High-fidelity QND readout and measurement back-action in a tantalum-based high-coherence fluxonium qubit

Implementing a precise measurement of the quantum state of a qubit is critical for building a practical quantum processor, as it plays an important role in state initialization and quantum error correction. While the transmon qubit has been the most commonly used design in small- to medium-scale pro...

Full description

Saved in:
Bibliographic Details
Published inAPL quantum Vol. 2; no. 2; pp. 026103 - 026103-6
Main Authors Bothara, Gaurav, Das, Srijita, Salunkhe, Kishor V., Chand, Madhavi, Deshmukh, Jay, Patankar, Meghan P., Vijay, R.
Format Journal Article
LanguageEnglish
Published AIP Publishing LLC 01.06.2025
Online AccessGet full text

Cover

Loading…
Abstract Implementing a precise measurement of the quantum state of a qubit is critical for building a practical quantum processor, as it plays an important role in state initialization and quantum error correction. While the transmon qubit has been the most commonly used design in small- to medium-scale processors, the fluxonium qubit is emerging as a strong alternative with the potential for high-fidelity gate operation as a result of the high anharmonicity and high coherence achievable due to its unique design. Here, we explore the measurement characteristics of a tantalum-based high-coherence fluxonium qubit and demonstrate single-shot measurement fidelity (assignment fidelity) of 96.2% ± 0.5% and 97.8% ± 0.4% without and with the use of a Josephson parametric amplifier, respectively. We study the back-action of the measurement photons on the qubit and measure a QND fidelity of 99.0% ± 0.3%. We find that the measurement fidelity and the QND nature are limited by state-mixing errors, and our results suggest that a careful study of measurement-induced transitions in the fluxonium is needed to further optimize the readout performance.
AbstractList Implementing a precise measurement of the quantum state of a qubit is critical for building a practical quantum processor, as it plays an important role in state initialization and quantum error correction. While the transmon qubit has been the most commonly used design in small- to medium-scale processors, the fluxonium qubit is emerging as a strong alternative with the potential for high-fidelity gate operation as a result of the high anharmonicity and high coherence achievable due to its unique design. Here, we explore the measurement characteristics of a tantalum-based high-coherence fluxonium qubit and demonstrate single-shot measurement fidelity (assignment fidelity) of 96.2% ± 0.5% and 97.8% ± 0.4% without and with the use of a Josephson parametric amplifier, respectively. We study the back-action of the measurement photons on the qubit and measure a QND fidelity of 99.0% ± 0.3%. We find that the measurement fidelity and the QND nature are limited by state-mixing errors, and our results suggest that a careful study of measurement-induced transitions in the fluxonium is needed to further optimize the readout performance.
Author Deshmukh, Jay
Salunkhe, Kishor V.
Patankar, Meghan P.
Das, Srijita
Chand, Madhavi
Bothara, Gaurav
Vijay, R.
Author_xml – sequence: 1
  givenname: Gaurav
  orcidid: 0009-0001-5438-9635
  surname: Bothara
  fullname: Bothara, Gaurav
– sequence: 2
  givenname: Srijita
  surname: Das
  fullname: Das, Srijita
– sequence: 3
  givenname: Kishor V.
  surname: Salunkhe
  fullname: Salunkhe, Kishor V.
– sequence: 4
  givenname: Madhavi
  surname: Chand
  fullname: Chand, Madhavi
– sequence: 5
  givenname: Jay
  surname: Deshmukh
  fullname: Deshmukh, Jay
– sequence: 6
  givenname: Meghan P.
  surname: Patankar
  fullname: Patankar, Meghan P.
– sequence: 7
  givenname: R.
  orcidid: 0000-0001-5629-3736
  surname: Vijay
  fullname: Vijay, R.
BookMark eNpN0DtPwzAUhmELgUQpHfgHXhlSfIkTZ0Tl0koVCAnm6MQ5blwSG5xEov8eSivEdD6d4RneC3Lqg0dCrjibc5bJGzVnQildiBMyEVqqhHEmT__tczLr-y1jTEqWa6knpFm6TZNYV2Prhh19ebqjEaEO40DB17RD6MeIHfqBVmDeEzCDC546T4EO4Adoxy6poMeaNnvJhAYjeoPUtuNX8G7s6OdYueGSnFloe5wd75S8Pdy_LpbJ-vlxtbhdJ4ZLJRKowYAVtqgyK22a2yJFYy0URWEB0xRUlWc5U6qogGccpJGZSBGzXLNcCCunZHVw6wDb8iO6DuKuDODK30eImxLi4EyLpRZCoVapqAFSw3SVgeYVF4bJ_CfW3ro-WCaGvo9o_zzOyn3xUpXH4vIbtSp03A
Cites_doi 10.1038/s41467-021-22030-5
10.1103/physreva.69.062320
10.1103/PhysRevA.76.042319
10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
10.1126/sciadv.abi6690
10.1103/PhysRevLett.113.247001
10.1103/PhysRevApplied.22.064038
10.1038/s41586-019-1666-5
10.1103/PhysRevApplied.15.064030
10.1103/PRXQuantum.3.040336
10.1103/PhysRevX.14.041023
10.1103/PhysRevLett.101.080502
10.1103/PRXQuantum.6.010349
10.1103/PhysRevApplied.20.034016
10.1038/s41586-024-07107-7
10.1103/PhysRevX.9.041041
10.1103/PhysRevLett.130.267001
10.1109/proc.1963.1664
10.1103/PhysRevX.11.021026
10.1103/PhysRevLett.117.190503
10.1126/science.1175552
10.1103/PhysRevApplied.17.044016
10.1103/PRXQuantum.3.037001
10.1103/PhysRevLett.132.060602
10.1103/PhysRevLett.112.190504
10.1103/PhysRevApplied.20.024011
10.1103/PhysRevLett.134.100601
10.1103/PhysRevApplied.20.054008
10.1103/PhysRevResearch.4.023040
10.1103/PhysRevApplied.23.024055
10.1103/PhysRevA.86.032324
10.1038/s41586-021-03588-y
10.1038/nature02851
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1063/5.0255892
DatabaseName CrossRef
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2835-0103
EndPage 026103-6
ExternalDocumentID oai_doaj_org_article_8225e8542daa4c08b6a81b12c037103f
10_1063_5_0255892
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
RQS
ID FETCH-LOGICAL-c1352-adacaf2f9b6f3f47f94ecffa999fae44a5b7670559ba161a3c3624ee6780722f3
IEDL.DBID DOA
ISSN 2835-0103
IngestDate Wed Aug 27 01:19:41 EDT 2025
Tue Jul 01 05:12:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1352-adacaf2f9b6f3f47f94ecffa999fae44a5b7670559ba161a3c3624ee6780722f3
ORCID 0000-0001-5629-3736
0009-0001-5438-9635
OpenAccessLink https://doaj.org/article/8225e8542daa4c08b6a81b12c037103f
ParticipantIDs doaj_primary_oai_doaj_org_article_8225e8542daa4c08b6a81b12c037103f
crossref_primary_10_1063_5_0255892
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle APL quantum
PublicationYear 2025
Publisher AIP Publishing LLC
Publisher_xml – name: AIP Publishing LLC
References (2025040907573059100_c23) 2025; 6
(2025040907573059100_c4) 2008; 101
(2025040907573059100_c27) 2023; 20
(2025040907573059100_c9) 1963; 51
(2025040907573059100_c30) 2022; 3
2025040907573059100_c36
(2025040907573059100_c28) 2021; 12
(2025040907573059100_c14) 2007; 76
(2025040907573059100_c3) 2021; 15
(2025040907573059100_c33) 2023; 20
(2025040907573059100_c13) 2024; 22
(2025040907573059100_c15) 2019; 574
(2025040907573059100_c18) 2019; 9
(2025040907573059100_c26) 2022; 4
(2025040907573059100_c24) 2024; 132
(2025040907573059100_c11) 2004; 431
(2025040907573059100_c22) 2021; 11
(2025040907573059100_c19) 2023; 130
(2025040907573059100_c6) 2024; 627
2025040907573059100_c29
(2025040907573059100_c8) 2021; 595
(2025040907573059100_c7) 2012; 86
2025040907573059100_c35
(2025040907573059100_c20) 2014; 113
(2025040907573059100_c21) 2023; 20
(2025040907573059100_c17) 2009; 326
(2025040907573059100_c25) 2022; 3
(2025040907573059100_c10) 2004; 69
(2025040907573059100_c34) 2024; 14
(2025040907573059100_c31) 2025; 23
(2025040907573059100_c32) 2024; 134
(2025040907573059100_c1) 2000; 48
(2025040907573059100_c16) 2022; 8
(2025040907573059100_c12) 2016; 117
(2025040907573059100_c2) 2014; 112
(2025040907573059100_c5) 2022; 17
References_xml – ident: 2025040907573059100_c35
– volume: 12
  start-page: 1779
  year: 2021
  ident: 2025040907573059100_c28
  article-title: New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22030-5
– volume: 69
  start-page: 062320
  year: 2004
  ident: 2025040907573059100_c10
  article-title: Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.69.062320
– volume: 76
  start-page: 042319
  year: 2007
  ident: 2025040907573059100_c14
  article-title: Charge-insensitive qubit design derived from the Cooper pair box
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.76.042319
– volume: 48
  start-page: 771
  year: 2000
  ident: 2025040907573059100_c1
  article-title: The physical implementation of quantum computation
  publication-title: Fortschritte der Physik
  doi: 10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
– volume: 8
  start-page: eabi6690
  year: 2022
  ident: 2025040907573059100_c16
  article-title: High-performance superconducting quantum processors via laser annealing of transmon qubits
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abi6690
– volume: 113
  start-page: 247001
  year: 2014
  ident: 2025040907573059100_c20
  article-title: Non-poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.247001
– volume: 22
  start-page: 064038
  year: 2024
  ident: 2025040907573059100_c13
  article-title: Measurement-induced state transitions in dispersive qubit-readout schemes
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.22.064038
– volume: 574
  start-page: 505
  year: 2019
  ident: 2025040907573059100_c15
  article-title: Quantum supremacy using a programmable superconducting processor
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 15
  start-page: 064030
  year: 2021
  ident: 2025040907573059100_c3
  article-title: Quantum nondemolition dispersive readout of a superconducting artificial atom using large photon numbers
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.15.064030
– volume: 3
  start-page: 040336
  year: 2022
  ident: 2025040907573059100_c25
  article-title: Fast high-fidelity gates for galvanically-coupled fluxonium qubits using strong flux modulation
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.3.040336
– volume: 14
  start-page: 041023
  year: 2024
  ident: 2025040907573059100_c34
  article-title: Measurement-induced transmon ionization
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.14.041023
– volume: 101
  start-page: 080502
  year: 2008
  ident: 2025040907573059100_c4
  article-title: Controlling the spontaneous emission of a superconducting transmon qubit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.080502
– ident: 2025040907573059100_c29
– volume: 6
  start-page: 010349
  issue: 1
  year: 2025
  ident: 2025040907573059100_c23
  article-title: 24 days-stable CNOT-gate on fluxonium qubits with over 99.9% fidelity
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.6.010349
– volume: 20
  start-page: 034016
  year: 2023
  ident: 2025040907573059100_c21
  article-title: Characterization of loss mechanisms in a fluxonium qubit
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.20.034016
– volume: 627
  start-page: 778
  year: 2024
  ident: 2025040907573059100_c6
  article-title: High-threshold and low-overhead fault-tolerant quantum memory
  publication-title: Nature
  doi: 10.1038/s41586-024-07107-7
– volume: 9
  start-page: 041041
  year: 2019
  ident: 2025040907573059100_c18
  article-title: High-coherence fluxonium qubit
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.9.041041
– volume: 130
  start-page: 267001
  year: 2023
  ident: 2025040907573059100_c19
  article-title: Millisecond coherence in a superconducting qubit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.267001
– volume: 51
  start-page: 89
  year: 1963
  ident: 2025040907573059100_c9
  article-title: Comparison of quantum and semiclassical radiation theories with application to the beam maser
  publication-title: Proc. IEEE
  doi: 10.1109/proc.1963.1664
– volume: 11
  start-page: 021026
  year: 2021
  ident: 2025040907573059100_c22
  article-title: Fast logic with slow qubits: Microwave-activated controlled-Z gate on low-frequency fluxoniums
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.11.021026
– volume: 117
  start-page: 190503
  year: 2016
  ident: 2025040907573059100_c12
  article-title: Measurement-induced state transitions in a superconducting qubit: Beyond the rotating wave approximation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.190503
– volume: 326
  start-page: 113
  year: 2009
  ident: 2025040907573059100_c17
  article-title: Fluxonium: Single cooper-pair circuit free of charge offsets
  publication-title: Science
  doi: 10.1126/science.1175552
– volume: 17
  start-page: 044016
  year: 2022
  ident: 2025040907573059100_c5
  article-title: Fast readout and reset of a superconducting qubit coupled to a resonator with an intrinsic purcell filter
