Robust Vital Signs Monitoring of Speaking Subjects Through mmWave Radar

Vital signs measurement using radio frequency (RF) signals, particularly mmWave-based methods, has gained widespread attention. Speaking, which modifies the pattern of chest wall motion during phonation, leads to intricate couplings with vital signals in both the temporal and spectral domains. Respi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 15
Main Authors Liu, Zhenyu, Ye, Yingjie, Jiang, Danke, Tu, Silong
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2025.3588997

Cover

Loading…
Abstract Vital signs measurement using radio frequency (RF) signals, particularly mmWave-based methods, has gained widespread attention. Speaking, which modifies the pattern of chest wall motion during phonation, leads to intricate couplings with vital signals in both the temporal and spectral domains. Respiratory spectrum broadening and phase noise interference are challenges in vital signs monitoring of speaking subjects. To tackle these issues, a novel method is proposed. First, a dynamic composite model of chest wall motion is developed, and the inherent challenges in vital signs monitoring of speaking subjects are analyzed in detail. Second, a recursive autocorrelation periodic enhancement (RAPE) algorithm is proposed, leveraging the periodicity of respiration and the intermittency of speech to enhance the respiratory signal. A recursive strategy is employed, which incorporates an adaptive termination mechanism based on Shannon entropy and spectral concentration. Third, an adaptive low-rank decomposition (ALRD) algorithm is proposed, exploiting the low-rank property of the Hankel matrix from the heartbeat signal to transform the denoising challenge into a matrix decomposition task. It also models phase noise as energy-bounded interference and adaptively selects the optimal parameter, achieving high-quality separation of weak heartbeat signals from phase noise. Extensive experimental results demonstrate that the proposed method facilitates accurate and reliable vital signs monitoring for speaking subjects. This study bridges a critical gap in the current body of noncontact vital signs measurement methods.
AbstractList Vital signs measurement using radio frequency (RF) signals, particularly mmWave-based methods, has gained widespread attention. Speaking, which modifies the pattern of chest wall motion during phonation, leads to intricate couplings with vital signals in both the temporal and spectral domains. Respiratory spectrum broadening and phase noise interference are challenges in vital signs monitoring of speaking subjects. To tackle these issues, a novel method is proposed. First, a dynamic composite model of chest wall motion is developed, and the inherent challenges in vital signs monitoring of speaking subjects are analyzed in detail. Second, a recursive autocorrelation periodic enhancement (RAPE) algorithm is proposed, leveraging the periodicity of respiration and the intermittency of speech to enhance the respiratory signal. A recursive strategy is employed, which incorporates an adaptive termination mechanism based on Shannon entropy and spectral concentration. Third, an adaptive low-rank decomposition (ALRD) algorithm is proposed, exploiting the low-rank property of the Hankel matrix from the heartbeat signal to transform the denoising challenge into a matrix decomposition task. It also models phase noise as energy-bounded interference and adaptively selects the optimal parameter, achieving high-quality separation of weak heartbeat signals from phase noise. Extensive experimental results demonstrate that the proposed method facilitates accurate and reliable vital signs monitoring for speaking subjects. This study bridges a critical gap in the current body of noncontact vital signs measurement methods.
Author Tu, Silong
Jiang, Danke
Liu, Zhenyu
Ye, Yingjie
Author_xml – sequence: 1
  givenname: Zhenyu
  orcidid: 0000-0002-4205-6067
  surname: Liu
  fullname: Liu, Zhenyu
  email: zhenyuliu@gdut.edu.cn
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Yingjie
  orcidid: 0009-0000-7530-7304
  surname: Ye
  fullname: Ye, Yingjie
  email: 2112303089@mail2.gdut.edu.cn
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Danke
  orcidid: 0009-0007-3851-1745
  surname: Jiang
  fullname: Jiang, Danke
  email: 2112303200@mail2.gdut.edu.cn
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Silong
  orcidid: 0009-0000-5649-5231
  surname: Tu
  fullname: Tu, Silong
  email: 2112203154@mail2.gdut.edu.cn
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
BookMark eNpFkE1PAjEURRuDiYjuXbjoHxh8nX7MdGmIIgnEBFCXk9dpC4MwJe1g4r8XAomrexf33MW5Jb02tI6QBwZDxkA_LSezYQ65HHJZlloXV6TPpCwyrVTeI30AVmZaSHVDblPaAEChRNEn43kwh9TRz6bDLV00qzbRWWibLsSmXdHg6WLv8PvUFwezcXWX6HIdw2G1prvdF_44OkeL8Y5ce9wmd3_JAfl4fVmO3rLp-3gyep5mNeOiy6T1VhgGVqJVmitfKJ3XnFkOhlkhRKlBoUchjK9lkXtkhhlrpNOIuS75gMD5t44hpeh8tY_NDuNvxaA6iaiOIqqTiOoi4og8npHGOfc_Z1CCAMn_AEtfXCo
CODEN IEIMAO
Cites_doi 10.1109/JIOT.2022.3204779
10.1137/090761793
10.1109/TSP.2022.3147863
10.1109/TIM.2022.3190035
10.1109/TMTT.2022.3222384
10.1109/TIM.2023.3345909
10.1109/TMTT.2024.3430513
10.1016/j.neunet.2021.03.029
10.1016/j.jvoice.2021.09.005
10.1109/TIM.2023.3334353
10.1109/TIM.2024.3436091
10.1109/TIM.2024.3420356
10.1109/TIM.2024.3450071
10.1109/TIM.2021.3132924
10.1109/JIOT.2024.3367932
10.1109/TMTT.2021.3099343
10.1109/JSEN.2021.3074510
10.1109/JIOT.2024.3449408
10.1109/TIM.2022.3208266
10.1109/TNSRE.2021.3054733
10.1016/j.measurement.2024.116144
10.1111/nyas.14672
10.1109/JERM.2022.3140900
10.1109/TMTT.2021.3102233
10.1109/JSEN.2024.3441639
10.1109/TIM.2024.3381692
10.1109/TIM.2022.3164145
10.1109/TIM.2024.3379391
10.1109/TMTT.2018.2852625
10.1038/s41928-019-0258-6
10.1145/1970392.1970395
10.1109/JSEN.2024.3494755
10.1109/JIOT.2021.3075167
10.1109/TIM.2023.3312477
10.1109/TIM.2024.3378253
10.1109/JSEN.2023.3312513
10.1109/TIM.2024.3425488
10.1109/TMTT.2021.3049514
10.1016/j.measurement.2023.113715
10.1016/j.bspc.2023.105360
10.1109/TIM.2022.3164129
10.1109/TIM.2023.3274171
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIM.2025.3588997
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 15
ExternalDocumentID 10_1109_TIM_2025_3588997
11080405
Genre orig-research
GrantInformation_xml – fundername: Guangdong Province Social Development Science and Technology Collaborative Innovation Project
  grantid: 2023A1111120003
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515012873
  funderid: 10.13039/501100021171
– fundername: Foshan Social Science and Technology Research Project
  grantid: 2220001018608
  funderid: 10.13039/501100019054
– fundername: Guangzhou Key Research and Development Project
  grantid: 2023B01J0011
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c134t-5dfd4b10d5ad6936f7692c31d30b1d4448906afa44bfc572fa1b1bdb5e9aa2983
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Thu Aug 14 00:17:14 EDT 2025
Wed Aug 20 06:20:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-5dfd4b10d5ad6936f7692c31d30b1d4448906afa44bfc572fa1b1bdb5e9aa2983
ORCID 0009-0007-3851-1745
0009-0000-7530-7304
0009-0000-5649-5231
0000-0002-4205-6067
PageCount 15
ParticipantIDs ieee_primary_11080405
crossref_primary_10_1109_TIM_2025_3588997
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
(ref1) 2024
ref5
ref40
Nallanthighal (ref30) 2021; 141
References_xml – ident: ref12
  doi: 10.1109/JIOT.2022.3204779
– ident: ref33
  doi: 10.1137/090761793
– ident: ref32
  doi: 10.1109/TSP.2022.3147863
– ident: ref26
  doi: 10.1109/TIM.2022.3190035
– ident: ref8
  doi: 10.1109/TMTT.2022.3222384
– ident: ref16
  doi: 10.1109/TIM.2023.3345909
– ident: ref13
  doi: 10.1109/TMTT.2024.3430513
– volume: 141
  start-page: 211
  year: 2021
  ident: ref30
  article-title: Deep learning architectures for estimating breathing signal and respiratory parameters from speech recordings
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.03.029
– ident: ref25
  doi: 10.1016/j.jvoice.2021.09.005
– ident: ref17
  doi: 10.1109/TIM.2023.3334353
– ident: ref39
  doi: 10.1109/TIM.2024.3436091
– ident: ref20
  doi: 10.1109/TIM.2024.3420356
– ident: ref23
  doi: 10.1109/TIM.2024.3450071
– ident: ref38
  doi: 10.1109/TIM.2021.3132924
– ident: ref11
  doi: 10.1109/JIOT.2024.3367932
– ident: ref3
  doi: 10.1109/TMTT.2021.3099343
– ident: ref18
  doi: 10.1109/JSEN.2021.3074510
– ident: ref35
  doi: 10.1109/JIOT.2024.3449408
– ident: ref7
  doi: 10.1109/TIM.2022.3208266
– ident: ref36
  doi: 10.1109/TNSRE.2021.3054733
– ident: ref42
  doi: 10.1016/j.measurement.2024.116144
– ident: ref24
  doi: 10.1111/nyas.14672
– ident: ref14
  doi: 10.1109/JERM.2022.3140900
– ident: ref22
  doi: 10.1109/TMTT.2021.3102233
– ident: ref37
  doi: 10.1109/JSEN.2024.3441639
– volume-title: The Top 10 Causes of Death
  year: 2024
  ident: ref1
– ident: ref2
  doi: 10.1109/TIM.2024.3381692
– ident: ref6
  doi: 10.1109/TIM.2022.3164145
– ident: ref40
  doi: 10.1109/TIM.2024.3379391
– ident: ref41
  doi: 10.1109/TMTT.2018.2852625
– ident: ref4
  doi: 10.1038/s41928-019-0258-6
– ident: ref34
  doi: 10.1145/1970392.1970395
– ident: ref10
  doi: 10.1109/JSEN.2024.3494755
– ident: ref9
  doi: 10.1109/JIOT.2021.3075167
– ident: ref21
  doi: 10.1109/TIM.2023.3312477
– ident: ref15
  doi: 10.1109/TIM.2024.3378253
– ident: ref43
  doi: 10.1109/JSEN.2023.3312513
– ident: ref29
  doi: 10.1109/TIM.2024.3425488
– ident: ref31
  doi: 10.1109/TMTT.2021.3049514
– ident: ref5
  doi: 10.1016/j.measurement.2023.113715
– ident: ref19
  doi: 10.1016/j.bspc.2023.105360
– ident: ref27
  doi: 10.1109/TIM.2022.3164129
– ident: ref28
  doi: 10.1109/TIM.2023.3274171
SSID ssj0007647
Score 2.423824
Snippet Vital signs measurement using radio frequency (RF) signals, particularly mmWave-based methods, has gained widespread attention. Speaking, which modifies the...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Analytical models
Autocorrelation
Chirp
frequency-modulated continuous wave (FMCW) radar
Heart beat
Heart rate variability
Interference
low-rank decomposition (LRD)
millimeter wave
Monitoring
Phase noise
Radar
Reliability
Time-frequency analysis
vital signs monitoring
Title Robust Vital Signs Monitoring of Speaking Subjects Through mmWave Radar
URI https://ieeexplore.ieee.org/document/11080405
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5WEPTgo1asL3Lw4mHrZvPY5ihirYIebKvelkweImIr3a0Hf73J7larIHhblgTCzCSZbzIzH0LHOtbCJhBqnSCOmAcYkXdiVZTqhKZgqOEuAMWbW9EfsetH_lgXq5e1MNbaMvnMdsJn-ZZvJnoWQmWnIWXdGx1voIZHblWx1texmwpWNcgkfgd7t2D-JhnL0-HVjUeCCe9Q3vX4Iv1xBy2QqpR3Sm8D3c5XU6WSvHRmBXT0x69Gjf9e7iZar71LfFaZwxZasuMmWlvoOdhEK2XOp8630eXdBGZ5ge8DbwgePD-Nc1xt8TASTxwevNmSrAr74yXEa3I8rGh98Ovrg3q3-E4ZNW2hUe9ieN6Pal6FSBPKiogbZxiQ2HBlhKTCpUImmhJDYyCGecAmY6GcYgyc5mniFAECBriVSiWyS3fQ8ngytrsIW-AUrDBEOMekll3QoMDFXXAShCZtdDKXdPZWtc_IStgRy8xrJQtayWqttFEryPB7XC2-vT_-76PVML2Khxyg5WI6s4feQyjgqLSMTx75uC4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RoKrlAJSHGl71oZceNqzXj42PCAEJJTlAKNxWHj-qCpEgsuHQX197d0MDEhI3y7Isa2bsmW88D4DvJjXSZRhznTBNeAAYSTBidZKbjOVomRU-AsXBUPau-fmtuG2S1atcGOdcFXzmOnFY_eXbiZlFV9lhDFkPQic-wHJQ_ILW6VrPD28ueV0ik4Y7HAyD-a9kqg5H_UHAgpnoMNENCCN_oYUW2qpUWuV0DYbz89TBJHedWYkd8_dVqcZ3H3gdVhv7khzVAvEFltx4A1YWqg5uwMcq6tNMN-HscoKzaUl-xc4h5OrP7_GU1Jc8riQTT64eXNWuioQHJnpspmRUN_Yh9_c3-smRS2314xZcn56MjntJ01khMZTxMhHWW440tUJbqZj0uVSZYdSyFKnlAbKpVGqvOUdvRJ55TZGiReGU1pnqsm1ojSdj9xWIQ8HQSUul91wZ1UWDGn3aRa9QGtqGH3NKFw91AY2iAh6pKgJXisiVouFKG7YiDf-va8i388b8N_jUGw0uiov-8OcufI5b1d6RPWiVjzO3H-yFEg8qKfkH6pS7dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Vital+Signs+Monitoring+of+Speaking+Subjects+Through+mmWave+Radar&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Liu%2C+Zhenyu&rft.au=Ye%2C+Yingjie&rft.au=Jiang%2C+Danke&rft.au=Tu%2C+Silong&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTIM.2025.3588997&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3588997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon