Text Generation of Speech Imagery Based on an Enhanced CTA-BiLSTM Model Utilizing EEG Signals

Recent studies have demonstrated the potential application of speech imagery neural signals in brain-computer interface (BCI) technology. Text generation based on speech imagery offers a natural communication method for individuals with speech disabilities. However, the limitations in imagined conte...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on consumer electronics Vol. 71; no. 2; pp. 3442 - 3453
Main Authors Pan, Hongguang, Chu, Xin, Miao, Rui, Wang, Mei, Wang, Yiran, Li, Zhuoyi
Format Journal Article
LanguageEnglish
Published IEEE 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies have demonstrated the potential application of speech imagery neural signals in brain-computer interface (BCI) technology. Text generation based on speech imagery offers a natural communication method for individuals with speech disabilities. However, the limitations in imagined content and the immaturity of text generation technology currently constitute an obstacle to its applications. Therefore, this study proposes an enhanced CTA-BiLSTM model for efficient text generation utilizing speech imagery electroencephalography (EEG) signals, significantly enhancing the accuracy and fluency of text generation. Firstly, distinct from the prevailing imagination of characters and words, this study has assembled a sentence-level EEG dataset from ten subjects to facilitate communication. Subsequently, addressing the temporal dynamics characteristics and sequence dependencies of sentence signals, we employ dynamic time warping (DTW) and hidden Markov models (HMM) for accurate temporal alignment and signal annotation to generate fine-grained sentence labels. Finally, the proposed CTA-BiLSTM model leverages channel-time attention mechanism to dynamically adjust weights across channels and time, emphasizing critical features. Concurrently, the bidirectional long short-term memory (BiLSTM) network captures and utilizes long-term dependencies in the EEG signals, thereby enhancing the accuracy of the model in decoding complex temporal patterns. The experimental results demonstrate that the average sentence decoding accuracy can reach 67.50% on the self-built dataset, realizing a better evaluation accuracy and validating its potential for application.
AbstractList Recent studies have demonstrated the potential application of speech imagery neural signals in brain-computer interface (BCI) technology. Text generation based on speech imagery offers a natural communication method for individuals with speech disabilities. However, the limitations in imagined content and the immaturity of text generation technology currently constitute an obstacle to its applications. Therefore, this study proposes an enhanced CTA-BiLSTM model for efficient text generation utilizing speech imagery electroencephalography (EEG) signals, significantly enhancing the accuracy and fluency of text generation. Firstly, distinct from the prevailing imagination of characters and words, this study has assembled a sentence-level EEG dataset from ten subjects to facilitate communication. Subsequently, addressing the temporal dynamics characteristics and sequence dependencies of sentence signals, we employ dynamic time warping (DTW) and hidden Markov models (HMM) for accurate temporal alignment and signal annotation to generate fine-grained sentence labels. Finally, the proposed CTA-BiLSTM model leverages channel-time attention mechanism to dynamically adjust weights across channels and time, emphasizing critical features. Concurrently, the bidirectional long short-term memory (BiLSTM) network captures and utilizes long-term dependencies in the EEG signals, thereby enhancing the accuracy of the model in decoding complex temporal patterns. The experimental results demonstrate that the average sentence decoding accuracy can reach 67.50% on the self-built dataset, realizing a better evaluation accuracy and validating its potential for application.
Author Chu, Xin
Pan, Hongguang
Wang, Mei
Wang, Yiran
Miao, Rui
Li, Zhuoyi
Author_xml – sequence: 1
  givenname: Hongguang
  orcidid: 0000-0002-0390-6188
  surname: Pan
  fullname: Pan, Hongguang
  email: hongguangpan@163.com
  organization: College of Electrical and Control Engineering and the Xi'an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Security, Xi'an University of Science and Technology, Xi'an, China
– sequence: 2
  givenname: Xin
  surname: Chu
  fullname: Chu, Xin
  email: chuxin_029@163.com
  organization: College of Electrical and Control Engineering and the Xi'an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Security, Xi'an University of Science and Technology, Xi'an, China
– sequence: 3
  givenname: Rui
  surname: Miao
  fullname: Miao, Rui
  email: miaor@hqvt.net
  organization: Research and Development Department, Shenzhen HQVT Technology Company LTD., Shenzhen, China
– sequence: 4
  givenname: Mei
  orcidid: 0000-0001-7834-5517
  surname: Wang
  fullname: Wang, Mei
  email: wangm@xust.edu.cn
  organization: College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an, China
– sequence: 5
  givenname: Yiran
  surname: Wang
  fullname: Wang, Yiran
  email: yi_ran_wang@163.com
  organization: College of Electrical and Control Engineering and the Xi'an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Security, Xi'an University of Science and Technology, Xi'an, China
– sequence: 6
  givenname: Zhuoyi
  surname: Li
  fullname: Li, Zhuoyi
  email: zhuoyilee@163.com
  organization: School of Automation, Northwestern Polytechnic University, Xi'an, China
BookMark eNpNkDtvwjAUha2KSgXavUMH_4HQe2M7cUaIUooE6kAYq8j4Aa7AQUmG0l9PEAydjo7OY_hGZBDqYAl5RZggQvZe5sUkhlhMmBBphvEDGaIQMuIYpwMyBMhkxCBhT2TUtj8AyEUsh-S7tL8dndtgG9X5OtDa0fXJWr2ni6Pa2eZMZ6q1hvaRCrQIexV0b_NyGs38cl2u6Ko29kA3nT_4Px92tCjmdO13QR3aZ_LoerEvdx2TzUdR5p_R8mu-yKfLSCPjXZSiFsI44E7HPE3QWaYQUBqdSTROOUi3CrR0bCu1RG62DsCkwBODBiWyMYHbr27qtm2sq06NP6rmXCFUVzxVj6e64qnuePrJ223irbX_6hnPEszYBdDKYa8
CODEN ITCEDA
Cites_doi 10.1016/j.neuroscience.2023.12.001
10.1075/ijcl.2.1.07ray
10.1007/s11571-022-09819-w
10.1080/2326263X.2019.1698928
10.1109/tcss.2024.3462823
10.3389/fnins.2020.00290
10.1109/TIM.2023.3300473
10.1109/TCE.2023.3330423
10.1007/s11042-023-15664-8
10.1016/j.bspc.2021.103241
10.1109/TNSRE.2003.810426
10.1109/TNSRE.2021.3111689
10.1109/TNNLS.2018.2789927
10.1109/TCE.2024.3368569
10.1002/hbm.25136
10.1016/j.neuron.2019.10.020
10.1109/TNSRE.2023.3241846
10.1109/TBME.2024.3376603
10.1126/science.aaa5417
10.1016/j.neunet.2020.05.032
10.1109/TNSRE.2021.3070327
10.1016/j.asoc.2013.10.023
10.1038/s41467-022-33611-3
10.1109/TNSRE.2022.3149654
10.1038/nature11076
10.1016/j.eswa.2016.04.011
10.1016/j.neucom.2016.01.007
10.1007/s10489-022-04226-4
10.1109/TCE.2024.3370310
10.1016/j.csl.2015.05.005
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCE.2025.3557912
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 3453
ExternalDocumentID 10_1109_TCE_2025_3557912
10949619
Genre orig-research
GrantInformation_xml – fundername: Science Research Program of Shaanxi Educational Committee
  grantid: 23JC049
– fundername: Xi’an Science and Technology Program
  grantid: 23ZDCYJSGG0025-2022
– fundername: Shaanxi Province Qin Chuangyuan “Scientists + Engineers” Team Construction
  grantid: 2022KXJ-38
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c134t-71c55df04fc24761fe3a1018dc981dfaf07ba0c8f3b8c814dbf00d7046d1d1813
IEDL.DBID RIE
ISSN 0098-3063
IngestDate Thu Aug 21 00:34:58 EDT 2025
Wed Aug 27 07:36:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-71c55df04fc24761fe3a1018dc981dfaf07ba0c8f3b8c814dbf00d7046d1d1813
ORCID 0000-0002-0390-6188
0000-0001-7834-5517
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCE_2025_3557912
ieee_primary_10949619
PublicationCentury 2000
PublicationDate 2025-May
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May
PublicationDecade 2020
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References Li (ref5) 2017; 38
ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref6
  doi: 10.1016/j.neuroscience.2023.12.001
– ident: ref26
  doi: 10.1075/ijcl.2.1.07ray
– ident: ref11
  doi: 10.1007/s11571-022-09819-w
– ident: ref24
  doi: 10.1080/2326263X.2019.1698928
– ident: ref21
  doi: 10.1109/tcss.2024.3462823
– ident: ref25
  doi: 10.3389/fnins.2020.00290
– ident: ref31
  doi: 10.1109/TIM.2023.3300473
– ident: ref7
  doi: 10.1109/TCE.2023.3330423
– ident: ref30
  doi: 10.1007/s11042-023-15664-8
– ident: ref19
  doi: 10.1016/j.bspc.2021.103241
– ident: ref9
  doi: 10.1109/TNSRE.2003.810426
– ident: ref14
  doi: 10.1109/TNSRE.2021.3111689
– ident: ref20
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref1
  doi: 10.1109/TCE.2024.3368569
– ident: ref29
  doi: 10.1002/hbm.25136
– ident: ref27
  doi: 10.1016/j.neuron.2019.10.020
– ident: ref17
  doi: 10.1109/TNSRE.2023.3241846
– ident: ref8
  doi: 10.1109/TBME.2024.3376603
– ident: ref3
  doi: 10.1126/science.aaa5417
– ident: ref18
  doi: 10.1016/j.neunet.2020.05.032
– ident: ref15
  doi: 10.1109/TNSRE.2021.3070327
– ident: ref12
  doi: 10.1016/j.asoc.2013.10.023
– ident: ref22
  doi: 10.1038/s41467-022-33611-3
– ident: ref16
  doi: 10.1109/TNSRE.2022.3149654
– volume: 38
  start-page: 1353
  issue: 6
  year: 2017
  ident: ref5
  article-title: Electrical somatosensory based P300 for a brain-computer interface system
  publication-title: Chin. J. Sci. Instrum.
– ident: ref2
  doi: 10.1038/nature11076
– ident: ref13
  doi: 10.1016/j.eswa.2016.04.011
– ident: ref23
  doi: 10.1016/j.neucom.2016.01.007
– ident: ref4
  doi: 10.1007/s10489-022-04226-4
– ident: ref10
  doi: 10.1109/TCE.2024.3370310
– ident: ref28
  doi: 10.1016/j.csl.2015.05.005
SSID ssj0014528
Score 2.4320574
Snippet Recent studies have demonstrated the potential application of speech imagery neural signals in brain-computer interface (BCI) technology. Text generation based...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 3442
SubjectTerms Accuracy
attention mechanism
BCI
BiLSTM
Brain modeling
decode
Decoding
EEG
Electrodes
Electroencephalography
Feature extraction
Hidden Markov models
Labeling
Signal processing algorithms
Speech enhancement
speech imagery
text generation
Title Text Generation of Speech Imagery Based on an Enhanced CTA-BiLSTM Model Utilizing EEG Signals
URI https://ieeexplore.ieee.org/document/10949619
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygveWBhSLATO07GtkopiHZpKnVBUfyiFSWtUDrQX4-dNKggIbFFThxZd07uO9_ddwDcYh1qrih1ZBT6xkEJlMMFtiyiLOReRgIU2gLnwTDoj8nThE42xeplLYxSqkw-U669LGP5ciFW9qjMfOERiQJL8rlrPLeqWOs7ZECoF9YEmQYH-3VMEkX3STc2nqBHXWNcWYS9HzZoq6lKaVN6h2BYr6ZKJXlzVwV3xfoXUeO_l3sEDjboErar7XAMdlR-Ava3OAdPwUtifsewYpu2SoELDUdLpcQUPr5bQotP2DGWTUJzK8thnE_LHAHYTdpOZ_Y8SgbQ9k-bw3Exm8_W5p0wjh_gaPZqmZibYNyLk27f2fRYcAT2SeEwLCiVGhEtPMICrJWfWRIvKSKDZHWmEeMZEqH2eShCTCTXCElmvGqJpUEH_hlo5ItcnQMotTBgxLLj8IBISTKEBdeYCc4YFYK2wF0t9XRZUWmkpQuCotRoKLUaSjcaaoGmlefWc5UoL_4YvwR7dnqViXgFGsXHSl0btFDwm3KXfAEg6LpL
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9tAEB3xcSg9UApUhbawBzj04LBr78b2gQOkhgQSLnEkLpXxfpUIcBA4quC_8Ff62zprJygg9YjUm2WvRlrPWO-Nd-YNwA6zkZVGCE_HUYAJStN4UjGnIhpG0s95k0auwbl31mwP-Mm5OJ-Dp-deGGNMVXxmGu6yOsvXIzV2v8rwC495jIx_UkN5ah5-Y4Z2v9_5ge7c9f2jJG21vckQAU-xgJdeyJQQ2lJulc8xZ7cmyJ1KlVYxUjWbWxrKnKrIBjJSEeNaWkp1iGmjZhrhL0C787CIREP4dXvY8yEFF340leRE5h1MT0FpvJe2Esw9fdFAOA9j5r9AvZkxLhWKHX2AP9P918UrV41xKRvq8ZU05H_7glZgecKfyUEd8B9hzhSr8H5GVXENfqYIOKTW03ZhR0aW9G-NUZekc-MkOx7IIWK3JvgoL0hSXFZVEKSVHniHw24_7RE3Ie6aDMrh9fARbZIkOSb94S-nNb0OgzfZ3ydYKEaF-QxEW4V0y-n_yCbXmueUKWlZqGQYCqXEBnyfejm7rcVCsirJonGGEZG5iMgmEbEB685_M-tq123-4_42vGunvW7W7ZydfoElZ6quu_wKC-Xd2HxDblTKrSpCCVy8tcf_ApvnGFc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+Generation+of+Speech+Imagery+Based+on+an+Enhanced+CTA-BiLSTM+Model+Utilizing+EEG+Signals&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Pan%2C+Hongguang&rft.au=Chu%2C+Xin&rft.au=Miao%2C+Rui&rft.au=Wang%2C+Mei&rft.date=2025-05-01&rft.pub=IEEE&rft.issn=0098-3063&rft.volume=71&rft.issue=2&rft.spage=3442&rft.epage=3453&rft_id=info:doi/10.1109%2FTCE.2025.3557912&rft.externalDocID=10949619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon