High-fidelity QND readout and measurement back-action in a tantalum-based high-coherence fluxonium qubit
Implementing a precise measurement of the quantum state of a qubit is critical for building a practical quantum processor, as it plays an important role in state initialization and quantum error correction. While the transmon qubit has been the most commonly used design in small- to medium-scale pro...
Saved in:
Published in | APL quantum Vol. 2; no. 2; pp. 026103 - 026103-6 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
AIP Publishing LLC
01.06.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Implementing a precise measurement of the quantum state of a qubit is critical for building a practical quantum processor, as it plays an important role in state initialization and quantum error correction. While the transmon qubit has been the most commonly used design in small- to medium-scale processors, the fluxonium qubit is emerging as a strong alternative with the potential for high-fidelity gate operation as a result of the high anharmonicity and high coherence achievable due to its unique design. Here, we explore the measurement characteristics of a tantalum-based high-coherence fluxonium qubit and demonstrate single-shot measurement fidelity (assignment fidelity) of 96.2% ± 0.5% and 97.8% ± 0.4% without and with the use of a Josephson parametric amplifier, respectively. We study the back-action of the measurement photons on the qubit and measure a QND fidelity of 99.0% ± 0.3%. We find that the measurement fidelity and the QND nature are limited by state-mixing errors, and our results suggest that a careful study of measurement-induced transitions in the fluxonium is needed to further optimize the readout performance. |
---|---|
AbstractList | Implementing a precise measurement of the quantum state of a qubit is critical for building a practical quantum processor, as it plays an important role in state initialization and quantum error correction. While the transmon qubit has been the most commonly used design in small- to medium-scale processors, the fluxonium qubit is emerging as a strong alternative with the potential for high-fidelity gate operation as a result of the high anharmonicity and high coherence achievable due to its unique design. Here, we explore the measurement characteristics of a tantalum-based high-coherence fluxonium qubit and demonstrate single-shot measurement fidelity (assignment fidelity) of 96.2% ± 0.5% and 97.8% ± 0.4% without and with the use of a Josephson parametric amplifier, respectively. We study the back-action of the measurement photons on the qubit and measure a QND fidelity of 99.0% ± 0.3%. We find that the measurement fidelity and the QND nature are limited by state-mixing errors, and our results suggest that a careful study of measurement-induced transitions in the fluxonium is needed to further optimize the readout performance. |
Author | Deshmukh, Jay Salunkhe, Kishor V. Patankar, Meghan P. Das, Srijita Chand, Madhavi Bothara, Gaurav Vijay, R. |
Author_xml | – sequence: 1 givenname: Gaurav orcidid: 0009-0001-5438-9635 surname: Bothara fullname: Bothara, Gaurav – sequence: 2 givenname: Srijita surname: Das fullname: Das, Srijita – sequence: 3 givenname: Kishor V. surname: Salunkhe fullname: Salunkhe, Kishor V. – sequence: 4 givenname: Madhavi surname: Chand fullname: Chand, Madhavi – sequence: 5 givenname: Jay surname: Deshmukh fullname: Deshmukh, Jay – sequence: 6 givenname: Meghan P. surname: Patankar fullname: Patankar, Meghan P. – sequence: 7 givenname: R. orcidid: 0000-0001-5629-3736 surname: Vijay fullname: Vijay, R. |
BookMark | eNpN0DtPwzAUhmELgUQpHfgHXhlSfIkTZ0Tl0koVCAnm6MQ5blwSG5xEov8eSivEdD6d4RneC3Lqg0dCrjibc5bJGzVnQildiBMyEVqqhHEmT__tczLr-y1jTEqWa6knpFm6TZNYV2Prhh19ebqjEaEO40DB17RD6MeIHfqBVmDeEzCDC546T4EO4Adoxy6poMeaNnvJhAYjeoPUtuNX8G7s6OdYueGSnFloe5wd75S8Pdy_LpbJ-vlxtbhdJ4ZLJRKowYAVtqgyK22a2yJFYy0URWEB0xRUlWc5U6qogGccpJGZSBGzXLNcCCunZHVw6wDb8iO6DuKuDODK30eImxLi4EyLpRZCoVapqAFSw3SVgeYVF4bJ_CfW3ro-WCaGvo9o_zzOyn3xUpXH4vIbtSp03A |
Cites_doi | 10.1038/s41467-021-22030-5 10.1103/physreva.69.062320 10.1103/PhysRevA.76.042319 10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e 10.1126/sciadv.abi6690 10.1103/PhysRevLett.113.247001 10.1103/PhysRevApplied.22.064038 10.1038/s41586-019-1666-5 10.1103/PhysRevApplied.15.064030 10.1103/PRXQuantum.3.040336 10.1103/PhysRevX.14.041023 10.1103/PhysRevLett.101.080502 10.1103/PRXQuantum.6.010349 10.1103/PhysRevApplied.20.034016 10.1038/s41586-024-07107-7 10.1103/PhysRevX.9.041041 10.1103/PhysRevLett.130.267001 10.1109/proc.1963.1664 10.1103/PhysRevX.11.021026 10.1103/PhysRevLett.117.190503 10.1126/science.1175552 10.1103/PhysRevApplied.17.044016 10.1103/PRXQuantum.3.037001 10.1103/PhysRevLett.132.060602 10.1103/PhysRevLett.112.190504 10.1103/PhysRevApplied.20.024011 10.1103/PhysRevLett.134.100601 10.1103/PhysRevApplied.20.054008 10.1103/PhysRevResearch.4.023040 10.1103/PhysRevApplied.23.024055 10.1103/PhysRevA.86.032324 10.1038/s41586-021-03588-y 10.1038/nature02851 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1063/5.0255892 |
DatabaseName | CrossRef DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2835-0103 |
EndPage | 026103-6 |
ExternalDocumentID | oai_doaj_org_article_8225e8542daa4c08b6a81b12c037103f 10_1063_5_0255892 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E RQS |
ID | FETCH-LOGICAL-c1352-adacaf2f9b6f3f47f94ecffa999fae44a5b7670559ba161a3c3624ee6780722f3 |
IEDL.DBID | DOA |
ISSN | 2835-0103 |
IngestDate | Wed Aug 27 01:19:41 EDT 2025 Tue Jul 01 05:12:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1352-adacaf2f9b6f3f47f94ecffa999fae44a5b7670559ba161a3c3624ee6780722f3 |
ORCID | 0000-0001-5629-3736 0009-0001-5438-9635 |
OpenAccessLink | https://doaj.org/article/8225e8542daa4c08b6a81b12c037103f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8225e8542daa4c08b6a81b12c037103f crossref_primary_10_1063_5_0255892 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | APL quantum |
PublicationYear | 2025 |
Publisher | AIP Publishing LLC |
Publisher_xml | – name: AIP Publishing LLC |
References | (2025040907573059100_c23) 2025; 6 (2025040907573059100_c4) 2008; 101 (2025040907573059100_c27) 2023; 20 (2025040907573059100_c9) 1963; 51 (2025040907573059100_c30) 2022; 3 2025040907573059100_c36 (2025040907573059100_c28) 2021; 12 (2025040907573059100_c14) 2007; 76 (2025040907573059100_c3) 2021; 15 (2025040907573059100_c33) 2023; 20 (2025040907573059100_c13) 2024; 22 (2025040907573059100_c15) 2019; 574 (2025040907573059100_c18) 2019; 9 (2025040907573059100_c26) 2022; 4 (2025040907573059100_c24) 2024; 132 (2025040907573059100_c11) 2004; 431 (2025040907573059100_c22) 2021; 11 (2025040907573059100_c19) 2023; 130 (2025040907573059100_c6) 2024; 627 2025040907573059100_c29 (2025040907573059100_c8) 2021; 595 (2025040907573059100_c7) 2012; 86 2025040907573059100_c35 (2025040907573059100_c20) 2014; 113 (2025040907573059100_c21) 2023; 20 (2025040907573059100_c17) 2009; 326 (2025040907573059100_c25) 2022; 3 (2025040907573059100_c10) 2004; 69 (2025040907573059100_c34) 2024; 14 (2025040907573059100_c31) 2025; 23 (2025040907573059100_c32) 2024; 134 (2025040907573059100_c1) 2000; 48 (2025040907573059100_c16) 2022; 8 (2025040907573059100_c12) 2016; 117 (2025040907573059100_c2) 2014; 112 (2025040907573059100_c5) 2022; 17 |
References_xml | – ident: 2025040907573059100_c35 – volume: 12 start-page: 1779 year: 2021 ident: 2025040907573059100_c28 article-title: New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds publication-title: Nat. Commun. doi: 10.1038/s41467-021-22030-5 – volume: 69 start-page: 062320 year: 2004 ident: 2025040907573059100_c10 article-title: Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation publication-title: Phys. Rev. A doi: 10.1103/physreva.69.062320 – volume: 76 start-page: 042319 year: 2007 ident: 2025040907573059100_c14 article-title: Charge-insensitive qubit design derived from the Cooper pair box publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.76.042319 – volume: 48 start-page: 771 year: 2000 ident: 2025040907573059100_c1 article-title: The physical implementation of quantum computation publication-title: Fortschritte der Physik doi: 10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e – volume: 8 start-page: eabi6690 year: 2022 ident: 2025040907573059100_c16 article-title: High-performance superconducting quantum processors via laser annealing of transmon qubits publication-title: Sci. Adv. doi: 10.1126/sciadv.abi6690 – volume: 113 start-page: 247001 year: 2014 ident: 2025040907573059100_c20 article-title: Non-poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.247001 – volume: 22 start-page: 064038 year: 2024 ident: 2025040907573059100_c13 article-title: Measurement-induced state transitions in dispersive qubit-readout schemes publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.22.064038 – volume: 574 start-page: 505 year: 2019 ident: 2025040907573059100_c15 article-title: Quantum supremacy using a programmable superconducting processor publication-title: Nature doi: 10.1038/s41586-019-1666-5 – volume: 15 start-page: 064030 year: 2021 ident: 2025040907573059100_c3 article-title: Quantum nondemolition dispersive readout of a superconducting artificial atom using large photon numbers publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.15.064030 – volume: 3 start-page: 040336 year: 2022 ident: 2025040907573059100_c25 article-title: Fast high-fidelity gates for galvanically-coupled fluxonium qubits using strong flux modulation publication-title: PRX Quantum doi: 10.1103/PRXQuantum.3.040336 – volume: 14 start-page: 041023 year: 2024 ident: 2025040907573059100_c34 article-title: Measurement-induced transmon ionization publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.14.041023 – volume: 101 start-page: 080502 year: 2008 ident: 2025040907573059100_c4 article-title: Controlling the spontaneous emission of a superconducting transmon qubit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.080502 – ident: 2025040907573059100_c29 – volume: 6 start-page: 010349 issue: 1 year: 2025 ident: 2025040907573059100_c23 article-title: 24 days-stable CNOT-gate on fluxonium qubits with over 99.9% fidelity publication-title: PRX Quantum doi: 10.1103/PRXQuantum.6.010349 – volume: 20 start-page: 034016 year: 2023 ident: 2025040907573059100_c21 article-title: Characterization of loss mechanisms in a fluxonium qubit publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.20.034016 – volume: 627 start-page: 778 year: 2024 ident: 2025040907573059100_c6 article-title: High-threshold and low-overhead fault-tolerant quantum memory publication-title: Nature doi: 10.1038/s41586-024-07107-7 – volume: 9 start-page: 041041 year: 2019 ident: 2025040907573059100_c18 article-title: High-coherence fluxonium qubit publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.041041 – volume: 130 start-page: 267001 year: 2023 ident: 2025040907573059100_c19 article-title: Millisecond coherence in a superconducting qubit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.267001 – volume: 51 start-page: 89 year: 1963 ident: 2025040907573059100_c9 article-title: Comparison of quantum and semiclassical radiation theories with application to the beam maser publication-title: Proc. IEEE doi: 10.1109/proc.1963.1664 – volume: 11 start-page: 021026 year: 2021 ident: 2025040907573059100_c22 article-title: Fast logic with slow qubits: Microwave-activated controlled-Z gate on low-frequency fluxoniums publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.11.021026 – volume: 117 start-page: 190503 year: 2016 ident: 2025040907573059100_c12 article-title: Measurement-induced state transitions in a superconducting qubit: Beyond the rotating wave approximation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.190503 – volume: 326 start-page: 113 year: 2009 ident: 2025040907573059100_c17 article-title: Fluxonium: Single cooper-pair circuit free of charge offsets publication-title: Science doi: 10.1126/science.1175552 – volume: 17 start-page: 044016 year: 2022 ident: 2025040907573059100_c5 article-title: Fast readout and reset of a superconducting qubit coupled to a resonator with an intrinsic purcell filter publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.17.044016 – volume: 3 start-page: 037001 year: 2022 ident: 2025040907573059100_c30 article-title: Blueprint for a high-performance fluxonium quantum processor publication-title: PRX Quantum doi: 10.1103/PRXQuantum.3.037001 – volume: 132 start-page: 060602 year: 2024 ident: 2025040907573059100_c24 article-title: Native approach to controlled-z gates in inductively coupled fluxonium qubits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.132.060602 – volume: 112 start-page: 190504 year: 2014 ident: 2025040907573059100_c2 article-title: Fast accurate state measurement with superconducting qubits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.190504 – volume: 20 start-page: 024011 year: 2023 ident: 2025040907573059100_c27 article-title: Two-fluxonium cross-resonance gate publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.20.024011 – volume: 134 start-page: 100601 issue: 10 year: 2024 ident: 2025040907573059100_c32 article-title: Benchmarking the readout of a superconducting qubit for repeated measurements publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.134.100601 – volume: 20 start-page: 054008 year: 2023 ident: 2025040907573059100_c33 article-title: Measurement-induced state transitions in a superconducting qubit: Within the rotating-wave approximation publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.20.054008 – volume: 4 start-page: 023040 year: 2022 ident: 2025040907573059100_c26 article-title: Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.023040 – ident: 2025040907573059100_c36 – volume: 23 start-page: 024055 issue: 2 year: 2025 ident: 2025040907573059100_c31 article-title: System characterization of dispersive readout in superconducting qubits publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.23.024055 – volume: 86 start-page: 032324 year: 2012 ident: 2025040907573059100_c7 article-title: Surface codes: Towards practical large-scale quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.032324 – volume: 595 start-page: 383 year: 2021 ident: 2025040907573059100_c8 article-title: Exponential suppression of bit or phase errors with cyclic error correction publication-title: Nature doi: 10.1038/s41586-021-03588-y – volume: 431 start-page: 162 year: 2004 ident: 2025040907573059100_c11 article-title: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics publication-title: Nature doi: 10.1038/nature02851 |
SSID | ssj0003307838 |
Score | 2.2934086 |
Snippet | Implementing a precise measurement of the quantum state of a qubit is critical for building a practical quantum processor, as it plays an important role in... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 026103 |
Title | High-fidelity QND readout and measurement back-action in a tantalum-based high-coherence fluxonium qubit |
URI | https://doaj.org/article/8225e8542daa4c08b6a81b12c037103f |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JasMwEBUlUOildKXphii9qnGsxdaxS0IoJFBoIDczkiUS2iRdbOip396R7bTpqZdefDDGmBlp3nuy9IaQyzQyidIyYZIrzYQyOKWcB2asTRPnQHsIQnE4UoOxuJ_IyVqrr7AnrLYHrgPXQQCTLpUizgGEjVKjAJlWN7bBay7iPlRfxLw1MRVqMKr0JOXpykpI8Y68Cuw51fEvAFrz6a8Apb9DthsmSK_rL9glG26xRzarHZn2fZ9Mww4M5oMLFRJl-jC6o8jv8mVZUBT_dP6ztkcN2CdWH1CgswUFGjoDA1YdFjAqp8GSmNnltD7ZR_1z-YEzuZzT19LMigMy7vcebwesaYvAbBfpEoMcLPjYa6M89yLxWjjrPSDV8-CEAInhDyY52gDyOeAWQUo4h7AUJXHs-SFpLZYLd0RoolGu2UiB64LgNtZeYHZyhbLYJVLwNrlYxSp7qd0vsuqvteKZzJqAtslNiOL3A8GwurqBacyaNGZ_pfH4P15yQrbi0J63WiQ5Ja3irXRnyBkKc14ND7wOP3tfSjHALw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-fidelity+QND+readout+and+measurement+back-action+in+a+tantalum-based+high-coherence+fluxonium+qubit&rft.jtitle=APL+quantum&rft.au=Gaurav+Bothara&rft.au=Srijita+Das&rft.au=Kishor+V.+Salunkhe&rft.au=Madhavi+Chand&rft.date=2025-06-01&rft.pub=AIP+Publishing+LLC&rft.eissn=2835-0103&rft.volume=2&rft.issue=2&rft.spage=026103&rft.epage=026103-6&rft_id=info:doi/10.1063%2F5.0255892&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8225e8542daa4c08b6a81b12c037103f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2835-0103&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2835-0103&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2835-0103&client=summon |