Conformable Electronics With Conductive Silver Structures by Electrohydrodynamic Printing

Recent advances in research and fabrication of flexible, stretchable, or rather conformable electronics with printed conductive structures have enabled a wide range of applications. Various fields such as consumer electronics or wearable devices for health monitoring are affected by these achievemen...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on flexible electronics Vol. 3; no. 7; pp. 348 - 355
Main Authors Philippin, Nadine, Kuehne, Ingo, Schrag, Gabriele
Format Journal Article
LanguageEnglish
Published IEEE 01.07.2024
Subjects
Online AccessGet full text
ISSN2768-167X
2768-167X
DOI10.1109/JFLEX.2024.3420263

Cover

Abstract Recent advances in research and fabrication of flexible, stretchable, or rather conformable electronics with printed conductive structures have enabled a wide range of applications. Various fields such as consumer electronics or wearable devices for health monitoring are affected by these achievements. Owing to gradually increasing demands on enhanced functionalities and an excellent deformability of such electronics, an investigation of appropriate hyperelastic materials and progressive manufacturing techniques are mandatory. In this article, a cost-efficient approach for fabrication of conformable electronics based on vacuum thermoforming with printed microscaled silver structures is presented. The patterns in form of conductive line arrays and meanders are realized by the emerging electrohydrodynamic printing (EHD) technique which constitutes a promising alternative to established additive technologies due to the applicability of various printing media as well as its high material compatibility. Moreover, hyperelastic material models comprising the Mooney-Rivlin, Ogden, neo-Hookean as well as the Yeoh model for description of stretchable thermoplastic polyurethane (TPU) during deformation are contrasted and general capabilities for design optimization of conductive structures are derived by means of numerical simulations. Based on the EHD-printed metallic silver patterns on TPU with a subsequent transfer of the flat 100-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> m thick matrix toward a 3D-shaped electronic device by thermoforming, first demonstrators with a degree of deformation up to 57% are realized.
AbstractList Recent advances in research and fabrication of flexible, stretchable, or rather conformable electronics with printed conductive structures have enabled a wide range of applications. Various fields such as consumer electronics or wearable devices for health monitoring are affected by these achievements. Owing to gradually increasing demands on enhanced functionalities and an excellent deformability of such electronics, an investigation of appropriate hyperelastic materials and progressive manufacturing techniques are mandatory. In this article, a cost-efficient approach for fabrication of conformable electronics based on vacuum thermoforming with printed microscaled silver structures is presented. The patterns in form of conductive line arrays and meanders are realized by the emerging electrohydrodynamic printing (EHD) technique which constitutes a promising alternative to established additive technologies due to the applicability of various printing media as well as its high material compatibility. Moreover, hyperelastic material models comprising the Mooney-Rivlin, Ogden, neo-Hookean as well as the Yeoh model for description of stretchable thermoplastic polyurethane (TPU) during deformation are contrasted and general capabilities for design optimization of conductive structures are derived by means of numerical simulations. Based on the EHD-printed metallic silver patterns on TPU with a subsequent transfer of the flat 100-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> m thick matrix toward a 3D-shaped electronic device by thermoforming, first demonstrators with a degree of deformation up to 57% are realized.
Author Schrag, Gabriele
Kuehne, Ingo
Philippin, Nadine
Author_xml – sequence: 1
  givenname: Nadine
  orcidid: 0009-0001-2064-1660
  surname: Philippin
  fullname: Philippin, Nadine
  email: nadine.philippin@hs-heilbronn.de
  organization: Faculty Engineering and Business, Heilbronn University of Applied Sciences, Kuenzelsau, Germany
– sequence: 2
  givenname: Ingo
  orcidid: 0009-0001-7097-6629
  surname: Kuehne
  fullname: Kuehne, Ingo
  organization: Faculty Engineering and Business, Heilbronn University of Applied Sciences, Kuenzelsau, Germany
– sequence: 3
  givenname: Gabriele
  orcidid: 0000-0002-5449-7679
  surname: Schrag
  fullname: Schrag, Gabriele
  organization: Professorship of Microsensors and Actuators, Technical University of Munich, Munich, Germany
BookMark eNpNkF1LwzAUhoNMcM79AfEif6DzJOmS5lLG5gcDhSnOq5Kmpy7SpZJ0g_57O52wq_fwHp734rkkA994JOSawYQx0LdPi-V8PeHA04lI-5DijAy5klnCpFoPTu4LMo7xCwC4lkxkMCQfs8ZXTdiaokY6r9G2ofHORvru2g3tn-XOtm6PdOXqPQa6akNf7AJGWnT_wKYrQ1N23mydpS_B-db5zytyXpk64viYI_K2mL_OHpLl8_3j7G6ZWCbSNrGVmpY6Bcis1JobaUXJJDOCZQhGWy6wQA2Sy8IWgiuwqrBlxo0QvAIBYkT4364NTYwBq_w7uK0JXc4gP_jJf_3kBz_50U8P3fxBDhFPgKlSjGXiB6m2ZUg
CODEN IJFEBL
Cites_doi 10.1109/APSCON56343.2023.10101193
10.1098/rsta.1948.0002
10.1002/smll.201500593
10.1016/j.jmsy.2018.04.011
10.1109/ACCESS.2019.2949335
10.3390/ma14247534
10.1016/j.ijbiomac.2023.128774
10.3390/ecsa-7-08216
10.1016/j.nanoen.2017.07.048
10.1039/d2nr06008f
10.1002/smsc.202100073
10.1146/annurev.fl.01.010169.000551
10.1016/j.mtnano.2022.100254
10.1098/rspa.1964.0151
10.1109/fleps53764.2022.9781481
10.1109/sensors47087.2021.9639852
10.1039/c7nr09570h
10.1126/sciadv.abj0694
10.1002/9781119666189
10.1063/1.1712836
10.1016/j.mtelec.2023.100056
10.1146/annurev.fluid.29.1.27
10.1177/1687814017699352
10.3390/designs7060135
10.1021/acsnano.3c12477
10.1109/TCPMT.2023.3283015
10.1002/smll.202006612
10.1007/978-3-446-45283-1
10.1016/j.euromechsol.2020.104154
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JFLEX.2024.3420263
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2768-167X
EndPage 355
ExternalDocumentID 10_1109_JFLEX_2024_3420263
10577118
Genre orig-research
GrantInformation_xml – fundername: Foundation for Promotion of Reinhold Wuerth University of Heilbronn University, Germany
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c134t-cf75d94008c6992a6c3d161a318e0a9c23ebe90626bcb3270c7bcd82a332f0303
IEDL.DBID RIE
ISSN 2768-167X
IngestDate Tue Jul 01 03:01:03 EDT 2025
Wed Aug 27 03:01:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-cf75d94008c6992a6c3d161a318e0a9c23ebe90626bcb3270c7bcd82a332f0303
ORCID 0009-0001-7097-6629
0000-0002-5449-7679
0009-0001-2064-1660
PageCount 8
ParticipantIDs crossref_primary_10_1109_JFLEX_2024_3420263
ieee_primary_10577118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-July
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July
PublicationDecade 2020
PublicationTitle IEEE journal on flexible electronics
PublicationTitleAbbrev JFLEX
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Kostelnik (ref34) 2020
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref7
ref9
ref4
ref3
ref6
ref5
Kumar (ref25) 2016; 6
Kostelnik (ref33) 2020
Philippin (ref8)
Jadhav (ref29) 2016; 2
References_xml – ident: ref13
  doi: 10.1109/APSCON56343.2023.10101193
– ident: ref27
  doi: 10.1098/rsta.1948.0002
– start-page: 976
  year: 2020
  ident: ref34
  article-title: Stretchable und Conformable Electronics—Neue Ansätze und Lösungen fur 3D-Elektronik (Teil 2)
  publication-title: PLUS-Elektronikfertigung
– ident: ref19
  doi: 10.1002/smll.201500593
– volume: 2
  start-page: 212
  issue: 4
  year: 2016
  ident: ref29
  article-title: Comparative study of variation of Mooney-Rivlin hyperelastic material models under uniaxial tensile loading
  publication-title: Int. J. Advance Res. Innov. Ideas Educ.
– ident: ref15
  doi: 10.1016/j.jmsy.2018.04.011
– ident: ref9
  doi: 10.1109/ACCESS.2019.2949335
– ident: ref30
  doi: 10.3390/ma14247534
– start-page: 68
  volume-title: Proc. EBL-Elektronische Baugruppen Und Leiterplatten
  ident: ref8
  article-title: Electronics of a new dimension—Potentials of stretchable foil systems for development of interactive microimplants
– ident: ref10
  doi: 10.1016/j.ijbiomac.2023.128774
– ident: ref11
  doi: 10.3390/ecsa-7-08216
– ident: ref14
  doi: 10.1016/j.nanoen.2017.07.048
– ident: ref5
  doi: 10.1039/d2nr06008f
– ident: ref20
  doi: 10.1002/smsc.202100073
– ident: ref22
  doi: 10.1146/annurev.fl.01.010169.000551
– ident: ref1
  doi: 10.1016/j.mtnano.2022.100254
– ident: ref21
  doi: 10.1098/rspa.1964.0151
– ident: ref12
  doi: 10.1109/fleps53764.2022.9781481
– ident: ref7
  doi: 10.1109/sensors47087.2021.9639852
– ident: ref3
  doi: 10.1039/c7nr09570h
– ident: ref16
  doi: 10.1126/sciadv.abj0694
– ident: ref18
  doi: 10.1002/9781119666189
– ident: ref26
  doi: 10.1063/1.1712836
– ident: ref6
  doi: 10.1016/j.mtelec.2023.100056
– ident: ref23
  doi: 10.1146/annurev.fluid.29.1.27
– volume: 6
  start-page: 43
  issue: 1
  year: 2016
  ident: ref25
  article-title: Hyperelastic Mooney–Rivlin model: Determination and physical interpretation of material constants
  publication-title: MIT Int. J. Mech. Eng.
– ident: ref28
  doi: 10.1177/1687814017699352
– ident: ref31
  doi: 10.3390/designs7060135
– start-page: 840
  year: 2020
  ident: ref33
  article-title: Stretchable und Conformable Electronics—Neue Ansätze und Lösungen fur 3D-Elektronik (Teil 1)
  publication-title: PLUS-Elektronikfertigung
– ident: ref4
  doi: 10.1021/acsnano.3c12477
– ident: ref17
  doi: 10.1109/TCPMT.2023.3283015
– ident: ref2
  doi: 10.1002/smll.202006612
– ident: ref24
  doi: 10.1007/978-3-446-45283-1
– ident: ref32
  doi: 10.1016/j.euromechsol.2020.104154
SSID ssj0002961380
Score 2.2675254
Snippet Recent advances in research and fabrication of flexible, stretchable, or rather conformable electronics with printed conductive structures have enabled a wide...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 348
SubjectTerms 3-D electronics
electrohydrodynamic printing (EHD)
Fabrication
Flexible electronics
hyperelastic
Mathematical models
Mooney-Rivlin model
Printing
Silver
Strain
Substrates
thermoforming
thermoplastic polyurethane (TPU)
Title Conformable Electronics With Conductive Silver Structures by Electrohydrodynamic Printing
URI https://ieeexplore.ieee.org/document/10577118
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3rwWbG-2IM3SZruJtnsUaSlFClCLdZTyD5Ci9IWTA_11zuzSUoVBE8JSTYsM5PZbzbzzRByhzQepizzmNHMC7tCeUpb7QGSzQIlhRS5y_IdxYNJOJxG04qs7rgw1lqXfGZ9PHX_8s1Sr3GrrIM9aQUg4gZpgJ2VZK3thgqTsDIlQU2MCWRn2H_qTSEEZKHPQzjE_Mfis9NNxS0m_SMyqqdR5pC8--tC-frrV4XGf8_zmBxWsJI-lHZwQvbs4pQc7BQbPCNvSO5DhKo-LO1tu9980td5MaNwEyu_gu-j4zlmS9Oxqyy7hnCcqk09YLYx4HHLLvb0GV6MWdMtMun3Xh4HXtVYwdNdHhaezkVksCN6omMpWRZrbgD5ZfB92yCTmnFQLRYwjpVWnIlAC6VNwjLOWQ5egZ-T5mK5sBeEMqmk5pFUiFtUlCS5lpmRSLFnUmSmTe5riaersn5G6uKOQKZOPynqJ6300yYtlObOk6UgL_-4fkX2cXiZPntNmiAYewMgoVC3zji-AWrjuxI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HtSDz4r1uQdvkjbdzWuPIi211iK0xXoK2UdoUVrB9FB_vbObpFRB8JSQx7LMbGa-2cw3A3BjaDxUaOpQJanjNUPhCKmlg0g2cQUPeZjaLN9-0Bl53bE_LsjqlgujtbbJZ7puTu2_fDWXC7NV1jA9aUNExJuwhY7f83O61mpLhXL0TZFbUmNc3ui2e60xBoHUqzMPDwH74X7W-qlYd9Leh345kTyL5K2-yERdfv2q0fjvmR7AXgEsyV2-Eg5hQ8-OYHet3OAxvBp6n8Go4l2T1qr_zSd5mWYTgjdN7Ve0fmQwNfnSZGBryy4wICdiWb4wWSq0uXkfe_KMA5u86SqM2q3hfccpWis4ssm8zJFp6CvTEz2SAec0CSRTiP0S_MK1m3BJGSrXlDAOhBSMhq4MhVQRTRijKdoFdgKV2XymT4FQLrhkPhcGuQg_ilLJE8UNyZ7yMFE1uC0lHn_kFTRiG3m4PLb6iY1-4kI_Nagaaa49mQvy7I_r17DdGT714t5D__EcdsxQeTLtBVRQSPoSIUMmruxC-QZjab5f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformable+Electronics+With+Conductive+Silver+Structures+by+Electrohydrodynamic+Printing&rft.jtitle=IEEE+journal+on+flexible+electronics&rft.au=Philippin%2C+Nadine&rft.au=Kuehne%2C+Ingo&rft.au=Schrag%2C+Gabriele&rft.date=2024-07-01&rft.pub=IEEE&rft.eissn=2768-167X&rft.volume=3&rft.issue=7&rft.spage=348&rft.epage=355&rft_id=info:doi/10.1109%2FJFLEX.2024.3420263&rft.externalDocID=10577118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-167X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-167X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-167X&client=summon