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.17.044016
– volume: 3
  start-page: 037001
  year: 2022
  ident: 2025040907573059100_c30
  article-title: Blueprint for a high-performance fluxonium quantum processor
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.3.037001
– volume: 132
  start-page: 060602
  year: 2024
  ident: 2025040907573059100_c24
  article-title: Native approach to controlled-z gates in inductively coupled fluxonium qubits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.132.060602
– volume: 112
  start-page: 190504
  year: 2014
  ident: 2025040907573059100_c2
  article-title: Fast accurate state measurement with superconducting qubits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.190504
– volume: 20
  start-page: 024011
  year: 2023
  ident: 2025040907573059100_c27
  article-title: Two-fluxonium cross-resonance gate
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.20.024011
– volume: 134
  start-page: 100601
  issue: 10
  year: 2024
  ident: 2025040907573059100_c32
  article-title: Benchmarking the readout of a superconducting qubit for repeated measurements
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.134.100601
– volume: 20
  start-page: 054008
  year: 2023
  ident: 2025040907573059100_c33
  article-title: Measurement-induced state transitions in a superconducting qubit: Within the rotating-wave approximation
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.20.054008
– volume: 4
  start-page: 023040
  year: 2022
  ident: 2025040907573059100_c26
  article-title: Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.023040
– ident: 2025040907573059100_c36
– volume: 23
  start-page: 024055
  issue: 2
  year: 2025
  ident: 2025040907573059100_c31
  article-title: System characterization of dispersive readout in superconducting qubits
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.23.024055
– volume: 86
  start-page: 032324
  year: 2012
  ident: 2025040907573059100_c7
  article-title: Surface codes: Towards practical large-scale quantum computation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.032324
– volume: 595
  start-page: 383
  year: 2021
  ident: 2025040907573059100_c8
  article-title: Exponential suppression of bit or phase errors with cyclic error correction
  publication-title: Nature
  doi: 10.1038/s41586-021-03588-y
– volume: 431
  start-page: 162
  year: 2004
  ident: 2025040907573059100_c11
  article-title: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics
  publication-title: Nature
  doi: 10.1038/nature02851
SSID ssj0003307838
Score 2.2934086
Snippet Implementing a precise measurement of the quantum state of a qubit is critical for building a practical quantum processor, as it plays an important role in...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 026103
Title High-fidelity QND readout and measurement back-action in a tantalum-based high-coherence fluxonium qubit
URI https://doaj.org/article/8225e8542daa4c08b6a81b12c037103f
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JasMwEBUlUOildKXphii9qnGsxdaxS0IoJFBoIDczkiUS2iRdbOip396R7bTpqZdefDDGmBlp3nuy9IaQyzQyidIyYZIrzYQyOKWcB2asTRPnQHsIQnE4UoOxuJ_IyVqrr7AnrLYHrgPXQQCTLpUizgGEjVKjAJlWN7bBay7iPlRfxLw1MRVqMKr0JOXpykpI8Y68Cuw51fEvAFrz6a8Apb9DthsmSK_rL9glG26xRzarHZn2fZ9Mww4M5oMLFRJl-jC6o8jv8mVZUBT_dP6ztkcN2CdWH1CgswUFGjoDA1YdFjAqp8GSmNnltD7ZR_1z-YEzuZzT19LMigMy7vcebwesaYvAbBfpEoMcLPjYa6M89yLxWjjrPSDV8-CEAInhDyY52gDyOeAWQUo4h7AUJXHs-SFpLZYLd0RoolGu2UiB64LgNtZeYHZyhbLYJVLwNrlYxSp7qd0vsuqvteKZzJqAtslNiOL3A8GwurqBacyaNGZ_pfH4P15yQrbi0J63WiQ5Ja3irXRnyBkKc14ND7wOP3tfSjHALw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-fidelity+QND+readout+and+measurement+back-action+in+a+tantalum-based+high-coherence+fluxonium+qubit&rft.jtitle=APL+quantum&rft.au=Gaurav+Bothara&rft.au=Srijita+Das&rft.au=Kishor+V.+Salunkhe&rft.au=Madhavi+Chand&rft.date=2025-06-01&rft.pub=AIP+Publishing+LLC&rft.eissn=2835-0103&rft.volume=2&rft.issue=2&rft.spage=026103&rft.epage=026103-6&rft_id=info:doi/10.1063%2F5.0255892&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8225e8542daa4c08b6a81b12c037103f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2835-0103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2835-0103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2835-0103&client=summon