Text Generation of Speech Imagery Based on an Enhanced CTA-BiLSTM Model Utilizing EEG Signals
Recent studies have demonstrated the potential application of speech imagery neural signals in brain-computer interface (BCI) technology. Text generation based on speech imagery offers a natural communication method for individuals with speech disabilities. However, the limitations in imagined conte...
Saved in:
Published in | IEEE transactions on consumer electronics Vol. 71; no. 2; pp. 3442 - 3453 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies have demonstrated the potential application of speech imagery neural signals in brain-computer interface (BCI) technology. Text generation based on speech imagery offers a natural communication method for individuals with speech disabilities. However, the limitations in imagined content and the immaturity of text generation technology currently constitute an obstacle to its applications. Therefore, this study proposes an enhanced CTA-BiLSTM model for efficient text generation utilizing speech imagery electroencephalography (EEG) signals, significantly enhancing the accuracy and fluency of text generation. Firstly, distinct from the prevailing imagination of characters and words, this study has assembled a sentence-level EEG dataset from ten subjects to facilitate communication. Subsequently, addressing the temporal dynamics characteristics and sequence dependencies of sentence signals, we employ dynamic time warping (DTW) and hidden Markov models (HMM) for accurate temporal alignment and signal annotation to generate fine-grained sentence labels. Finally, the proposed CTA-BiLSTM model leverages channel-time attention mechanism to dynamically adjust weights across channels and time, emphasizing critical features. Concurrently, the bidirectional long short-term memory (BiLSTM) network captures and utilizes long-term dependencies in the EEG signals, thereby enhancing the accuracy of the model in decoding complex temporal patterns. The experimental results demonstrate that the average sentence decoding accuracy can reach 67.50% on the self-built dataset, realizing a better evaluation accuracy and validating its potential for application. |
---|---|
AbstractList | Recent studies have demonstrated the potential application of speech imagery neural signals in brain-computer interface (BCI) technology. Text generation based on speech imagery offers a natural communication method for individuals with speech disabilities. However, the limitations in imagined content and the immaturity of text generation technology currently constitute an obstacle to its applications. Therefore, this study proposes an enhanced CTA-BiLSTM model for efficient text generation utilizing speech imagery electroencephalography (EEG) signals, significantly enhancing the accuracy and fluency of text generation. Firstly, distinct from the prevailing imagination of characters and words, this study has assembled a sentence-level EEG dataset from ten subjects to facilitate communication. Subsequently, addressing the temporal dynamics characteristics and sequence dependencies of sentence signals, we employ dynamic time warping (DTW) and hidden Markov models (HMM) for accurate temporal alignment and signal annotation to generate fine-grained sentence labels. Finally, the proposed CTA-BiLSTM model leverages channel-time attention mechanism to dynamically adjust weights across channels and time, emphasizing critical features. Concurrently, the bidirectional long short-term memory (BiLSTM) network captures and utilizes long-term dependencies in the EEG signals, thereby enhancing the accuracy of the model in decoding complex temporal patterns. The experimental results demonstrate that the average sentence decoding accuracy can reach 67.50% on the self-built dataset, realizing a better evaluation accuracy and validating its potential for application. |
Author | Chu, Xin Pan, Hongguang Wang, Mei Wang, Yiran Miao, Rui Li, Zhuoyi |
Author_xml | – sequence: 1 givenname: Hongguang orcidid: 0000-0002-0390-6188 surname: Pan fullname: Pan, Hongguang email: hongguangpan@163.com organization: College of Electrical and Control Engineering and the Xi'an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Security, Xi'an University of Science and Technology, Xi'an, China – sequence: 2 givenname: Xin surname: Chu fullname: Chu, Xin email: chuxin_029@163.com organization: College of Electrical and Control Engineering and the Xi'an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Security, Xi'an University of Science and Technology, Xi'an, China – sequence: 3 givenname: Rui surname: Miao fullname: Miao, Rui email: miaor@hqvt.net organization: Research and Development Department, Shenzhen HQVT Technology Company LTD., Shenzhen, China – sequence: 4 givenname: Mei orcidid: 0000-0001-7834-5517 surname: Wang fullname: Wang, Mei email: wangm@xust.edu.cn organization: College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an, China – sequence: 5 givenname: Yiran surname: Wang fullname: Wang, Yiran email: yi_ran_wang@163.com organization: College of Electrical and Control Engineering and the Xi'an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Security, Xi'an University of Science and Technology, Xi'an, China – sequence: 6 givenname: Zhuoyi surname: Li fullname: Li, Zhuoyi email: zhuoyilee@163.com organization: School of Automation, Northwestern Polytechnic University, Xi'an, China |
BookMark | eNpNkDtvwjAUha2KSgXavUMH_4HQe2M7cUaIUooE6kAYq8j4Aa7AQUmG0l9PEAydjo7OY_hGZBDqYAl5RZggQvZe5sUkhlhMmBBphvEDGaIQMuIYpwMyBMhkxCBhT2TUtj8AyEUsh-S7tL8dndtgG9X5OtDa0fXJWr2ni6Pa2eZMZ6q1hvaRCrQIexV0b_NyGs38cl2u6Ko29kA3nT_4Px92tCjmdO13QR3aZ_LoerEvdx2TzUdR5p_R8mu-yKfLSCPjXZSiFsI44E7HPE3QWaYQUBqdSTROOUi3CrR0bCu1RG62DsCkwBODBiWyMYHbr27qtm2sq06NP6rmXCFUVzxVj6e64qnuePrJ223irbX_6hnPEszYBdDKYa8 |
CODEN | ITCEDA |
Cites_doi | 10.1016/j.neuroscience.2023.12.001 10.1075/ijcl.2.1.07ray 10.1007/s11571-022-09819-w 10.1080/2326263X.2019.1698928 10.1109/tcss.2024.3462823 10.3389/fnins.2020.00290 10.1109/TIM.2023.3300473 10.1109/TCE.2023.3330423 10.1007/s11042-023-15664-8 10.1016/j.bspc.2021.103241 10.1109/TNSRE.2003.810426 10.1109/TNSRE.2021.3111689 10.1109/TNNLS.2018.2789927 10.1109/TCE.2024.3368569 10.1002/hbm.25136 10.1016/j.neuron.2019.10.020 10.1109/TNSRE.2023.3241846 10.1109/TBME.2024.3376603 10.1126/science.aaa5417 10.1016/j.neunet.2020.05.032 10.1109/TNSRE.2021.3070327 10.1016/j.asoc.2013.10.023 10.1038/s41467-022-33611-3 10.1109/TNSRE.2022.3149654 10.1038/nature11076 10.1016/j.eswa.2016.04.011 10.1016/j.neucom.2016.01.007 10.1007/s10489-022-04226-4 10.1109/TCE.2024.3370310 10.1016/j.csl.2015.05.005 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TCE.2025.3557912 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-4127 |
EndPage | 3453 |
ExternalDocumentID | 10_1109_TCE_2025_3557912 10949619 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science Research Program of Shaanxi Educational Committee grantid: 23JC049 – fundername: Xi’an Science and Technology Program grantid: 23ZDCYJSGG0025-2022 – fundername: Shaanxi Province Qin Chuangyuan “Scientists + Engineers” Team Construction grantid: 2022KXJ-38 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION |
ID | FETCH-LOGICAL-c134t-71c55df04fc24761fe3a1018dc981dfaf07ba0c8f3b8c814dbf00d7046d1d1813 |
IEDL.DBID | RIE |
ISSN | 0098-3063 |
IngestDate | Thu Aug 21 00:34:58 EDT 2025 Wed Aug 27 07:36:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c134t-71c55df04fc24761fe3a1018dc981dfaf07ba0c8f3b8c814dbf00d7046d1d1813 |
ORCID | 0000-0002-0390-6188 0000-0001-7834-5517 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TCE_2025_3557912 ieee_primary_10949619 |
PublicationCentury | 2000 |
PublicationDate | 2025-May |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on consumer electronics |
PublicationTitleAbbrev | T-CE |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | Li (ref5) 2017; 38 ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 |
References_xml | – ident: ref6 doi: 10.1016/j.neuroscience.2023.12.001 – ident: ref26 doi: 10.1075/ijcl.2.1.07ray – ident: ref11 doi: 10.1007/s11571-022-09819-w – ident: ref24 doi: 10.1080/2326263X.2019.1698928 – ident: ref21 doi: 10.1109/tcss.2024.3462823 – ident: ref25 doi: 10.3389/fnins.2020.00290 – ident: ref31 doi: 10.1109/TIM.2023.3300473 – ident: ref7 doi: 10.1109/TCE.2023.3330423 – ident: ref30 doi: 10.1007/s11042-023-15664-8 – ident: ref19 doi: 10.1016/j.bspc.2021.103241 – ident: ref9 doi: 10.1109/TNSRE.2003.810426 – ident: ref14 doi: 10.1109/TNSRE.2021.3111689 – ident: ref20 doi: 10.1109/TNNLS.2018.2789927 – ident: ref1 doi: 10.1109/TCE.2024.3368569 – ident: ref29 doi: 10.1002/hbm.25136 – ident: ref27 doi: 10.1016/j.neuron.2019.10.020 – ident: ref17 doi: 10.1109/TNSRE.2023.3241846 – ident: ref8 doi: 10.1109/TBME.2024.3376603 – ident: ref3 doi: 10.1126/science.aaa5417 – ident: ref18 doi: 10.1016/j.neunet.2020.05.032 – ident: ref15 doi: 10.1109/TNSRE.2021.3070327 – ident: ref12 doi: 10.1016/j.asoc.2013.10.023 – ident: ref22 doi: 10.1038/s41467-022-33611-3 – ident: ref16 doi: 10.1109/TNSRE.2022.3149654 – volume: 38 start-page: 1353 issue: 6 year: 2017 ident: ref5 article-title: Electrical somatosensory based P300 for a brain-computer interface system publication-title: Chin. J. Sci. Instrum. – ident: ref2 doi: 10.1038/nature11076 – ident: ref13 doi: 10.1016/j.eswa.2016.04.011 – ident: ref23 doi: 10.1016/j.neucom.2016.01.007 – ident: ref4 doi: 10.1007/s10489-022-04226-4 – ident: ref10 doi: 10.1109/TCE.2024.3370310 – ident: ref28 doi: 10.1016/j.csl.2015.05.005 |
SSID | ssj0014528 |
Score | 2.4320574 |
Snippet | Recent studies have demonstrated the potential application of speech imagery neural signals in brain-computer interface (BCI) technology. Text generation based... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 3442 |
SubjectTerms | Accuracy attention mechanism BCI BiLSTM Brain modeling decode Decoding EEG Electrodes Electroencephalography Feature extraction Hidden Markov models Labeling Signal processing algorithms Speech enhancement speech imagery text generation |
Title | Text Generation of Speech Imagery Based on an Enhanced CTA-BiLSTM Model Utilizing EEG Signals |
URI | https://ieeexplore.ieee.org/document/10949619 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygveWBhSLATO07GtkopiHZpKnVBUfyiFSWtUDrQX4-dNKggIbFFThxZd07uO9_ddwDcYh1qrih1ZBT6xkEJlMMFtiyiLOReRgIU2gLnwTDoj8nThE42xeplLYxSqkw-U669LGP5ciFW9qjMfOERiQJL8rlrPLeqWOs7ZECoF9YEmQYH-3VMEkX3STc2nqBHXWNcWYS9HzZoq6lKaVN6h2BYr6ZKJXlzVwV3xfoXUeO_l3sEDjboErar7XAMdlR-Ava3OAdPwUtifsewYpu2SoELDUdLpcQUPr5bQotP2DGWTUJzK8thnE_LHAHYTdpOZ_Y8SgbQ9k-bw3Exm8_W5p0wjh_gaPZqmZibYNyLk27f2fRYcAT2SeEwLCiVGhEtPMICrJWfWRIvKSKDZHWmEeMZEqH2eShCTCTXCElmvGqJpUEH_hlo5ItcnQMotTBgxLLj8IBISTKEBdeYCc4YFYK2wF0t9XRZUWmkpQuCotRoKLUaSjcaaoGmlefWc5UoL_4YvwR7dnqViXgFGsXHSl0btFDwm3KXfAEg6LpL |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9tAEB3xcSg9UApUhbawBzj04LBr78b2gQOkhgQSLnEkLpXxfpUIcBA4quC_8Ff62zprJygg9YjUm2WvRlrPWO-Nd-YNwA6zkZVGCE_HUYAJStN4UjGnIhpG0s95k0auwbl31mwP-Mm5OJ-Dp-deGGNMVXxmGu6yOsvXIzV2v8rwC495jIx_UkN5ah5-Y4Z2v9_5ge7c9f2jJG21vckQAU-xgJdeyJQQ2lJulc8xZ7cmyJ1KlVYxUjWbWxrKnKrIBjJSEeNaWkp1iGmjZhrhL0C787CIREP4dXvY8yEFF340leRE5h1MT0FpvJe2Esw9fdFAOA9j5r9AvZkxLhWKHX2AP9P918UrV41xKRvq8ZU05H_7glZgecKfyUEd8B9hzhSr8H5GVXENfqYIOKTW03ZhR0aW9G-NUZekc-MkOx7IIWK3JvgoL0hSXFZVEKSVHniHw24_7RE3Ie6aDMrh9fARbZIkOSb94S-nNb0OgzfZ3ydYKEaF-QxEW4V0y-n_yCbXmueUKWlZqGQYCqXEBnyfejm7rcVCsirJonGGEZG5iMgmEbEB685_M-tq123-4_42vGunvW7W7ZydfoElZ6quu_wKC-Xd2HxDblTKrSpCCVy8tcf_ApvnGFc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+Generation+of+Speech+Imagery+Based+on+an+Enhanced+CTA-BiLSTM+Model+Utilizing+EEG+Signals&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Pan%2C+Hongguang&rft.au=Chu%2C+Xin&rft.au=Miao%2C+Rui&rft.au=Wang%2C+Mei&rft.date=2025-05-01&rft.pub=IEEE&rft.issn=0098-3063&rft.volume=71&rft.issue=2&rft.spage=3442&rft.epage=3453&rft_id=info:doi/10.1109%2FTCE.2025.3557912&rft.externalDocID=10949619 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon |