Ebers–Moll model inspired equivalent circuit for quantum thermal transistors
The widespread success of electronic transistors is partly due to their ability to be modeled using equivalent circuits, which not only enables detailed analysis and efficient design but also provides greater insight for designers, facilitating the development of complex electronic systems. The Eber...
Saved in:
Published in | APL quantum Vol. 2; no. 2; pp. 026119 - 026119-14 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIP Publishing LLC
01.06.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | The widespread success of electronic transistors is partly due to their ability to be modeled using equivalent circuits, which not only enables detailed analysis and efficient design but also provides greater insight for designers, facilitating the development of complex electronic systems. The Ebers–Moll model, for example, is a widely used large-signal equivalent circuit that replicates the operational characteristics of bipolar junction transistors. Similar to electronic transistors, research on quantum thermal transistors has gained considerable attention in recent years; however, minimal focus has been placed on developing equivalent circuit representations. Drawing inspiration from equivalent models of electronic transistors, our study proposes an equivalent model for a quantum thermal transistor built on a strongly coupled qubit–qutrit–qubit architecture. This configuration allows replication of its transistor behavior using a diode-based equivalent model, leveraging its property of splitting the qutrit into two individual qubits. The proposed quantum thermal diode-based equivalent model closely mirrors the diode-based representation of an electronic transistor. Using frameworks of open quantum systems and the quantum Markovian master equation, along with the Born approximation and rotating wave approximation, we conduct a comprehensive analysis and comparison of our quantum thermal diode-based equivalent model with an established quantum thermal transistor model. Furthermore, we discuss the intrinsic internal coupling between the two diodes and determine the optimum coupling strength necessary for efficient heat amplification. This equivalent model provides greater insight into the analysis of quantum thermal transistors and significantly contributes to the advancement of nanoscale thermal circuit designs. |
---|---|
AbstractList | The widespread success of electronic transistors is partly due to their ability to be modeled using equivalent circuits, which not only enables detailed analysis and efficient design but also provides greater insight for designers, facilitating the development of complex electronic systems. The Ebers–Moll model, for example, is a widely used large-signal equivalent circuit that replicates the operational characteristics of bipolar junction transistors. Similar to electronic transistors, research on quantum thermal transistors has gained considerable attention in recent years; however, minimal focus has been placed on developing equivalent circuit representations. Drawing inspiration from equivalent models of electronic transistors, our study proposes an equivalent model for a quantum thermal transistor built on a strongly coupled qubit–qutrit–qubit architecture. This configuration allows replication of its transistor behavior using a diode-based equivalent model, leveraging its property of splitting the qutrit into two individual qubits. The proposed quantum thermal diode-based equivalent model closely mirrors the diode-based representation of an electronic transistor. Using frameworks of open quantum systems and the quantum Markovian master equation, along with the Born approximation and rotating wave approximation, we conduct a comprehensive analysis and comparison of our quantum thermal diode-based equivalent model with an established quantum thermal transistor model. Furthermore, we discuss the intrinsic internal coupling between the two diodes and determine the optimum coupling strength necessary for efficient heat amplification. This equivalent model provides greater insight into the analysis of quantum thermal transistors and significantly contributes to the advancement of nanoscale thermal circuit designs. |
Author | Premaratne, Malin Gunapala, Sarath D. Rajapaksha, Anuradhi |
Author_xml | – sequence: 1 givenname: Anuradhi orcidid: 0009-0009-3476-6577 surname: Rajapaksha fullname: Rajapaksha, Anuradhi – sequence: 2 givenname: Sarath D. orcidid: 0000-0001-8107-1051 surname: Gunapala fullname: Gunapala, Sarath D. – sequence: 3 givenname: Malin orcidid: 0000-0002-2419-4431 surname: Premaratne fullname: Premaratne, Malin |
BookMark | eNpNkDFOwzAYRi1UJErpwA28MqT8tuPEGVFVaKUCC8yW7djgKolbO0Fi4w7ckJNQaIWY3qdveMM7R6MudBahSwIzAgW75jOgJeS8OEFjKhjPgAAb_dtnaJrSBgAYg1IwMUYPC21j-vr4vA9Ng9tQ2wb7Lm19tDW2u8G_qcZ2PTY-msH32IWId4Pq-qHF_auNrWpwH1WXfOpDTBfo1Kkm2emRE_R8u3iaL7P1491qfrPODGG8yEpGtRa1qeieOXeVZkIRC47XlBakcqZUBKgWzgolFDfEUAulrgpeMs0pm6DVwVsHtZHb6FsV32VQXv4eIb5IFXtvGispYwIoc2C1yxU1WlNOXF0UVOSE5vnedXVwmRhSitb9-QjIn66Sy2NX9g1A3GyP |
Cites_doi | 10.1039/c3cs00009e 10.1103/physrevapplied.15.054050 10.1103/physrevlett.116.200601 10.1103/PhysRevResearch.2.033285 10.1515/zna-2016-0358 10.1088/0305-4470/12/5/007 10.3390/e24010032 10.1038/nphys3169 10.1103/physreve.106.034116 10.1103/physreve.95.022128 10.1103/physreve.109.064146 10.1063/1.4893931 10.1103/revmodphys.59.1 10.1088/1367-2630/ab54ac 10.1103/physreve.89.062109 10.1103/physrevb.107.075440 10.1103/physreve.109.014142 10.1103/physrevb.103.155434 10.1103/physreve.106.024110 10.1080/00107514.2016.1201896 10.1088/1367-2630/ab5c58 10.1126/science.1141324 10.1088/1751-8121/ac8bb4 10.1109/OJCOMS.2025.3559376 10.1103/physreve.107.064125 10.3390/en9090690 10.1038/s41567-024-02764-x 10.1063/5.0229630 10.1088/2058-7058/21/03/31 10.1016/0003-4916(83)90202-6 10.1103/physrevlett.94.034301 10.1103/physrevb.105.235412 10.1103/physrevb.104.045405 10.1088/2631-7990/acfd68 10.1109/proc.1964.2867 10.1007/s11128-018-1825-x 10.1126/science.abp8278 10.1126/science.aan8285 10.1063/5.0237842 10.1109/5.658766 10.1103/physreve.99.062123 10.1103/physreve.104.054137 10.1103/physrevb.108.235421 10.1088/1367-2630/ad8eea 10.1063/1.4764100 10.1103/physrevb.101.245402 10.1088/0957-4484/26/3/032001 10.1038/nnano.2010.220 10.1126/science.1191922 10.1103/physrevlett.90.127901 10.1088/1361-6633/acb06b 10.3390/en9090756 10.1103/physreva.25.2168 10.1103/physreve.99.042121 10.1103/physreve.98.022118 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1063/5.0270456 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2835-0103 |
EndPage | 026119-14 |
ExternalDocumentID | oai_doaj_org_article_2338023f0ebf4a2cbb251fd662841244 10_1063_5_0270456 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E RQS |
ID | FETCH-LOGICAL-c1356-732bb8dc922bb45f9b38a1e0f5d22619fc7a102b8fe8a8a5c1c2e07b96573b523 |
IEDL.DBID | DOA |
ISSN | 2835-0103 |
IngestDate | Wed Aug 27 01:24:09 EDT 2025 Tue Jul 01 04:57:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1356-732bb8dc922bb45f9b38a1e0f5d22619fc7a102b8fe8a8a5c1c2e07b96573b523 |
ORCID | 0000-0001-8107-1051 0009-0009-3476-6577 0000-0002-2419-4431 |
OpenAccessLink | https://doaj.org/article/2338023f0ebf4a2cbb251fd662841244 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2338023f0ebf4a2cbb251fd662841244 crossref_primary_10_1063_5_0270456 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | APL quantum |
PublicationYear | 2025 |
Publisher | AIP Publishing LLC |
Publisher_xml | – name: AIP Publishing LLC |
References | (2025051309374785700_c36) 2024; 109 2025051309374785700_c62 (2025051309374785700_c51) 2018; 17 2025051309374785700_c61 (2025051309374785700_c37) 2020; 101 (2025051309374785700_c63) 2022; 55 (2025051309374785700_c24) 2019; 99 (2025051309374785700_c44) 2021 (2025051309374785700_c28) 2022; 106 (2025051309374785700_c5) 2022; 378 (2025051309374785700_c60) 2015 (2025051309374785700_c42) 1964; 52 (2025051309374785700_c46) 2023; 107 (2025051309374785700_c11) 2016; 9 (2025051309374785700_c21) 2005; 94 (2025051309374785700_c3) 2012 (2025051309374785700_c38) 2021; 104 (2025051309374785700_c33) 2022; 106 (2025051309374785700_c25) 2021; 15 (2025051309374785700_c8) 2010; 329 (2025051309374785700_c43) 2016 (2025051309374785700_c27) 2021; 104 (2025051309374785700_c59) 2022; 24 (2025051309374785700_c35) 2024; 26 (2025051309374785700_c1) 1949 (2025051309374785700_c15) 2023; 86 (2025051309374785700_c16) 2025; 21 (2025051309374785700_c39) 2022; 105 (2025051309374785700_c57) 1979; 12 (2025051309374785700_c12) 2015; 11 (2025051309374785700_c68) 2003 (2025051309374785700_c66) 2003; 90 (2025051309374785700_c10) 2016; 9 (2025051309374785700_c58) 2007 (2025051309374785700_c64) 2019; 21 (2025051309374785700_c26) 2021; 103 (2025051309374785700_c49) 1982; 25 (2025051309374785700_c50) 1983; 149 (2025051309374785700_c54) 1987; 59 (2025051309374785700_c14) 2014; 26 (2025051309374785700_c4) 2010; 5 (2025051309374785700_c22) 2014; 89 (2025051309374785700_c67) 2007; 316 (2025051309374785700_c47) 2024; 1 (2025051309374785700_c48) 2017 (2025051309374785700_c53) 2012; 137 (2025051309374785700_c9) 2025; 6 (2025051309374785700_c41) 1998; 86 (2025051309374785700_c34) 2024; 109 (2025051309374785700_c17) 2008; 21 (2025051309374785700_c13) 2016; 57 (2025051309374785700_c29) 2023; 107 (2025051309374785700_c56) 2019; 21 (2025051309374785700_c7) 2019; 366 (2025051309374785700_c45) 2000 (2025051309374785700_c6) 2013; 42 (2025051309374785700_c23) 2017; 95 (2025051309374785700_c55) 2014; 141 (2025051309374785700_c18) 2017; 72 (2025051309374785700_c20) 2023; 6 (2025051309374785700_c30) 2024; 1 (2025051309374785700_c32) 2018; 98 (2025051309374785700_c65) 2020; 2 (2025051309374785700_c2) 1997 (2025051309374785700_c40) 2023; 108 (2025051309374785700_c52) 2021 (2025051309374785700_c19) 2019; 99 (2025051309374785700_c31) 2016; 116 |
References_xml | – volume: 42 start-page: 3127 year: 2013 ident: 2025051309374785700_c6 article-title: Nanomaterials for energy conversion and storage publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs00009e – volume: 15 start-page: 054050 year: 2021 ident: 2025051309374785700_c25 article-title: Photonic heat rectification in a system of coupled qubits publication-title: Phys. Rev. Appl. doi: 10.1103/physrevapplied.15.054050 – volume: 116 start-page: 200601 year: 2016 ident: 2025051309374785700_c31 article-title: Quantum thermal transistor publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.116.200601 – volume: 2 start-page: 033285 year: 2020 ident: 2025051309374785700_c65 article-title: Minimal quantum heat manager boosted by bath spectral filtering publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033285 – volume: 72 start-page: 151 year: 2017 ident: 2025051309374785700_c18 article-title: Thermotronics: Towards nanocircuits to manage radiative heat flux publication-title: Z. Naturforsch. A doi: 10.1515/zna-2016-0358 – ident: 2025051309374785700_c62 – volume-title: Quantum Theory: Concepts and Methods year: 1997 ident: 2025051309374785700_c2 – volume: 12 start-page: L103 year: 1979 ident: 2025051309374785700_c57 article-title: The quantum open system as a model of the heat engine publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/12/5/007 – volume: 24 start-page: 32 year: 2022 ident: 2025051309374785700_c59 article-title: Common environmental effects on quantum thermal transistor publication-title: Entropy doi: 10.3390/e24010032 – volume: 11 start-page: 118 year: 2015 ident: 2025051309374785700_c12 article-title: Towards quantum thermodynamics in electronic circuits publication-title: Nat. Phys. doi: 10.1038/nphys3169 – volume: 106 start-page: 034116 year: 2022 ident: 2025051309374785700_c28 article-title: Dark-state-induced heat rectification publication-title: Phys. Rev. E doi: 10.1103/physreve.106.034116 – volume-title: Fundamentals of Microelectronics year: 2021 ident: 2025051309374785700_c44 – volume: 95 start-page: 022128 year: 2017 ident: 2025051309374785700_c23 article-title: Quantum thermal diode based on two interacting spinlike systems under different excitations publication-title: Phys. Rev. E doi: 10.1103/physreve.95.022128 – volume: 109 start-page: 064146 year: 2024 ident: 2025051309374785700_c36 article-title: Detuning effects for heat-current control in quantum thermal devices publication-title: Phys. Rev. E doi: 10.1103/physreve.109.064146 – volume: 141 start-page: 094101 year: 2014 ident: 2025051309374785700_c55 article-title: Analytic representations of bath correlation functions for ohmic and superohmic spectral densities using simple poles publication-title: J. Chem. Phys. doi: 10.1063/1.4893931 – volume: 59 start-page: 1 year: 1987 ident: 2025051309374785700_c54 article-title: Dynamics of the dissipative two-state system publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.59.1 – volume: 21 start-page: 113045 year: 2019 ident: 2025051309374785700_c56 article-title: Local versus global master equation with common and separate baths: Superiority of the global approach in partial secular approximation publication-title: New J. Phys. doi: 10.1088/1367-2630/ab54ac – volume: 89 start-page: 062109 year: 2014 ident: 2025051309374785700_c22 article-title: Optimal rectification in the ultrastrong coupling regime publication-title: Phys. Rev. E doi: 10.1103/physreve.89.062109 – volume: 107 start-page: 075440 year: 2023 ident: 2025051309374785700_c46 article-title: Engineered common environmental effects on multitransistor systems publication-title: Phys. Rev. B doi: 10.1103/physrevb.107.075440 – ident: 2025051309374785700_c61 – volume: 109 start-page: 014142 year: 2024 ident: 2025051309374785700_c34 article-title: Magnetically controlled quantum thermal devices via three nearest-neighbor coupled spin-1/2 systems publication-title: Phys. Rev. E doi: 10.1103/physreve.109.014142 – volume-title: The Physical Principles of the Quantum Theory year: 1949 ident: 2025051309374785700_c1 – volume: 103 start-page: 155434 year: 2021 ident: 2025051309374785700_c26 article-title: Thermal rectification through a nonlinear quantum resonator publication-title: Phys. Rev. B doi: 10.1103/physrevb.103.155434 – volume-title: Microelectronic Circuits: Analysis and Design year: 2016 ident: 2025051309374785700_c43 – volume: 106 start-page: 024110 year: 2022 ident: 2025051309374785700_c33 article-title: Floquet quantum thermal transistor publication-title: Phys. Rev. E doi: 10.1103/physreve.106.024110 – volume-title: Consistent Quantum Theory year: 2003 ident: 2025051309374785700_c68 – volume: 57 start-page: 545 year: 2016 ident: 2025051309374785700_c13 article-title: Quantum thermodynamics publication-title: Contemp. Phys. doi: 10.1080/00107514.2016.1201896 – volume: 21 start-page: 123026 year: 2019 ident: 2025051309374785700_c64 article-title: Boosting the performance of small autonomous refrigerators via common environmental effects publication-title: New J. Phys. doi: 10.1088/1367-2630/ab5c58 – volume: 316 start-page: 723 year: 2007 ident: 2025051309374785700_c67 article-title: Quantum coherent tunable coupling of superconducting qubits publication-title: Science doi: 10.1126/science.1141324 – volume: 55 start-page: 395303 year: 2022 ident: 2025051309374785700_c63 article-title: Heat transfer in transversely coupled qubits: Optically controlled thermal modulator with common reservoirs publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8121/ac8bb4 – volume: 6 start-page: 3624 year: 2025 ident: 2025051309374785700_c9 article-title: Advanced scalable multi-beam focusing for indoor optical wireless networks with IR radiative clusters publication-title: IEEE Open J. Commun. Soc doi: 10.1109/OJCOMS.2025.3559376 – volume: 107 start-page: 064125 year: 2023 ident: 2025051309374785700_c29 article-title: Quantum thermal diode dominated by pure classical correlation via three triangular-coupled qubits publication-title: Phys. Rev. E doi: 10.1103/physreve.107.064125 – volume: 9 start-page: 690 year: 2016 ident: 2025051309374785700_c11 article-title: Design and analysis of nano-structured gratings for conversion efficiency improvement in GaAs solar cells publication-title: Energies doi: 10.3390/en9090690 – volume-title: The Theory of Open Quantum Systems year: 2007 ident: 2025051309374785700_c58 – volume: 21 start-page: 187 year: 2025 