Conformable Electronics With Conductive Silver Structures by Electrohydrodynamic Printing
Recent advances in research and fabrication of flexible, stretchable, or rather conformable electronics with printed conductive structures have enabled a wide range of applications. Various fields such as consumer electronics or wearable devices for health monitoring are affected by these achievemen...
Saved in:
Published in | IEEE journal on flexible electronics Vol. 3; no. 7; pp. 348 - 355 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2768-167X 2768-167X |
DOI | 10.1109/JFLEX.2024.3420263 |
Cover
Abstract | Recent advances in research and fabrication of flexible, stretchable, or rather conformable electronics with printed conductive structures have enabled a wide range of applications. Various fields such as consumer electronics or wearable devices for health monitoring are affected by these achievements. Owing to gradually increasing demands on enhanced functionalities and an excellent deformability of such electronics, an investigation of appropriate hyperelastic materials and progressive manufacturing techniques are mandatory. In this article, a cost-efficient approach for fabrication of conformable electronics based on vacuum thermoforming with printed microscaled silver structures is presented. The patterns in form of conductive line arrays and meanders are realized by the emerging electrohydrodynamic printing (EHD) technique which constitutes a promising alternative to established additive technologies due to the applicability of various printing media as well as its high material compatibility. Moreover, hyperelastic material models comprising the Mooney-Rivlin, Ogden, neo-Hookean as well as the Yeoh model for description of stretchable thermoplastic polyurethane (TPU) during deformation are contrasted and general capabilities for design optimization of conductive structures are derived by means of numerical simulations. Based on the EHD-printed metallic silver patterns on TPU with a subsequent transfer of the flat 100-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> m thick matrix toward a 3D-shaped electronic device by thermoforming, first demonstrators with a degree of deformation up to 57% are realized. |
---|---|
AbstractList | Recent advances in research and fabrication of flexible, stretchable, or rather conformable electronics with printed conductive structures have enabled a wide range of applications. Various fields such as consumer electronics or wearable devices for health monitoring are affected by these achievements. Owing to gradually increasing demands on enhanced functionalities and an excellent deformability of such electronics, an investigation of appropriate hyperelastic materials and progressive manufacturing techniques are mandatory. In this article, a cost-efficient approach for fabrication of conformable electronics based on vacuum thermoforming with printed microscaled silver structures is presented. The patterns in form of conductive line arrays and meanders are realized by the emerging electrohydrodynamic printing (EHD) technique which constitutes a promising alternative to established additive technologies due to the applicability of various printing media as well as its high material compatibility. Moreover, hyperelastic material models comprising the Mooney-Rivlin, Ogden, neo-Hookean as well as the Yeoh model for description of stretchable thermoplastic polyurethane (TPU) during deformation are contrasted and general capabilities for design optimization of conductive structures are derived by means of numerical simulations. Based on the EHD-printed metallic silver patterns on TPU with a subsequent transfer of the flat 100-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> m thick matrix toward a 3D-shaped electronic device by thermoforming, first demonstrators with a degree of deformation up to 57% are realized. |
Author | Schrag, Gabriele Kuehne, Ingo Philippin, Nadine |
Author_xml | – sequence: 1 givenname: Nadine orcidid: 0009-0001-2064-1660 surname: Philippin fullname: Philippin, Nadine email: nadine.philippin@hs-heilbronn.de organization: Faculty Engineering and Business, Heilbronn University of Applied Sciences, Kuenzelsau, Germany – sequence: 2 givenname: Ingo orcidid: 0009-0001-7097-6629 surname: Kuehne fullname: Kuehne, Ingo organization: Faculty Engineering and Business, Heilbronn University of Applied Sciences, Kuenzelsau, Germany – sequence: 3 givenname: Gabriele orcidid: 0000-0002-5449-7679 surname: Schrag fullname: Schrag, Gabriele organization: Professorship of Microsensors and Actuators, Technical University of Munich, Munich, Germany |
BookMark | eNpNkF1LwzAUhoNMcM79AfEif6DzJOmS5lLG5gcDhSnOq5Kmpy7SpZJ0g_57O52wq_fwHp734rkkA994JOSawYQx0LdPi-V8PeHA04lI-5DijAy5klnCpFoPTu4LMo7xCwC4lkxkMCQfs8ZXTdiaokY6r9G2ofHORvru2g3tn-XOtm6PdOXqPQa6akNf7AJGWnT_wKYrQ1N23mydpS_B-db5zytyXpk64viYI_K2mL_OHpLl8_3j7G6ZWCbSNrGVmpY6Bcis1JobaUXJJDOCZQhGWy6wQA2Sy8IWgiuwqrBlxo0QvAIBYkT4364NTYwBq_w7uK0JXc4gP_jJf_3kBz_50U8P3fxBDhFPgKlSjGXiB6m2ZUg |
CODEN | IJFEBL |
Cites_doi | 10.1109/APSCON56343.2023.10101193 10.1098/rsta.1948.0002 10.1002/smll.201500593 10.1016/j.jmsy.2018.04.011 10.1109/ACCESS.2019.2949335 10.3390/ma14247534 10.1016/j.ijbiomac.2023.128774 10.3390/ecsa-7-08216 10.1016/j.nanoen.2017.07.048 10.1039/d2nr06008f 10.1002/smsc.202100073 10.1146/annurev.fl.01.010169.000551 10.1016/j.mtnano.2022.100254 10.1098/rspa.1964.0151 10.1109/fleps53764.2022.9781481 10.1109/sensors47087.2021.9639852 10.1039/c7nr09570h 10.1126/sciadv.abj0694 10.1002/9781119666189 10.1063/1.1712836 10.1016/j.mtelec.2023.100056 10.1146/annurev.fluid.29.1.27 10.1177/1687814017699352 10.3390/designs7060135 10.1021/acsnano.3c12477 10.1109/TCPMT.2023.3283015 10.1002/smll.202006612 10.1007/978-3-446-45283-1 10.1016/j.euromechsol.2020.104154 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JFLEX.2024.3420263 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2768-167X |
EndPage | 355 |
ExternalDocumentID | 10_1109_JFLEX_2024_3420263 10577118 |
Genre | orig-research |
GrantInformation_xml | – fundername: Foundation for Promotion of Reinhold Wuerth University of Heilbronn University, Germany |
GroupedDBID | 0R~ 97E AASAJ AAWTH ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c134t-cf75d94008c6992a6c3d161a318e0a9c23ebe90626bcb3270c7bcd82a332f0303 |
IEDL.DBID | RIE |
ISSN | 2768-167X |
IngestDate | Tue Jul 01 03:01:03 EDT 2025 Wed Aug 27 03:01:35 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c134t-cf75d94008c6992a6c3d161a318e0a9c23ebe90626bcb3270c7bcd82a332f0303 |
ORCID | 0009-0001-7097-6629 0000-0002-5449-7679 0009-0001-2064-1660 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_JFLEX_2024_3420263 ieee_primary_10577118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-July |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July |
PublicationDecade | 2020 |
PublicationTitle | IEEE journal on flexible electronics |
PublicationTitleAbbrev | JFLEX |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Kostelnik (ref34) 2020 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref7 ref9 ref4 ref3 ref6 ref5 Kumar (ref25) 2016; 6 Kostelnik (ref33) 2020 Philippin (ref8) Jadhav (ref29) 2016; 2 |
References_xml | – ident: ref13 doi: 10.1109/APSCON56343.2023.10101193 – ident: ref27 doi: 10.1098/rsta.1948.0002 – start-page: 976 year: 2020 ident: ref34 article-title: Stretchable und Conformable Electronics—Neue Ansätze und Lösungen fur 3D-Elektronik (Teil 2) publication-title: PLUS-Elektronikfertigung – ident: ref19 doi: 10.1002/smll.201500593 – volume: 2 start-page: 212 issue: 4 year: 2016 ident: ref29 article-title: Comparative study of variation of Mooney-Rivlin hyperelastic material models under uniaxial tensile loading publication-title: Int. J. Advance Res. Innov. Ideas Educ. – ident: ref15 doi: 10.1016/j.jmsy.2018.04.011 – ident: ref9 doi: 10.1109/ACCESS.2019.2949335 – ident: ref30 doi: 10.3390/ma14247534 – start-page: 68 volume-title: Proc. EBL-Elektronische Baugruppen Und Leiterplatten ident: ref8 article-title: Electronics