MCDDT: Mirror Center Loss-Based Dual-Scale Dual-Softmax Transformer for Multisource Subjects Transfer Learning in Motor Imagery Recognition

Accurate recognition of motor imagery (MI)-based electroencephalogram (EEG) signals is crucial for the performance of brain-computer interface (BCI). Given the limited number of EEG signals from a target subject, localizing neural activity in the sensorimotor cortex of the brain and transferring kno...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 14
Main Authors Luo, Jing, Li, Jundong, Mao, Qi, Liu, Yu, Yan, Wenyao, Xue, Yanmin, Shi, Zhenghao, Hei, Xinhong
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate recognition of motor imagery (MI)-based electroencephalogram (EEG) signals is crucial for the performance of brain-computer interface (BCI). Given the limited number of EEG signals from a target subject, localizing neural activity in the sensorimotor cortex of the brain and transferring knowledge from source subject data with diverse distributions presented two significant challenges. In this article, we propose a mirror center loss-based dual-scale dual-Softmax transformer (MCDDT) model for multisource subjects transfer learning in MI recognition. Specifically, the mirror center loss is proposed to help the model enhance the localization ability of the neural activity, by minimizing the distance between the features with ipsilateral neural activity and maximizing that with contralateral neural activity. The dual-scale dual-Softmax transformer is introduced to adopt the different distribution of EEG signals from different source subjects, effectively transferring knowledge from these diverse sources. The proposed MCDDT is evaluated on two public datasets and the experimental results demonstrate that MCDDT achieves accuracies of 89. 64% and 90. 96%, exceeding the state-of-the-art models by 2.69% and 2.73%, respectively. Furthermore, the ablation experiments have validated the effectiveness of the dual-scale structure, dual-Softmax mechanism, and mirror center loss, respectively.
AbstractList Accurate recognition of motor imagery (MI)-based electroencephalogram (EEG) signals is crucial for the performance of brain-computer interface (BCI). Given the limited number of EEG signals from a target subject, localizing neural activity in the sensorimotor cortex of the brain and transferring knowledge from source subject data with diverse distributions presented two significant challenges. In this article, we propose a mirror center loss-based dual-scale dual-Softmax transformer (MCDDT) model for multisource subjects transfer learning in MI recognition. Specifically, the mirror center loss is proposed to help the model enhance the localization ability of the neural activity, by minimizing the distance between the features with ipsilateral neural activity and maximizing that with contralateral neural activity. The dual-scale dual-Softmax transformer is introduced to adopt the different distribution of EEG signals from different source subjects, effectively transferring knowledge from these diverse sources. The proposed MCDDT is evaluated on two public datasets and the experimental results demonstrate that MCDDT achieves accuracies of 89. 64% and 90. 96%, exceeding the state-of-the-art models by 2.69% and 2.73%, respectively. Furthermore, the ablation experiments have validated the effectiveness of the dual-scale structure, dual-Softmax mechanism, and mirror center loss, respectively.
