WE-FG-207A-01: Introduction to Dedicated Breast CT - Early Studies

Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferi...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 43; no. 6; pp. 3829 - 3830
Main Author Vedantham, S.
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detection more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: 1. To understand the metrics used to evaluate screening and diagnostic imaging 2. To understand the benefits and limitations of current clinical modalities 3. To understand how breast CT can improve over current clinical modalities 4. To note the early attempts to translate breast CT to the clinic in 1970s-1990s 5. To understand the recent developments in low-dose cone-beam breast CT 6. To understand the recent developments in photon-counting breast CT 7. To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.
AbstractList Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detection more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.
Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detection more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: 1. To understand the metrics used to evaluate screening and diagnostic imaging 2. To understand the benefits and limitations of current clinical modalities 3. To understand how breast CT can improve over current clinical modalities 4. To note the early attempts to translate breast CT to the clinic in 1970s-1990s 5. To understand the recent developments in low-dose cone-beam breast CT 6. To understand the recent developments in photon-counting breast CT 7. To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.
Mammography‐based screening has been a valuable imaging tool for the early detection of non‐palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2‐D projection of a 3‐D organ results in tissue superposition contributing to false‐positives. The sensitivity of mammography is breast‐density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detection more difficult. We ideally need 3‐D imaging for imaging the 3‐D breast. MRI is 3‐D, whole breast ultrasound is 3‐D, digital breast tomosynthesis is called 3‐D but is really “pseudo 3‐D” due to poor resolution along the depth‐direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3‐D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O'Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large‐area flat‐panel detectors with field‐of‐view sufficient to image the entire breast in each projection enabled development of flat‐panel cone‐beam breast CT. More recently, the availability of complimentary metal‐oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x‐ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low‐dose cone‐beam breast CT. Dedicated photon‐counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe‐based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x‐ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non‐screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre‐surgical evaluation. Learning Objectives: 1.To understand the metrics used to evaluate screening and diagnostic imaging 2.To understand the benefits and limitations of current clinical modalities 3.To understand how breast CT can improve over current clinical modalities 4.To note the early attempts to translate breast CT to the clinic in 1970s‐1990s 5.To understand the recent developments in low‐dose cone‐beam breast CT 6.To understand the recent developments in photon‐counting breast CT 7.To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.
Author Vedantham, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Vedantham
  fullname: Vedantham, S.
  organization: University of Massachusetts Medical School
BackLink https://www.osti.gov/biblio/22679095$$D View this record in Osti.gov
BookMark eNp90EtLAzEUhuEgCrbVhf8g4Eoh9eQymcZdW9taqChYcTnkcgZH6oxMUqT_3pbpVldn8_AdePvktG5qJOSKw5BzPrrjQ2Wy3Ah9QnpC5ZIpAeaU9ACMYkJBdk76MX4CgJYZ9MjkfcbmCyYgHzPg93RZp7YJW5-qpqapoQ8YKm8TBjpp0cZEp2vK6My2mx19TdtQYbwgZ6XdRLw83gF5m8_W00e2el4sp-MV81xmmknUWDrjLBiwwTmfwSgTxo6kV8GhkMr6XEvuTOmCGXEv0SPmwZZKOx-0HJDrbreJqSqirxL6D9_UNfpUCKFzAybbq5tO-baJscWy-G6rL9vuCg7FIVHBi2OivWWd_ak2uPsbFk8vR3_b-cNze0j0z_gvlKVyww
CODEN MPHYA6
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2016 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2016 American Association of Physicists in Medicine
DBID AAYXX
CITATION
OTOTI
DOI 10.1118/1.4957926
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 3830
ExternalDocumentID 22679095
10_1118_1_4957926
MP7926
Genre miscellaneous
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
AAJUZ
AAPBV
ABCVL
ABPTK
ADDAD
AEUQT
OTOTI
ID FETCH-LOGICAL-c1356-3e6efb9ba090adbbc508529a83c4dbe234ac7631b9fbd981c3ecee7daf46bcd63
ISSN 0094-2405
IngestDate Thu May 18 22:29:06 EDT 2023
Tue Jul 01 03:54:18 EDT 2025
Wed Jan 22 16:55:37 EST 2025
Fri Jun 21 00:19:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions
http://doi.wiley.com/10.1002/tdm_license_1
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1356-3e6efb9ba090adbbc508529a83c4dbe234ac7631b9fbd981c3ecee7daf46bcd63
PageCount 2
ParticipantIDs osti_scitechconnect_22679095
crossref_primary_10_1118_1_4957926
wiley_primary_10_1118_1_4957926_MP7926
scitation_primary_10_1118_1_4957926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2016
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationYear 2016
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
SSID ssj0006350
Score 2.1677096
Snippet Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in...
Mammography‐based screening has been a valuable imaging tool for the early detection of non‐palpable lesions and has contributed to significant reduction in...
SourceID osti
crossref
wiley
scitation
SourceType Open Access Repository
Index Database
Publisher
StartPage 3829
SubjectTerms 60 APPLIED LIFE SCIENCES
ANIMAL TISSUES
BIOMEDICAL RADIOGRAPHY
Cancer
CLINICAL TRIALS
Cone beam computed tomography
Dosimetry
Image detection systems
Image sensors
MAMMARY GLANDS
Mammography
NEOPLASMS
NMR IMAGING
PLANT TISSUES
RADIATION DOSES
RADIATION PROTECTION AND DOSIMETRY
SCREENING
SPATIAL RESOLUTION
Stereoscopy
Tissues
X RADIATION
Title WE-FG-207A-01: Introduction to Dedicated Breast CT - Early Studies
URI http://dx.doi.org/10.1118/1.4957926
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4957926
https://www.osti.gov/biblio/22679095
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9indjGAcHYtMJAFiAulbs6dj7Mres2BqJo0jrYLfJXtFM7Tdllf_2eYzdtEZuAQ5zIipzo_azn3_P7MMBHbblKcycpx7WWCi04LbKBpUzg8mSVqhz3ycnjH9nphfh2mV4uqlk02SW17pu7P-aV_A-q2Ie4-izZf0C2HRQ78BnxxRYRxvavMP51TE--4L_mQ7TVvW3_1ced21AQ1rPKo8YN40nloQ8-r3ujSY_2QlHj5QjC-ZFO0WsTtjua_VifI63C6R3tlsFPZxGPmGB93l_eOGDZIsBprgyl8M6V4FR2TV8ick5FMpDLCjLUUYoTIXtA7_pcAtYX3uuX_FbbulktkeblEvncGqwnyOhRJa0Pj8bfz9tlE5lPyBeKfxXLQOHIB-24K-ShM0Ml-Aw2kSqEqIVV-6IhCJMX8DwyezIMML2EJ266DRvjGLuwDU_PglRfweEKbp_JMmqknpEWNRJQI6MJoaRBjUTUduDi5HgyOqXxLAtqGE8zyl3mKi21GsiBslobJMZpIlXBjbDaJVwog6qeaVlpKwtmuEP6kltViUwbm_Fd6ExnU7cHpFAMOXueWyFQTlJrtHhNJRhexqQy6cL7uZDK61CypAymXlGyMkqyC_tefKUXnjNXxkdVmbqco9SFD61YHxvkUyPwh98ox2f-9vrxr72BrcUE3YdOfXPr3iLXq_W7OEvuAfaRSlc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WE-FG-207A-01%3A+Introduction+to+Dedicated+Breast+CT+-+Early+Studies&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Vedantham%2C+S.&rft.date=2016-06-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=43&rft.issue=6&rft_id=info:doi/10.1118%2F1.4957926&rft.externalDocID=22679095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon