MCDDT: Mirror Center Loss-Based Dual-Scale Dual-Softmax Transformer for Multisource Subjects Transfer Learning in Motor Imagery Recognition
Accurate recognition of motor imagery (MI)-based electroencephalogram (EEG) signals is crucial for the performance of brain-computer interface (BCI). Given the limited number of EEG signals from a target subject, localizing neural activity in the sensorimotor cortex of the brain and transferring kno...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 14 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate recognition of motor imagery (MI)-based electroencephalogram (EEG) signals is crucial for the performance of brain-computer interface (BCI). Given the limited number of EEG signals from a target subject, localizing neural activity in the sensorimotor cortex of the brain and transferring knowledge from source subject data with diverse distributions presented two significant challenges. In this article, we propose a mirror center loss-based dual-scale dual-Softmax transformer (MCDDT) model for multisource subjects transfer learning in MI recognition. Specifically, the mirror center loss is proposed to help the model enhance the localization ability of the neural activity, by minimizing the distance between the features with ipsilateral neural activity and maximizing that with contralateral neural activity. The dual-scale dual-Softmax transformer is introduced to adopt the different distribution of EEG signals from different source subjects, effectively transferring knowledge from these diverse sources. The proposed MCDDT is evaluated on two public datasets and the experimental results demonstrate that MCDDT achieves accuracies of 89. 64% and 90. 96%, exceeding the state-of-the-art models by 2.69% and 2.73%, respectively. Furthermore, the ablation experiments have validated the effectiveness of the dual-scale structure, dual-Softmax mechanism, and mirror center loss, respectively. |
---|---|
AbstractList | Accurate recognition of motor imagery (MI)-based electroencephalogram (EEG) signals is crucial for the performance of brain-computer interface (BCI). Given the limited number of EEG signals from a target subject, localizing neural activity in the sensorimotor cortex of the brain and transferring knowledge from source subject data with diverse distributions presented two significant challenges. In this article, we propose a mirror center loss-based dual-scale dual-Softmax transformer (MCDDT) model for multisource subjects transfer learning in MI recognition. Specifically, the mirror center loss is proposed to help the model enhance the localization ability of the neural activity, by minimizing the distance between the features with ipsilateral neural activity and maximizing that with contralateral neural activity. The dual-scale dual-Softmax transformer is introduced to adopt the different distribution of EEG signals from different source subjects, effectively transferring knowledge from these diverse sources. The proposed MCDDT is evaluated on two public datasets and the experimental results demonstrate that MCDDT achieves accuracies of 89. 64% and 90. 96%, exceeding the state-of-the-art models by 2.69% and 2.73%, respectively. Furthermore, the ablation experiments have validated the effectiveness of the dual-scale structure, dual-Softmax mechanism, and mirror center loss, respectively. |
Author | Yan, Wenyao Mao, Qi Liu, Yu Shi, Zhenghao Hei, Xinhong Li, Jundong Xue, Yanmin Luo, Jing |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0003-0465-2500 surname: Luo fullname: Luo, Jing email: luojing@xaut.edu.cn organization: Shaanxi Key Laboratory for Network Computing and Security Technology and Human-Machine Integration Intelligent Robot Shaanxi University Engineering Research Center, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China – sequence: 2 givenname: Jundong orcidid: 0009-0008-7261-3662 surname: Li fullname: Li, Jundong organization: Shaanxi Key Laboratory for Network Computing and Security Technology and Human-Machine Integration Intelligent Robot Shaanxi University Engineering Research Center, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China – sequence: 3 givenname: Qi orcidid: 0009-0006-9858-6557 surname: Mao fullname: Mao, Qi organization: Xi'an Innovation College of Yan'an University, Xi'an, Shaanxi, China – sequence: 4 givenname: Yu orcidid: 0009-0007-2478-8970 surname: Liu fullname: Liu, Yu organization: Shaanxi Key Laboratory for Network Computing and Security Technology and Human-Machine Integration Intelligent Robot Shaanxi University Engineering Research Center, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China – sequence: 5 givenname: Wenyao orcidid: 0000-0002-9746-9774 surname: Yan fullname: Yan, Wenyao organization: Xi'an Innovation College of Yan'an University, Xi'an, Shaanxi, China – sequence: 6 givenname: Yanmin orcidid: 0009-0006-4477-2573 surname: Xue fullname: Xue, Yanmin organization: School of Art and Design, Xi'an University of Technology, Xi'an, Shaanxi, China – sequence: 7 givenname: Zhenghao orcidid: 0000-0001-5291-9455 surname: Shi fullname: Shi, Zhenghao organization: Shaanxi Key Laboratory for Network Computing and Security Technology and Human-Machine Integration Intelligent Robot Shaanxi University Engineering Research Center, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China – sequence: 8 givenname: Xinhong orcidid: 0000-0002-6394-0492 surname: Hei fullname: Hei, Xinhong email: heixinhong@xaut.edu.cn organization: Shaanxi Key Laboratory for Network Computing and Security Technology and Human-Machine Integration Intelligent Robot Shaanxi University Engineering Research Center, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China |
BookMark | eNpFkF9LwzAUxYNMcJu---BDvkBnkjZt45t2_hmsCK4-lyy9HRltIkkL7jP4pc2w4NO5cH_nwDkLNDPWAEK3lKwoJeK-2pQrRhhfxVzkseAXaE45zyKRpmyG5oTQPBIJT6_QwvsjISRLk2yOfspiva4ecKmdsw4XYAZweGu9j56khwavR9lFOyU7mE7bDr38xpWTxrfW9QEPgsuxG7S3o1OAd-P-CGrwE3QOBOmMNgesDS7tEPhNLw_gTvgDlD0YPWhrrtFlKzsPN5Mu0efLc1W8Rdv3103xuI0UjZMh4pDLTAITtElJI0JJmiactFnWCNKCYjkB1cQSEranDWOiyVNG9knO4lxKxuMlIn-5yoWeDtr6y-leulNNSX0esw5j1ucx62nMYLn7s2gA-McpZQkL719blXPZ |
CODEN | IEIMAO |
Cites_doi | 10.1523/JNEUROSCI.5371-13.2015 10.3389/fnins.2023.1276067 10.3389/fnins.2012.00055 10.1109/TII.2022.3197419 10.1007/978-981-16-5540-1_33 10.1016/j.compbiomed.2016.03.004 10.1007/978-3-319-46478-7_31 10.1109/IJCNN48605.2020.9206884 10.1109/TNSRE.2019.2915801 10.1088/1741-2552/abe357 10.1109/TBME.2021.3137184 10.1007/978-3-030-67664-3_44 10.1038/d41586-024-00173-x 10.1109/TNSRE.2023.3297654 10.1109/TNSRE.2021.3059166 10.1016/S1388-2457(99)00141-8 10.1016/j.eswa.2018.08.031 10.1088/1741-2552/ac9c94 10.1016/j.neunet.2023.06.005 10.3389/fnins.2012.00039 10.1093/gigascience/giz002 10.1109/ICASSP49357.2023.10096697 10.1002/hbm.23730 10.3389/fnins.2019.01275 10.1016/j.compbiomed.2022.106420 10.1109/JBHI.2024.3450753 10.1007/s00521-016-2236-5 10.1088/1741-2552/aace8c 10.1109/TNSRE.2023.3241846 10.1016/j.compbiomed.2023.107254 10.1088/1741-2552/ab405f 10.1109/MCI.2018.2807039 10.1109/TNNLS.2023.3243339 10.1109/TNSRE.2022.3230250 10.1007/s00521-021-06352-5 10.1186/s12859-018-2365-1 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TIM.2025.3598395 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 14 |
ExternalDocumentID | 10_1109_TIM_2025_3598395 11124295 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61906152; 62376213; U21A20524 funderid: 10.13039/501100001809 – fundername: Natural Science Basic Research Program of Shaanxi grantid: 2025JC-YBQN-806 funderid: 10.13039/501100017596 – fundername: Scientific Research Program Founded by Shaanxi Provincial Education Department grantid: 23JK0556 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION |
ID | FETCH-LOGICAL-c134t-5e8a7ae291d60d955716450f77d90fec280ecd3ae42b1d229d8620b48238aa253 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Wed Aug 27 16:41:02 EDT 2025 Wed Aug 27 07:36:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c134t-5e8a7ae291d60d955716450f77d90fec280ecd3ae42b1d229d8620b48238aa253 |
ORCID | 0000-0003-0465-2500 0000-0001-5291-9455 0009-0007-2478-8970 0009-0006-9858-6557 0000-0002-6394-0492 0000-0002-9746-9774 0009-0006-4477-2573 0009-0008-7261-3662 |
PageCount | 14 |
ParticipantIDs | ieee_primary_11124295 crossref_primary_10_1109_TIM_2025_3598395 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 Loshchilov (ref38) 2017 ref19 ref18 Van der Maaten (ref41) 2008; 9 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Loshchilov (ref39) 2016 ref28 ref27 ref29 ref8 Dosovitskiy (ref35) 2020 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Wei (ref16) 2023; 32 |
References_xml | – ident: ref29 doi: 10.1523/JNEUROSCI.5371-13.2015 – ident: ref17 doi: 10.3389/fnins.2023.1276067 – ident: ref36 doi: 10.3389/fnins.2012.00055 – ident: ref13 doi: 10.1109/TII.2022.3197419 – ident: ref5 doi: 10.1007/978-981-16-5540-1_33 – ident: ref32 doi: 10.1016/j.compbiomed.2016.03.004 – ident: ref34 doi: 10.1007/978-3-319-46478-7_31 – ident: ref4 doi: 10.1109/IJCNN48605.2020.9206884 – ident: ref6 doi: 10.1109/TNSRE.2019.2915801 – ident: ref27 doi: 10.1088/1741-2552/abe357 – ident: ref10 doi: 10.1109/TBME.2021.3137184 – volume: 9 start-page: 2579 issue: 86 year: 2008 ident: ref41 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref40 doi: 10.1007/978-3-030-67664-3_44 – ident: ref1 doi: 10.1038/d41586-024-00173-x – ident: ref18 doi: 10.1109/TNSRE.2023.3297654 – ident: ref25 doi: 10.1109/TNSRE.2021.3059166 – year: 2020 ident: ref35 article-title: An image is worth 16×16 words: Transformers for image recognition at scale publication-title: arXiv:2010.11929 – ident: ref31 doi: 10.1016/S1388-2457(99)00141-8 – ident: ref19 doi: 10.1016/j.eswa.2018.08.031 – volume: 32 start-page: 154 year: 2023 ident: ref16 article-title: ADFCNN: Attention-based dual-scale fusion convolutional neural network for motor imagery brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – ident: ref21 doi: 10.1088/1741-2552/ac9c94 – ident: ref22 doi: 10.1016/j.neunet.2023.06.005 – ident: ref33 doi: 10.3389/fnins.2012.00039 – ident: ref37 doi: 10.1093/gigascience/giz002 – ident: ref2 doi: 10.1109/ICASSP49357.2023.10096697 – ident: ref9 doi: 10.1002/hbm.23730 – ident: ref20 doi: 10.3389/fnins.2019.01275 – ident: ref26 doi: 10.1016/j.compbiomed.2022.106420 – ident: ref15 doi: 10.1109/JBHI.2024.3450753 – ident: ref30 doi: 10.1007/s00521-016-2236-5 – ident: ref12 doi: 10.1088/1741-2552/aace8c – year: 2017 ident: ref38 article-title: Decoupled weight decay regularization publication-title: arXiv:1711.05101 – ident: ref24 doi: 10.1109/TNSRE.2023.3241846 – ident: ref28 doi: 10.1016/j.compbiomed.2023.107254 – ident: ref11 doi: 10.1088/1741-2552/ab405f – ident: ref7 doi: 10.1109/MCI.2018.2807039 – year: 2016 ident: ref39 article-title: SGDR: Stochastic gradient descent with warm restarts publication-title: arXiv:1608.03983 – ident: ref23 doi: 10.1109/TNNLS.2023.3243339 – ident: ref14 doi: 10.1109/TNSRE.2022.3230250 – ident: ref3 doi: 10.1007/s00521-021-06352-5 – ident: ref8 doi: 10.1186/s12859-018-2365-1 |
SSID | ssj0007647 |
Score | 2.4238966 |
Snippet | Accurate recognition of motor imagery (MI)-based electroencephalogram (EEG) signals is crucial for the performance of brain-computer interface (BCI). Given the... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 1 |
SubjectTerms | Brain modeling Brain–computer interfaces (BCIs) Convolution electroencephalogram (EEG) recognition Electroencephalography Feature extraction Location awareness mirror center loss Mirrors motor imagery (MI) Motors Neural activity Transfer learning transformer Transformers |
Title | MCDDT: Mirror Center Loss-Based Dual-Scale Dual-Softmax Transformer for Multisource Subjects Transfer Learning in Motor Imagery Recognition |
URI | https://ieeexplore.ieee.org/document/11124295 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-QwFA8qCHrYXb_wmxy8eMjYSZu28bbOrIxiPegI3ko-XmFQ26XOgPov7D-9L2mrgyB4aigvIfBL3vd7IeQoNEFikO0zDtywCGLFpNaCQZimKADjRPsIfnYdj-6iy3tx3xar-1oYAPDJZ9BzQx_Lt5WZOVfZCd5LlChSLJJFtNyaYq13tpvEUdMgs483GNWCLiYZyJPxRYaWIBc9164udE9JzMmguUdVvEw5_0muu900qSQPvdlU98zbp0aN397uL_Kj1S7p7-Y4rJEFKNfJ6lzPwXWy7HM-zfMG-ZcNhsPxKc0mdV3V1Pl5oaZXuGN2hrLN0uFMPbJbBBHaIbLsJ_VCx52yi-T4ob6It4kCUGREzrPz3BK5BVvnC52UNKvQxKcXT65xxiu96ZKXqnKT3J3_GQ9GrH2bgZl-GE2ZgFQlCrjs2ziwUghnd4mgSBIrgwIMTwMwNlQQcd23nEuLplOgoxRVBKW4CLfIUlmVsE2olQUupVUMiY6KUKQWxwIXUpHlSWF3yHGHVv63acGRe9MlkDkimztk8xbZHbLpcPigayHY_eL_Hllx0xufyj5ZmtYzOEAtY6oP_en6D-gvz6g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEQIOPEoR5ekDFw7eJk6cxNygS7ULmz1AKvUW-TGRqtIEpbsS8Bf404ydBFZISJwyiqyRpc-e94wBXiU2yi2JfS5QWJ5iprkyRnJMioIUYJabkMEv19niNP1wJs_GZvXQC4OIofgMZ54MuXzX2a0PlR3RvSSNouR1uEGKX8ZDu9ZvwZtn6TAiM6Y7TIbBlJWM1FG1LMkXFHLmB9Yl_jGJHS2086xK0Con92A97WcoJrmYbTdmZn_8Narxvzd8H-6O9iV7OxyIB3AN2324szN1cB9uhqpPe_UQfpbH83n1hpXnfd_1zEd6sWcr2jF_R9rNsflWf-GfCUYcSRLal_obqyZzl5bTh4U23iEPwEgU-djO1bjIMxzDL-y8ZWVHTj5bXvrRGd_Zp6l8qWsP4PTkfXW84OPrDNzGSbrhEgudaxQqdlnklJTe85JRk-dORQ1aUURoXaIxFSZ2QihHzlNk0oKMBK2FTB7BXtu1-BiYUw2xMjrD3KRNIgtHtCRGOnUib9whvJ7Qqr8OQzjq4LxEqiZka49sPSJ7CAcehz_rRgie_OP_S7i1qMpVvVquPz6F257VEGF5BnubfovPyebYmBfhpP0C5rLS8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MCDDT%3A+Mirror+Center+Loss-Based+Dual-Scale+Dual-Softmax+Transformer+for+Multisource+Subjects+Transfer+Learning+in+Motor+Imagery+Recognition&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Luo%2C+Jing&rft.au=Li%2C+Jundong&rft.au=Mao%2C+Qi&rft.au=Liu%2C+Yu&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2025.3598395&rft.externalDocID=11124295 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |