 2024; 1
(2025051309374785700_c48) 2017
(2025051309374785700_c53) 2012; 137
(2025051309374785700_c9) 2025; 6
(2025051309374785700_c41) 1998; 86
(2025051309374785700_c34) 2024; 109
(2025051309374785700_c17) 2008; 21
(2025051309374785700_c13) 2016; 57
(2025051309374785700_c29) 2023; 107
(2025051309374785700_c56) 2019; 21
(2025051309374785700_c7) 2019; 366
(2025051309374785700_c45) 2000
(2025051309374785700_c6) 2013; 42
(2025051309374785700_c23) 2017; 95
(2025051309374785700_c55) 2014; 141
(2025051309374785700_c18) 2017; 72
(2025051309374785700_c20) 2023; 6
(2025051309374785700_c30) 2024; 1
(2025051309374785700_c32) 2018; 98
(2025051309374785700_c65) 2020; 2
(2025051309374785700_c2) 1997
(2025051309374785700_c40) 2023; 108
(2025051309374785700_c52) 2021
(2025051309374785700_c19) 2019; 99
(2025051309374785700_c31) 2016; 116
References_xml – volume: 42
  start-page: 3127
  year: 2013
  ident: 2025051309374785700_c6
  article-title: Nanomaterials for energy conversion and storage
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs00009e
– volume: 15
  start-page: 054050
  year: 2021
  ident: 2025051309374785700_c25
  article-title: Photonic heat rectification in a system of coupled qubits
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/physrevapplied.15.054050
– volume: 116
  start-page: 200601
  year: 2016
  ident: 2025051309374785700_c31
  article-title: Quantum thermal transistor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.116.200601
– volume: 2
  start-page: 033285
  year: 2020
  ident: 2025051309374785700_c65
  article-title: Minimal quantum heat manager boosted by bath spectral filtering
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033285
– volume: 72
  start-page: 151
  year: 2017
  ident: 2025051309374785700_c18
  article-title: Thermotronics: Towards nanocircuits to manage radiative heat flux
  publication-title: Z. Naturforsch. A
  doi: 10.1515/zna-2016-0358
– ident: 2025051309374785700_c62
– volume-title: Quantum Theory: Concepts and Methods
  year: 1997
  ident: 2025051309374785700_c2
– volume: 12
  start-page: L103
  year: 1979
  ident: 2025051309374785700_c57
  article-title: The quantum open system as a model of the heat engine
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/12/5/007
– volume: 24
  start-page: 32
  year: 2022
  ident: 2025051309374785700_c59
  article-title: Common environmental effects on quantum thermal transistor
  publication-title: Entropy
  doi: 10.3390/e24010032
– volume: 11
  start-page: 118
  year: 2015
  ident: 2025051309374785700_c12
  article-title: Towards quantum thermodynamics in electronic circuits
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3169
– volume: 106
  start-page: 034116
  year: 2022
  ident: 2025051309374785700_c28
  article-title: Dark-state-induced heat rectification
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.106.034116
– volume-title: Fundamentals of Microelectronics
  year: 2021
  ident: 2025051309374785700_c44
– volume: 95
  start-page: 022128
  year: 2017
  ident: 2025051309374785700_c23
  article-title: Quantum thermal diode based on two interacting spinlike systems under different excitations
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.95.022128
– volume: 109
  start-page: 064146
  year: 2024
  ident: 2025051309374785700_c36
  article-title: Detuning effects for heat-current control in quantum thermal devices
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.109.064146
– volume: 141
  start-page: 094101
  year: 2014
  ident: 2025051309374785700_c55
  article-title: Analytic representations of bath correlation functions for ohmic and superohmic spectral densities using simple poles
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4893931
– volume: 59
  start-page: 1
  year: 1987
  ident: 2025051309374785700_c54
  article-title: Dynamics of the dissipative two-state system
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/revmodphys.59.1
– volume: 21
  start-page: 113045
  year: 2019
  ident: 2025051309374785700_c56
  article-title: Local versus global master equation with common and separate baths: Superiority of the global approach in partial secular approximation
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab54ac
– volume: 89
  start-page: 062109
  year: 2014
  ident: 2025051309374785700_c22
  article-title: Optimal rectification in the ultrastrong coupling regime
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.89.062109
– volume: 107
  start-page: 075440
  year: 2023
  ident: 2025051309374785700_c46
  article-title: Engineered common environmental effects on multitransistor systems
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.107.075440
– ident: 2025051309374785700_c61
– volume: 109
  start-page: 014142
  year: 2024
  ident: 2025051309374785700_c34
  article-title: Magnetically controlled quantum thermal devices via three nearest-neighbor coupled spin-1/2 systems
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.109.014142
– volume-title: The Physical Principles of the Quantum Theory
  year: 1949
  ident: 2025051309374785700_c1
– volume: 103
  start-page: 155434
  year: 2021
  ident: 2025051309374785700_c26
  article-title: Thermal rectification through a nonlinear quantum resonator
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.103.155434
– volume-title: Microelectronic Circuits: Analysis and Design
  year: 2016
  ident: 2025051309374785700_c43
– volume: 106
  start-page: 024110
  year: 2022
  ident: 2025051309374785700_c33
  article-title: Floquet quantum thermal transistor
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.106.024110
– volume-title: Consistent Quantum Theory
  year: 2003
  ident: 2025051309374785700_c68
– volume: 57
  start-page: 545
  year: 2016
  ident: 2025051309374785700_c13
  article-title: Quantum thermodynamics
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2016.1201896
– volume: 21
  start-page: 123026
  year: 2019
  ident: 2025051309374785700_c64
  article-title: Boosting the performance of small autonomous refrigerators via common environmental effects
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab5c58
– volume: 316
  start-page: 723
  year: 2007
  ident: 2025051309374785700_c67
  article-title: Quantum coherent tunable coupling of superconducting qubits
  publication-title: Science
  doi: 10.1126/science.1141324
– volume: 55
  start-page: 395303
  year: 2022
  ident: 2025051309374785700_c63
  article-title: Heat transfer in transversely coupled qubits: Optically controlled thermal modulator with common reservoirs
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8121/ac8bb4
– volume: 6
  start-page: 3624
  year: 2025
  ident: 2025051309374785700_c9
  article-title: Advanced scalable multi-beam focusing for indoor optical wireless networks with IR radiative clusters
  publication-title: IEEE Open J. Commun. Soc
  doi: 10.1109/OJCOMS.2025.3559376
– volume: 107
  start-page: 064125
  year: 2023
  ident: 2025051309374785700_c29
  article-title: Quantum thermal diode dominated by pure classical correlation via three triangular-coupled qubits
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.107.064125
– volume: 9
  start-page: 690
  year: 2016
  ident: 2025051309374785700_c11
  article-title: Design and analysis of nano-structured gratings for conversion efficiency improvement in GaAs solar cells
  publication-title: Energies
  doi: 10.3390/en9090690
– volume-title: The Theory of Open Quantum Systems
  year: 2007
  ident: 2025051309374785700_c58
– volume: 21
  start-page: 187
  year: 2025
  ident: 2025051309374785700_c16
  article-title: Quantum thermodynamics for quantum computing
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-024-02764-x
– volume: 1
  start-page: 036126
  year: 2024
  ident: 2025051309374785700_c47
  article-title: Improving quantum thermal transistors through feedback-controlled baths
  publication-title: APL Quantum
  doi: 10.1063/5.0229630
– volume-title: RF Circuit Design: Theory and Applications, 2/E
  year: 2000
  ident: 2025051309374785700_c45
– volume: 21
  start-page: 27
  year: 2008
  ident: 2025051309374785700_c17
  article-title: Phononics gets hot
  publication-title: Phys. World
  doi: 10.1088/2058-7058/21/03/31
– volume: 149
  start-page: 374
  year: 1983
  ident: 2025051309374785700_c50
  article-title: Quantum tunnelling in a dissipative system
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(83)90202-6
– volume-title: Theoretical Foundations of Nanoscale Quantum Devices
  year: 2021
  ident: 2025051309374785700_c52
– volume: 94
  start-page: 034301
  year: 2005
  ident: 2025051309374785700_c21
  article-title: Spin-boson thermal rectifier
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.94.034301
– volume: 105
  start-page: 235412
  year: 2022
  ident: 2025051309374785700_c39
  article-title: Towards quantum thermal multi-transistor systems: Energy divider formalism
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.105.235412
– volume: 104
  start-page: 045405
  year: 2021
  ident: 2025051309374785700_c38
  article-title: Darlington pair of quantum thermal transistors
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.104.045405
– volume: 6
  start-page: 012007
  year: 2023
  ident: 2025051309374785700_c20
  article-title: A brief review on the recent development of phonon engineering and manipulation at nanoscales
  publication-title: Int. J. Extreme Manuf.
  doi: 10.1088/2631-7990/acfd68
– volume: 52
  start-page: 239
  year: 1964
  ident: 2025051309374785700_c42
  article-title: Comparison of large signal models for junction transistors
  publication-title: Proc. IEEE
  doi: 10.1109/proc.1964.2867
– volume: 17
  start-page: 45
  year: 2018
  ident: 2025051309374785700_c51
  article-title: Steady-state entanglement and thermalization of coupled qubits in two common heat baths
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-018-1825-x
– volume: 378
  start-page: 726
  year: 2022
  ident: 2025051309374785700_c5
  article-title: Carbon nanotube transistors: Making electronics from molecules
  publication-title: Science
  doi: 10.1126/science.abp8278
– volume-title: Quantum Theory
  year: 2012
  ident: 2025051309374785700_c3
– volume: 366
  start-page: eaan8285
  year: 2019
  ident: 2025051309374785700_c7
  article-title: Energy storage: The future enabled by nanomaterials
  publication-title: Science
  doi: 10.1126/science.aan8285
– volume: 1
  start-page: 046123
  year: 2024
  ident: 2025051309374785700_c30
  article-title: Enhanced thermal rectification in coupled qutrit–qubit quantum thermal diode
  publication-title: APL Quantum
  doi: 10.1063/5.0237842
– volume: 86
  start-page: 150
  year: 1998
  ident: 2025051309374785700_c41
  article-title: Transistor equivalent circuits
  publication-title: Proc. IEEE
  doi: 10.1109/5.658766
– volume: 99
  start-page: 062123
  year: 2019
  ident: 2025051309374785700_c19
  article-title: Quantum thermal management devices based on strong coupling qubits
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.99.062123
– volume: 104
  start-page: 054137
  year: 2021
  ident: 2025051309374785700_c27
  article-title: Heat rectification by two qubits coupled with Dzyaloshinskii–Moriya interaction
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.104.054137
– volume: 108
  start-page: 235421
  year: 2023
  ident: 2025051309374785700_c40
  article-title: Stochastic model of noise for a quantum thermal transistor
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.108.235421
– volume: 26
  start-page: 113009
  year: 2024
  ident: 2025051309374785700_c35
  article-title: Continuous-variable electromechanical quantum thermal transistors
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ad8eea
– volume: 137
  start-page: 174109
  year: 2012
  ident: 2025051309374785700_c53
  article-title: The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4764100
– volume: 101
  start-page: 245402
  year: 2020
  ident: 2025051309374785700_c37
  article-title: Optically controlled quantum thermal gate
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.101.245402
– volume-title: Introduction to Quantum Mechanics
  year: 2017
  ident: 2025051309374785700_c48
– volume-title: Heterojunction Bipolar Transistors for Circuit Design: Microwave Modeling and Parameter Extraction
  year: 2015
  ident: 2025051309374785700_c60
– volume: 26
  start-page: 032001
  year: 2014
  ident: 2025051309374785700_c14
  article-title: Thermoelectric energy harvesting with quantum dots
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/3/032001
– volume: 5
  start-page: 858
  year: 2010
  ident: 2025051309374785700_c4