of a new dimension—Potentials of stretchable foil systems for development of interactive microimplants – ident: ref10 doi: 10.1016/j.ijbiomac.2023.128774 – ident: ref11 doi: 10.3390/ecsa-7-08216 – ident: ref14 doi: 10.1016/j.nanoen.2017.07.048 – ident: ref5 doi: 10.1039/d2nr06008f – ident: ref20 doi: 10.1002/smsc.202100073 – ident: ref22 doi: 10.1146/annurev.fl.01.010169.000551 – ident: ref1 doi: 10.1016/j.mtnano.2022.100254 – ident: ref21 doi: 10.1098/rspa.1964.0151 – ident: ref12 doi: 10.1109/fleps53764.2022.9781481 – ident: ref7 doi: 10.1109/sensors47087.2021.9639852 – ident: ref3 doi: 10.1039/c7nr09570h – ident: ref16 doi: 10.1126/sciadv.abj0694 – ident: ref18 doi: 10.1002/9781119666189 – ident: ref26 doi: 10.1063/1.1712836 – ident: ref6 doi: 10.1016/j.mtelec.2023.100056 – ident: ref23 doi: 10.1146/annurev.fluid.29.1.27 – volume: 6 start-page: 43 issue: 1 year: 2016 ident: ref25 article-title: Hyperelastic Mooney–Rivlin model: Determination and physical interpretation of material constants publication-title: MIT Int. J. Mech. Eng. – ident: ref28 doi: 10.1177/1687814017699352 – ident: ref31 doi: 10.3390/designs7060135 – start-page: 840 year: 2020 ident: ref33 article-title: Stretchable und Conformable Electronics—Neue Ansätze und Lösungen fur 3D-Elektronik (Teil 1) publication-title: PLUS-Elektronikfertigung – ident: ref4 doi: 10.1021/acsnano.3c12477 – ident: ref17 doi: 10.1109/TCPMT.2023.3283015 – ident: ref2 doi: 10.1002/smll.202006612 – ident: ref24 doi: 10.1007/978-3-446-45283-1 – ident: ref32 doi: 10.1016/j.euromechsol.2020.104154 |
SSID | ssj0002961380 |
Score | 2.2675254 |
Snippet | Recent advances in research and fabrication of flexible, stretchable, or rather conformable electronics with printed conductive structures have enabled a wide... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 348 |
SubjectTerms | 3-D electronics electrohydrodynamic printing (EHD) Fabrication Flexible electronics hyperelastic Mathematical models Mooney-Rivlin model Printing Silver Strain Substrates thermoforming thermoplastic polyurethane (TPU) |
Title | Conformable Electronics With Conductive Silver Structures by Electrohydrodynamic Printing |
URI | https://ieeexplore.ieee.org/document/10577118 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3rwWbG-2IM3SZruJtnsUaSlFClCLdZTyD5Ci9IWTA_11zuzSUoVBE8JSTYsM5PZbzbzzRByhzQepizzmNHMC7tCeUpb7QGSzQIlhRS5y_IdxYNJOJxG04qs7rgw1lqXfGZ9PHX_8s1Sr3GrrIM9aQUg4gZpgJ2VZK3thgqTsDIlQU2MCWRn2H_qTSEEZKHPQzjE_Mfis9NNxS0m_SMyqqdR5pC8--tC-frrV4XGf8_zmBxWsJI-lHZwQvbs4pQc7BQbPCNvSO5DhKo-LO1tu9980td5MaNwEyu_gu-j4zlmS9Oxqyy7hnCcqk09YLYx4HHLLvb0GV6MWdMtMun3Xh4HXtVYwdNdHhaezkVksCN6omMpWRZrbgD5ZfB92yCTmnFQLRYwjpVWnIlAC6VNwjLOWQ5egZ-T5mK5sBeEMqmk5pFUiFtUlCS5lpmRSLFnUmSmTe5riaersn5G6uKOQKZOPynqJ6300yYtlObOk6UgL_-4fkX2cXiZPntNmiAYewMgoVC3zji-AWrjuxI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HtSDz4r1uQdvkjbdzWuPIi211iK0xXoK2UdoUVrB9FB_vbObpFRB8JSQx7LMbGa-2cw3A3BjaDxUaOpQJanjNUPhCKmlg0g2cQUPeZjaLN9-0Bl53bE_LsjqlgujtbbJZ7puTu2_fDWXC7NV1jA9aUNExJuwhY7f83O61mpLhXL0TZFbUmNc3ui2e60xBoHUqzMPDwH74X7W-qlYd9Leh345kTyL5K2-yERdfv2q0fjvmR7AXgEsyV2-Eg5hQ8-OYHet3OAxvBp6n8Go4l2T1qr_zSd5mWYTgjdN7Ve0fmQwNfnSZGBryy4wICdiWb4wWSq0uXkfe_KMA5u86SqM2q3hfccpWis4ssm8zJFp6CvTEz2SAec0CSRTiP0S_MK1m3BJGSrXlDAOhBSMhq4MhVQRTRijKdoFdgKV2XymT4FQLrhkPhcGuQg_ilLJE8UNyZ7yMFE1uC0lHn_kFTRiG3m4PLb6iY1-4kI_Nagaaa49mQvy7I_r17DdGT714t5D__EcdsxQeTLtBVRQSPoSIUMmruxC-QZjab5f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformable+Electronics+With+Conductive+Silver+Structures+by+Electrohydrodynamic+Printing&rft.jtitle=IEEE+journal+on+flexible+electronics&rft.au=Philippin%2C+Nadine&rft.au=Kuehne%2C+Ingo&rft.au=Schrag%2C+Gabriele&rft.date=2024-07-01&rft.pub=IEEE&rft.eissn=2768-167X&rft.volume=3&rft.issue=7&rft.spage=348&rft.epage=355&rft_id=info:doi/10.1109%2FJFLEX.2024.3420263&rft.externalDocID=10577118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-167X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-167X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-167X&client=summon |