ident: 2025051309374785700_c16 article-title: Quantum thermodynamics for quantum computing publication-title: Nat. Phys. doi: 10.1038/s41567-024-02764-x – volume: 1 start-page: 036126 year: 2024 ident: 2025051309374785700_c47 article-title: Improving quantum thermal transistors through feedback-controlled baths publication-title: APL Quantum doi: 10.1063/5.0229630 – volume-title: RF Circuit Design: Theory and Applications, 2/E year: 2000 ident: 2025051309374785700_c45 – volume: 21 start-page: 27 year: 2008 ident: 2025051309374785700_c17 article-title: Phononics gets hot publication-title: Phys. World doi: 10.1088/2058-7058/21/03/31 – volume: 149 start-page: 374 year: 1983 ident: 2025051309374785700_c50 article-title: Quantum tunnelling in a dissipative system publication-title: Ann. Phys. doi: 10.1016/0003-4916(83)90202-6 – volume-title: Theoretical Foundations of Nanoscale Quantum Devices year: 2021 ident: 2025051309374785700_c52 – volume: 94 start-page: 034301 year: 2005 ident: 2025051309374785700_c21 article-title: Spin-boson thermal rectifier publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.94.034301 – volume: 105 start-page: 235412 year: 2022 ident: 2025051309374785700_c39 article-title: Towards quantum thermal multi-transistor systems: Energy divider formalism publication-title: Phys. Rev. B doi: 10.1103/physrevb.105.235412 – volume: 104 start-page: 045405 year: 2021 ident: 2025051309374785700_c38 article-title: Darlington pair of quantum thermal transistors publication-title: Phys. Rev. B doi: 10.1103/physrevb.104.045405 – volume: 6 start-page: 012007 year: 2023 ident: 2025051309374785700_c20 article-title: A brief review on the recent development of phonon engineering and manipulation at nanoscales publication-title: Int. J. Extreme Manuf. doi: 10.1088/2631-7990/acfd68 – volume: 52 start-page: 239 year: 1964 ident: 2025051309374785700_c42 article-title: Comparison of large signal models for junction transistors publication-title: Proc. IEEE doi: 10.1109/proc.1964.2867 – volume: 17 start-page: 45 year: 2018 ident: 2025051309374785700_c51 article-title: Steady-state entanglement and thermalization of coupled qubits in two common heat baths publication-title: Quantum Inf. Process. doi: 10.1007/s11128-018-1825-x – volume: 378 start-page: 726 year: 2022 ident: 2025051309374785700_c5 article-title: Carbon nanotube transistors: Making electronics from molecules publication-title: Science doi: 10.1126/science.abp8278 – volume-title: Quantum Theory year: 2012 ident: 2025051309374785700_c3 – volume: 366 start-page: eaan8285 year: 2019 ident: 2025051309374785700_c7 article-title: Energy storage: The future enabled by nanomaterials publication-title: Science doi: 10.1126/science.aan8285 – volume: 1 start-page: 046123 year: 2024 ident: 2025051309374785700_c30 article-title: Enhanced thermal rectification in coupled qutrit–qubit quantum thermal diode publication-title: APL Quantum doi: 10.1063/5.0237842 – volume: 86 start-page: 150 year: 1998 ident: 2025051309374785700_c41 article-title: Transistor equivalent circuits publication-title: Proc. IEEE doi: 10.1109/5.658766 – volume: 99 start-page: 062123 year: 2019 ident: 2025051309374785700_c19 article-title: Quantum thermal management devices based on strong coupling qubits publication-title: Phys. Rev. E doi: 10.1103/physreve.99.062123 – volume: 104 start-page: 054137 year: 2021 ident: 2025051309374785700_c27 article-title: Heat rectification by two qubits coupled with Dzyaloshinskii–Moriya interaction publication-title: Phys. Rev. E doi: 10.1103/physreve.104.054137 – volume: 108 start-page: 235421 year: 2023 ident: 2025051309374785700_c40 article-title: Stochastic model of noise for a quantum thermal transistor publication-title: Phys. Rev. B doi: 10.1103/physrevb.108.235421 – volume: 26 start-page: 113009 year: 2024 ident: 2025051309374785700_c35 article-title: Continuous-variable electromechanical quantum thermal transistors publication-title: New J. Phys. doi: 10.1088/1367-2630/ad8eea – volume: 137 start-page: 174109 year: 2012 ident: 2025051309374785700_c53 article-title: The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae publication-title: J. Chem. Phys. doi: 10.1063/1.4764100 – volume: 101 start-page: 245402 year: 2020 ident: 2025051309374785700_c37 article-title: Optically controlled quantum thermal gate publication-title: Phys. Rev. B doi: 10.1103/physrevb.101.245402 – volume-title: Introduction to Quantum Mechanics year: 2017 ident: 2025051309374785700_c48 – volume-title: Heterojunction Bipolar Transistors for Circuit Design: Microwave Modeling and Parameter Extraction year: 2015 ident: 2025051309374785700_c60 – volume: 26 start-page: 032001 year: 2014 ident: 2025051309374785700_c14 article-title: Thermoelectric energy harvesting with quantum dots publication-title: Nanotechnology doi: 10.1088/0957-4484/26/3/032001 – volume: 5 start-page: 858 year: 2010 ident: 2025051309374785700_c4 article-title: Length scaling of carbon nanotube transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.220 – volume: 329 start-page: 930 year: 2010 ident: 2025051309374785700_c8 article-title: Unidirectional emission of a quantum dot coupled to a nanoantenna publication-title: Science doi: 10.1126/science.1191922 – volume: 90 start-page: 127901 year: 2003 ident: 2025051309374785700_c66 article-title: Tunable coupling of superconducting qubits publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.90.127901 – volume: 86 start-page: 036501 year: 2023 ident: 2025051309374785700_c15 article-title: Energy dynamics, heat production and heat–work conversion with qubits: Toward the development of quantum machines publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/acb06b – volume: 9 start-page: 756 year: 2016 ident: 2025051309374785700_c10 article-title: Nano-structured gratings for improved light absorption efficiency in solar cells publication-title: Energies doi: 10.3390/en9090756 – volume: 25 start-page: 2168 year: 1982 ident: 2025051309374785700_c49 article-title: Nonlinear constants of motion for three-level quantum systems publication-title: Phys. Rev. A doi: 10.1103/physreva.25.2168 – volume: 99 start-page: 042121 year: 2019 ident: 2025051309374785700_c24 article-title: Quantum optical two-atom thermal diode publication-title: Phys. Rev. E doi: 10.1103/physreve.99.042121 – volume: 98 start-page: 022118 year: 2018 ident: 2025051309374785700_c32 article-title: Quantum thermal transistor based on qubit-qutrit coupling publication-title: Phys. Rev. E doi: 10.1103/physreve.98.022118 |
SSID | ssj0003307838 |
Score | 2.2929564 |
Snippet | The widespread success of electronic transistors is partly due to their ability to be modeled using equivalent circuits, which not only enables detailed... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 026119 |
Title | Ebers–Moll model inspired equivalent circuit for quantum thermal transistors |
URI | https://doaj.org/article/2338023f0ebf4a2cbb251fd662841244 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0iCG7EJ44vgrit0-bdpcoMgzCzcmB2JUkT6GKq8-hW_Af_0C_xJu3IuHLjpoVSQrk3veecJJyL0J0RwmbEpokWOUsYVIPEADFJcqBINpXWGx2WBsYTMZqy5xmfbbX6CmfCWnvgNnB9AhoKcMWnznimiTUGENmXQkBdDdgUqi9g3paYCjUYVLpUVG2shATt83sQYIG__AKgLZ_-CCjDQ3TQMUH80H7BEdpx9THaiycy7eoETQYGmNnXx-cYMoVjwxpc1WFf3JXYLZoKpggABrbV0jbVGgP5xIsG4tTMcSB1cxh7HYAo-oCsTtF0OHh5GiVd84PEZpSLRFJijCptTuDOuM8NVTpzqeclCarHW6mBHBjlndJKc5tZ4lJpcsElNSAvz9Bu_Vq7c4ThLxZSM8HSUjFKeDCh84BL3ORMGel66HYTkeKt9bgo4t60oAUvurD10GOI1c8LwZY6PoBkFV2yir-SdfEfg1yifRKa8MalkCu0u1427hqYwdrcxEkA1_H74BuAM7bx |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ebers%E2%80%93Moll+model+inspired+equivalent+circuit+for+quantum+thermal+transistors&rft.jtitle=APL+quantum&rft.au=Rajapaksha%2C+Anuradhi&rft.au=Gunapala%2C+Sarath+D.&rft.au=Premaratne%2C+Malin&rft.date=2025-06-01&rft.issn=2835-0103&rft.eissn=2835-0103&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1063%2F5.0270456&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0270456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2835-0103&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2835-0103&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2835-0103&client=summon |