  article-title: Length scaling of carbon nanotube transistors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.220
– volume: 329
  start-page: 930
  year: 2010
  ident: 2025051309374785700_c8
  article-title: Unidirectional emission of a quantum dot coupled to a nanoantenna
  publication-title: Science
  doi: 10.1126/science.1191922
– volume: 90
  start-page: 127901
  year: 2003
  ident: 2025051309374785700_c66
  article-title: Tunable coupling of superconducting qubits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.90.127901
– volume: 86
  start-page: 036501
  year: 2023
  ident: 2025051309374785700_c15
  article-title: Energy dynamics, heat production and heat–work conversion with qubits: Toward the development of quantum machines
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/acb06b
– volume: 9
  start-page: 756
  year: 2016
  ident: 2025051309374785700_c10
  article-title: Nano-structured gratings for improved light absorption efficiency in solar cells
  publication-title: Energies
  doi: 10.3390/en9090756
– volume: 25
  start-page: 2168
  year: 1982
  ident: 2025051309374785700_c49
  article-title: Nonlinear constants of motion for three-level quantum systems
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.25.2168
– volume: 99
  start-page: 042121
  year: 2019
  ident: 2025051309374785700_c24
  article-title: Quantum optical two-atom thermal diode
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.99.042121
– volume: 98
  start-page: 022118
  year: 2018
  ident: 2025051309374785700_c32
  article-title: Quantum thermal transistor based on qubit-qutrit coupling
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.98.022118
SSID ssj0003307838
Score 2.2929564
Snippet The widespread success of electronic transistors is partly due to their ability to be modeled using equivalent circuits, which not only enables detailed...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 026119
Title Ebers–Moll model inspired equivalent circuit for quantum thermal transistors
URI https://doaj.org/article/2338023f0ebf4a2cbb251fd662841244
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0iCG7EJ44vgrit0-bdpcoMgzCzcmB2JUkT6GKq8-hW_Af_0C_xJu3IuHLjpoVSQrk3veecJJyL0J0RwmbEpokWOUsYVIPEADFJcqBINpXWGx2WBsYTMZqy5xmfbbX6CmfCWnvgNnB9AhoKcMWnznimiTUGENmXQkBdDdgUqi9g3paYCjUYVLpUVG2shATt83sQYIG__AKgLZ_-CCjDQ3TQMUH80H7BEdpx9THaiycy7eoETQYGmNnXx-cYMoVjwxpc1WFf3JXYLZoKpggABrbV0jbVGgP5xIsG4tTMcSB1cxh7HYAo-oCsTtF0OHh5GiVd84PEZpSLRFJijCptTuDOuM8NVTpzqeclCarHW6mBHBjlndJKc5tZ4lJpcsElNSAvz9Bu_Vq7c4ThLxZSM8HSUjFKeDCh84BL3ORMGel66HYTkeKt9bgo4t60oAUvurD10GOI1c8LwZY6PoBkFV2yir-SdfEfg1yifRKa8MalkCu0u1427hqYwdrcxEkA1_H74BuAM7bx
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ebers%E2%80%93Moll+model+inspired+equivalent+circuit+for+quantum+thermal+transistors&rft.jtitle=APL+quantum&rft.au=Rajapaksha%2C+Anuradhi&rft.au=Gunapala%2C+Sarath+D.&rft.au=Premaratne%2C+Malin&rft.date=2025-06-01&rft.issn=2835-0103&rft.eissn=2835-0103&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1063%2F5.0270456&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0270456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2835-0103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2835-0103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2835-0103&client=summon