Author Yan, Wenyao
Mao, Qi
Liu, Yu
Shi, Zhenghao
Hei, Xinhong
Li, Jundong
Xue, Yanmin
Luo, Jing
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0003-0465-2500
  surname: Luo
  fullname: Luo, Jing
  email: luojing@xaut.edu.cn
  organization: Shaanxi Key Laboratory for Network Computing and Security Technology and Human-Machine Integration Intelligent Robot Shaanxi University Engineering Research Center, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China
– sequence: 2
  givenname: Jundong
  orcidid: 0009-0008-7261-3662
  surname: Li
  fullname: Li, Jundong
  organization: Shaanxi Key Laboratory for Network Computing and Security Technology and Human-Machine Integration Intelligent Robot Shaanxi University Engineering Research Center, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China
– sequence: 3
  givenname: Qi
  orcidid: 0009-0006-9858-6557
  surname: Mao
  fullname: Mao, Qi
  organization: Xi'an Innovation College of Yan'an University, Xi'an, Shaanxi, China
– sequence: 4
  givenname: Yu
  orcidid: 0009-0007-2478-8970
  surname: Liu
  fullname: Liu, Yu
  organization: Shaanxi Key Laboratory for Network Computing and Security Technology and Human-Machine Integration Intelligent Robot Shaanxi University Engineering Research Center, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China
– sequence: 5
  givenname: Wenyao
  orcidid: 0000-0002-9746-9774
  surname: Yan
  fullname: Yan, Wenyao
  organization: Xi'an Innovation College of Yan'an University, Xi'an, Shaanxi, China
– sequence: 6
  givenname: Yanmin
  orcidid: 0009-0006-4477-2573
  surname: Xue
  fullname: Xue, Yanmin
  organization: School of Art and Design, Xi'an University of Technology, Xi'an, Shaanxi, China
– sequence: 7
  givenname: Zhenghao
  orcidid: 0000-0001-5291-9455
  surname: Shi
  fullname: Shi, Zhenghao
  organization: Shaanxi Key Laboratory for Network Computing and Security Technology and Human-Machine Integration Intelligent Robot Shaanxi University Engineering Research Center, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China
– sequence: 8
  givenname: Xinhong
  orcidid: 0000-0002-6394-0492
  surname: Hei
  fullname: Hei, Xinhong
  email: heixinhong@xaut.edu.cn
  organization: Shaanxi Key Laboratory for Network Computing and Security Technology and Human-Machine Integration Intelligent Robot Shaanxi University Engineering Research Center, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China
BookMark eNpFkF9LwzAUxYNMcJu---BDvkBnkjZt45t2_hmsCK4-lyy9HRltIkkL7jP4pc2w4NO5cH_nwDkLNDPWAEK3lKwoJeK-2pQrRhhfxVzkseAXaE45zyKRpmyG5oTQPBIJT6_QwvsjISRLk2yOfspiva4ecKmdsw4XYAZweGu9j56khwavR9lFOyU7mE7bDr38xpWTxrfW9QEPgsuxG7S3o1OAd-P-CGrwE3QOBOmMNgesDS7tEPhNLw_gTvgDlD0YPWhrrtFlKzsPN5Mu0efLc1W8Rdv3103xuI0UjZMh4pDLTAITtElJI0JJmiactFnWCNKCYjkB1cQSEranDWOiyVNG9knO4lxKxuMlIn-5yoWeDtr6y-leulNNSX0esw5j1ucx62nMYLn7s2gA-McpZQkL719blXPZ
CODEN IEIMAO
Cites_doi 10.1523/JNEUROSCI.5371-13.2015
10.3389/fnins.2023.1276067
10.3389/fnins.2012.00055
10.1109/TII.2022.3197419
10.1007/978-981-16-5540-1_33
10.1016/j.compbiomed.2016.03.004
10.1007/978-3-319-46478-7_31
10.1109/IJCNN48605.2020.9206884
10.1109/TNSRE.2019.2915801
10.1088/1741-2552/abe357
10.1109/TBME.2021.3137184
10.1007/978-3-030-67664-3_44
10.1038/d41586-024-00173-x
10.1109/TNSRE.2023.3297654
10.1109/TNSRE.2021.3059166
10.1016/S1388-2457(99)00141-8
10.1016/j.eswa.2018.08.031
10.1088/1741-2552/ac9c94
10.1016/j.neunet.2023.06.005
10.3389/fnins.2012.00039
10.1093/gigascience/giz002
10.1109/ICASSP49357.2023.10096697
10.1002/hbm.23730
10.3389/fnins.2019.01275
10.1016/j.compbiomed.2022.106420
10.1109/JBHI.2024.3450753
10.1007/s00521-016-2236-5
10.1088/1741-2552/aace8c
10.1109/TNSRE.2023.3241846
10.1016/j.compbiomed.2023.107254
10.1088/1741-2552/ab405f
10.1109/MCI.2018.2807039
10.1109/TNNLS.2023.3243339
10.1109/TNSRE.2022.3230250
10.1007/s00521-021-06352-5
10.1186/s12859-018-2365-1
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIM.2025.3598395
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 14
ExternalDocumentID 10_1109_TIM_2025_3598395
11124295
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61906152; 62376213; U21A20524
  funderid: 10.13039/501100001809
– fundername: Natural Science Basic Research Program of Shaanxi
  grantid: 2025JC-YBQN-806
  funderid: 10.13039/501100017596
– fundername: Scientific Research Program Founded by Shaanxi Provincial Education Department
  grantid: 23JK0556
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
ID FETCH-LOGICAL-c134t-5e8a7ae291d60d955716450f77d90fec280ecd3ae42b1d229d8620b48238aa253
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Wed Aug 27 16:41:02 EDT 2025
Wed Aug 27 07:36:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-5e8a7ae291d60d955716450f77d90fec280ecd3ae42b1d229d8620b48238aa253
ORCID 0000-0003-0465-2500
0000-0001-5291-9455
0009-0007-2478-8970
0009-0006-9858-6557
0000-0002-6394-0492
0000-0002-9746-9774
0009-0006-4477-2573
0009-0008-7261-3662
PageCount 14
ParticipantIDs ieee_primary_11124295
crossref_primary_10_1109_TIM_2025_3598395
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
Loshchilov (ref38) 2017
ref19
ref18
Van der Maaten (ref41) 2008; 9
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Loshchilov (ref39) 2016
ref28
ref27
ref29
ref8
Dosovitskiy (ref35) 2020
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Wei (ref16) 2023; 32
References_xml – ident: ref29
  doi: 10.1523/JNEUROSCI.5371-13.2015
– ident: ref17
  doi: 10.3389/fnins.2023.1276067
– ident: ref36
  doi: 10.3389/fnins.2012.00055
– ident: ref13
  doi: 10.1109/TII.2022.3197419
– ident: ref5
  doi: 10.1007/978-981-16-5540-1_33
– ident: ref32
  doi: 10.1016/j.compbiomed.2016.03.004
– ident: ref34
  doi: 10.1007/978-3-319-46478-7_31
– ident: ref4
  doi: 10.1109/IJCNN48605.2020.9206884
– ident: ref6
  doi: 10.1109/TNSRE.2019.2915801
– ident: ref27
  doi: 10.1088/1741-2552/abe357
– ident: ref10
  doi: 10.1109/TBME.2021.3137184
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: ref41
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref40
  doi: 10.1007/978-3-030-67664-3_44
– ident: ref1
  doi: 10.1038/d41586-024-00173-x
– ident: ref18
  doi: 10.1109/TNSRE.2023.3297654
– ident: ref25
  doi: 10.1109/TNSRE.2021.3059166
– year: 2020
  ident: ref35
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– ident: ref31
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref19
  doi: 10.1016/j.eswa.2018.08.031
– volume: 32
  start-page: 154
  year: 2023
  ident: ref16
  article-title: ADFCNN: Attention-based dual-scale fusion convolutional neural network for motor imagery brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– ident: ref21
  doi: 10.1088/1741-2552/ac9c94
– ident: ref22
  doi: 10.1016/j.neunet.2023.06.005
– ident: ref33
  doi: 10.3389/fnins.2012.00039
– ident: ref37
  doi: 10.1093/gigascience/giz002
– ident: ref2
  doi: 10.1109/ICASSP49357.2023.10096697
– ident: ref9
  doi: 10.1002/hbm.23730
– ident: ref20
  doi: 10.3389/fnins.2019.01275
– ident: ref26
  doi: 10.1016/j.compbiomed.2022.106420
– ident: ref15
  doi: 10.1109/JBHI.2024.3450753
– ident: ref30
  doi: 10.1007/s00521-016-2236-5
– ident: ref12
  doi: 10.1088/1741-2552/aace8c
– year: 2017
  ident: ref38
  article-title: Decoupled weight decay regularization
  publication-title: arXiv:1711.05101
– ident: ref24
  doi: 10.1109/TNSRE.2023.3241846
– ident: ref28
  doi: 10.1016/j.compbiomed.2023.107254
– ident: ref11
  doi: 10.1088/1741-2552/ab405f
– ident: ref7
  doi: 10.1109/MCI.2018.2807039
– year: 2016
  ident: ref39
  article-title: SGDR: Stochastic gradient descent with warm restarts
  publication-title: arXiv:1608.03983
– ident: ref23
  doi: 10.1109/TNNLS.2023.3243339
– ident: ref14
  doi: 10.1109/TNSRE.2022.3230250
– ident: ref3
  doi: 10.1007/s00521-021-06352-5
– ident: ref8
  doi: 10.1186/s12859-018-2365-1
SSID ssj0007647
Score 2.4238966
Snippet Accurate recognition of motor imagery (MI)-based electroencephalogram (EEG) signals is crucial for the performance of brain-computer interface (BCI). Given the...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Brain modeling
Brain–computer interfaces (BCIs)
Convolution
electroencephalogram (EEG) recognition
Electroencephalography
Feature extraction
Location awareness
mirror center loss
Mirrors
motor imagery (MI)
Motors
Neural activity
Transfer learning
transformer
Transformers
Title MCDDT: Mirror Center Loss-Based Dual-Scale Dual-Softmax Transformer for Multisource Subjects Transfer Learning in Motor Imagery Recognition
URI https://ieeexplore.ieee.org/document/11124295
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-QwFA8qCHrYXb_wmxy8eMjYSZu28bbOrIxiPegI3ko-XmFQ26XOgPov7D-9L2mrgyB4aigvIfBL3vd7IeQoNEFikO0zDtywCGLFpNaCQZimKADjRPsIfnYdj-6iy3tx3xar-1oYAPDJZ9BzQx_Lt5WZOVfZCd5LlChSLJJFtNyaYq13tpvEUdMgs483GNWCLiYZyJPxRYaWIBc9164udE9JzMmguUdVvEw5_0muu900qSQPvdlU98zbp0aN397uL_Kj1S7p7-Y4rJEFKNfJ6lzPwXWy7HM-zfMG-ZcNhsPxKc0mdV3V1Pl5oaZXuGN2hrLN0uFMPbJbBBHaIbLsJ_VCx52yi-T4ob6It4kCUGREzrPz3BK5BVvnC52UNKvQxKcXT65xxiu96ZKXqnKT3J3_GQ9GrH2bgZl-GE2ZgFQlCrjs2ziwUghnd4mgSBIrgwIMTwMwNlQQcd23nEuLplOgoxRVBKW4CLfIUlmVsE2olQUupVUMiY6KUKQWxwIXUpHlSWF3yHGHVv63acGRe9MlkDkimztk8xbZHbLpcPigayHY_eL_Hllx0xufyj5ZmtYzOEAtY6oP_en6D-gvz6g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEQIOPEoR5ekDFw7eJk6cxNygS7ULmz1AKvUW-TGRqtIEpbsS8Bf404ydBFZISJwyiqyRpc-e94wBXiU2yi2JfS5QWJ5iprkyRnJMioIUYJabkMEv19niNP1wJs_GZvXQC4OIofgMZ54MuXzX2a0PlR3RvSSNouR1uEGKX8ZDu9ZvwZtn6TAiM6Y7TIbBlJWM1FG1LMkXFHLmB9Yl_jGJHS2086xK0Con92A97WcoJrmYbTdmZn_8Narxvzd8H-6O9iV7OxyIB3AN2324szN1cB9uhqpPe_UQfpbH83n1hpXnfd_1zEd6sWcr2jF_R9rNsflWf-GfCUYcSRLal_obqyZzl5bTh4U23iEPwEgU-djO1bjIMxzDL-y8ZWVHTj5bXvrRGd_Zp6l8qWsP4PTkfXW84OPrDNzGSbrhEgudaxQqdlnklJTe85JRk-dORQ1aUURoXaIxFSZ2QihHzlNk0oKMBK2FTB7BXtu1-BiYUw2xMjrD3KRNIgtHtCRGOnUib9whvJ7Qqr8OQzjq4LxEqiZka49sPSJ7CAcehz_rRgie_OP_S7i1qMpVvVquPz6F257VEGF5BnubfovPyebYmBfhpP0C5rLS8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MCDDT%3A+Mirror+Center+Loss-Based+Dual-Scale+Dual-Softmax+Transformer+for+Multisource+Subjects+Transfer+Learning+in+Motor+Imagery+Recognition&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Luo%2C+Jing&rft.au=Li%2C+Jundong&rft.au=Mao%2C+Qi&rft.au=Liu%2C+Yu&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2025.3598395&rft.externalDocID=11124295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon