Robust Vital Signs Monitoring of Speaking Subjects Through mmWave Radar
Vital signs measurement using radio frequency (RF) signals, particularly mmWave-based methods, has gained widespread attention. Speaking, which modifies the pattern of chest wall motion during phonation, leads to intricate couplings with vital signals in both the temporal and spectral domains. Respi...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2025.3588997 |
Cover
Loading…
Abstract | Vital signs measurement using radio frequency (RF) signals, particularly mmWave-based methods, has gained widespread attention. Speaking, which modifies the pattern of chest wall motion during phonation, leads to intricate couplings with vital signals in both the temporal and spectral domains. Respiratory spectrum broadening and phase noise interference are challenges in vital signs monitoring of speaking subjects. To tackle these issues, a novel method is proposed. First, a dynamic composite model of chest wall motion is developed, and the inherent challenges in vital signs monitoring of speaking subjects are analyzed in detail. Second, a recursive autocorrelation periodic enhancement (RAPE) algorithm is proposed, leveraging the periodicity of respiration and the intermittency of speech to enhance the respiratory signal. A recursive strategy is employed, which incorporates an adaptive termination mechanism based on Shannon entropy and spectral concentration. Third, an adaptive low-rank decomposition (ALRD) algorithm is proposed, exploiting the low-rank property of the Hankel matrix from the heartbeat signal to transform the denoising challenge into a matrix decomposition task. It also models phase noise as energy-bounded interference and adaptively selects the optimal parameter, achieving high-quality separation of weak heartbeat signals from phase noise. Extensive experimental results demonstrate that the proposed method facilitates accurate and reliable vital signs monitoring for speaking subjects. This study bridges a critical gap in the current body of noncontact vital signs measurement methods. |
---|---|
AbstractList | Vital signs measurement using radio frequency (RF) signals, particularly mmWave-based methods, has gained widespread attention. Speaking, which modifies the pattern of chest wall motion during phonation, leads to intricate couplings with vital signals in both the temporal and spectral domains. Respiratory spectrum broadening and phase noise interference are challenges in vital signs monitoring of speaking subjects. To tackle these issues, a novel method is proposed. First, a dynamic composite model of chest wall motion is developed, and the inherent challenges in vital signs monitoring of speaking subjects are analyzed in detail. Second, a recursive autocorrelation periodic enhancement (RAPE) algorithm is proposed, leveraging the periodicity of respiration and the intermittency of speech to enhance the respiratory signal. A recursive strategy is employed, which incorporates an adaptive termination mechanism based on Shannon entropy and spectral concentration. Third, an adaptive low-rank decomposition (ALRD) algorithm is proposed, exploiting the low-rank property of the Hankel matrix from the heartbeat signal to transform the denoising challenge into a matrix decomposition task. It also models phase noise as energy-bounded interference and adaptively selects the optimal parameter, achieving high-quality separation of weak heartbeat signals from phase noise. Extensive experimental results demonstrate that the proposed method facilitates accurate and reliable vital signs monitoring for speaking subjects. This study bridges a critical gap in the current body of noncontact vital signs measurement methods. |
Author | Tu, Silong Jiang, Danke Liu, Zhenyu Ye, Yingjie |
Author_xml | – sequence: 1 givenname: Zhenyu orcidid: 0000-0002-4205-6067 surname: Liu fullname: Liu, Zhenyu email: zhenyuliu@gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: Yingjie orcidid: 0009-0000-7530-7304 surname: Ye fullname: Ye, Yingjie email: 2112303089@mail2.gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China – sequence: 3 givenname: Danke orcidid: 0009-0007-3851-1745 surname: Jiang fullname: Jiang, Danke email: 2112303200@mail2.gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Silong orcidid: 0009-0000-5649-5231 surname: Tu fullname: Tu, Silong email: 2112203154@mail2.gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China |
BookMark | eNpFkE1PAjEURRuDiYjuXbjoHxh8nX7MdGmIIgnEBFCXk9dpC4MwJe1g4r8XAomrexf33MW5Jb02tI6QBwZDxkA_LSezYQ65HHJZlloXV6TPpCwyrVTeI30AVmZaSHVDblPaAEChRNEn43kwh9TRz6bDLV00qzbRWWibLsSmXdHg6WLv8PvUFwezcXWX6HIdw2G1prvdF_44OkeL8Y5ce9wmd3_JAfl4fVmO3rLp-3gyep5mNeOiy6T1VhgGVqJVmitfKJ3XnFkOhlkhRKlBoUchjK9lkXtkhhlrpNOIuS75gMD5t44hpeh8tY_NDuNvxaA6iaiOIqqTiOoi4og8npHGOfc_Z1CCAMn_AEtfXCo |
CODEN | IEIMAO |
Cites_doi | 10.1109/JIOT.2022.3204779 10.1137/090761793 10.1109/TSP.2022.3147863 10.1109/TIM.2022.3190035 10.1109/TMTT.2022.3222384 10.1109/TIM.2023.3345909 10.1109/TMTT.2024.3430513 10.1016/j.neunet.2021.03.029 10.1016/j.jvoice.2021.09.005 10.1109/TIM.2023.3334353 10.1109/TIM.2024.3436091 10.1109/TIM.2024.3420356 10.1109/TIM.2024.3450071 10.1109/TIM.2021.3132924 10.1109/JIOT.2024.3367932 10.1109/TMTT.2021.3099343 10.1109/JSEN.2021.3074510 10.1109/JIOT.2024.3449408 10.1109/TIM.2022.3208266 10.1109/TNSRE.2021.3054733 10.1016/j.measurement.2024.116144 10.1111/nyas.14672 10.1109/JERM.2022.3140900 10.1109/TMTT.2021.3102233 10.1109/JSEN.2024.3441639 10.1109/TIM.2024.3381692 10.1109/TIM.2022.3164145 10.1109/TIM.2024.3379391 10.1109/TMTT.2018.2852625 10.1038/s41928-019-0258-6 10.1145/1970392.1970395 10.1109/JSEN.2024.3494755 10.1109/JIOT.2021.3075167 10.1109/TIM.2023.3312477 10.1109/TIM.2024.3378253 10.1109/JSEN.2023.3312513 10.1109/TIM.2024.3425488 10.1109/TMTT.2021.3049514 10.1016/j.measurement.2023.113715 10.1016/j.bspc.2023.105360 10.1109/TIM.2022.3164129 10.1109/TIM.2023.3274171 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TIM.2025.3588997 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 15 |
ExternalDocumentID | 10_1109_TIM_2025_3588997 11080405 |
Genre | orig-research |
GrantInformation_xml | – fundername: Guangdong Province Social Development Science and Technology Collaborative Innovation Project grantid: 2023A1111120003 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2023A1515012873 funderid: 10.13039/501100021171 – fundername: Foshan Social Science and Technology Research Project grantid: 2220001018608 funderid: 10.13039/501100019054 – fundername: Guangzhou Key Research and Development Project grantid: 2023B01J0011 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c134t-5dfd4b10d5ad6936f7692c31d30b1d4448906afa44bfc572fa1b1bdb5e9aa2983 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Thu Aug 14 00:17:14 EDT 2025 Wed Aug 20 06:20:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c134t-5dfd4b10d5ad6936f7692c31d30b1d4448906afa44bfc572fa1b1bdb5e9aa2983 |
ORCID | 0009-0007-3851-1745 0009-0000-7530-7304 0009-0000-5649-5231 0000-0002-4205-6067 |
PageCount | 15 |
ParticipantIDs | ieee_primary_11080405 crossref_primary_10_1109_TIM_2025_3588997 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 (ref1) 2024 ref5 ref40 Nallanthighal (ref30) 2021; 141 |
References_xml | – ident: ref12 doi: 10.1109/JIOT.2022.3204779 – ident: ref33 doi: 10.1137/090761793 – ident: ref32 doi: 10.1109/TSP.2022.3147863 – ident: ref26 doi: 10.1109/TIM.2022.3190035 – ident: ref8 doi: 10.1109/TMTT.2022.3222384 – ident: ref16 doi: 10.1109/TIM.2023.3345909 – ident: ref13 doi: 10.1109/TMTT.2024.3430513 – volume: 141 start-page: 211 year: 2021 ident: ref30 article-title: Deep learning architectures for estimating breathing signal and respiratory parameters from speech recordings publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.03.029 – ident: ref25 doi: 10.1016/j.jvoice.2021.09.005 – ident: ref17 doi: 10.1109/TIM.2023.3334353 – ident: ref39 doi: 10.1109/TIM.2024.3436091 – ident: ref20 doi: 10.1109/TIM.2024.3420356 – ident: ref23 doi: 10.1109/TIM.2024.3450071 – ident: ref38 doi: 10.1109/TIM.2021.3132924 – ident: ref11 doi: 10.1109/JIOT.2024.3367932 – ident: ref3 doi: 10.1109/TMTT.2021.3099343 – ident: ref18 doi: 10.1109/JSEN.2021.3074510 – ident: ref35 doi: 10.1109/JIOT.2024.3449408 – ident: ref7 doi: 10.1109/TIM.2022.3208266 – ident: ref36 doi: 10.1109/TNSRE.2021.3054733 – ident: ref42 doi: 10.1016/j.measurement.2024.116144 – ident: ref24 doi: 10.1111/nyas.14672 – ident: ref14 doi: 10.1109/JERM.2022.3140900 – ident: ref22 doi: 10.1109/TMTT.2021.3102233 – ident: ref37 doi: 10.1109/JSEN.2024.3441639 – volume-title: The Top 10 Causes of Death year: 2024 ident: ref1 – ident: ref2 doi: 10.1109/TIM.2024.3381692 – ident: ref6 doi: 10.1109/TIM.2022.3164145 – ident: ref40 doi: 10.1109/TIM.2024.3379391 – ident: ref41 doi: 10.1109/TMTT.2018.2852625 – ident: ref4 doi: 10.1038/s41928-019-0258-6 – ident: ref34 doi: 10.1145/1970392.1970395 – ident: ref10 doi: 10.1109/JSEN.2024.3494755 – ident: ref9 doi: 10.1109/JIOT.2021.3075167 – ident: ref21 doi: 10.1109/TIM.2023.3312477 – ident: ref15 doi: 10.1109/TIM.2024.3378253 – ident: ref43 doi: 10.1109/JSEN.2023.3312513 – ident: ref29 doi: 10.1109/TIM.2024.3425488 – ident: ref31 doi: 10.1109/TMTT.2021.3049514 – ident: ref5 doi: 10.1016/j.measurement.2023.113715 – ident: ref19 doi: 10.1016/j.bspc.2023.105360 – ident: ref27 doi: 10.1109/TIM.2022.3164129 – ident: ref28 doi: 10.1109/TIM.2023.3274171 |
SSID | ssj0007647 |
Score | 2.423824 |
Snippet | Vital signs measurement using radio frequency (RF) signals, particularly mmWave-based methods, has gained widespread attention. Speaking, which modifies the... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analytical models Autocorrelation Chirp frequency-modulated continuous wave (FMCW) radar Heart beat Heart rate variability Interference low-rank decomposition (LRD) millimeter wave Monitoring Phase noise Radar Reliability Time-frequency analysis vital signs monitoring |
Title | Robust Vital Signs Monitoring of Speaking Subjects Through mmWave Radar |
URI | https://ieeexplore.ieee.org/document/11080405 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5WEPTgo1asL3Lw4mHrZvPY5ihirYIebKvelkweImIr3a0Hf73J7larIHhblgTCzCSZbzIzH0LHOtbCJhBqnSCOmAcYkXdiVZTqhKZgqOEuAMWbW9EfsetH_lgXq5e1MNbaMvnMdsJn-ZZvJnoWQmWnIWXdGx1voIZHblWx1texmwpWNcgkfgd7t2D-JhnL0-HVjUeCCe9Q3vX4Iv1xBy2QqpR3Sm8D3c5XU6WSvHRmBXT0x69Gjf9e7iZar71LfFaZwxZasuMmWlvoOdhEK2XOp8630eXdBGZ5ge8DbwgePD-Nc1xt8TASTxwevNmSrAr74yXEa3I8rGh98Ovrg3q3-E4ZNW2hUe9ieN6Pal6FSBPKiogbZxiQ2HBlhKTCpUImmhJDYyCGecAmY6GcYgyc5mniFAECBriVSiWyS3fQ8ngytrsIW-AUrDBEOMekll3QoMDFXXAShCZtdDKXdPZWtc_IStgRy8xrJQtayWqttFEryPB7XC2-vT_-76PVML2Khxyg5WI6s4feQyjgqLSMTx75uC4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RoKrlAJSHGl71oZceNqzXj42PCAEJJTlAKNxWHj-qCpEgsuHQX197d0MDEhI3y7Isa2bsmW88D4DvJjXSZRhznTBNeAAYSTBidZKbjOVomRU-AsXBUPau-fmtuG2S1atcGOdcFXzmOnFY_eXbiZlFV9lhDFkPQic-wHJQ_ILW6VrPD28ueV0ik4Y7HAyD-a9kqg5H_UHAgpnoMNENCCN_oYUW2qpUWuV0DYbz89TBJHedWYkd8_dVqcZ3H3gdVhv7khzVAvEFltx4A1YWqg5uwMcq6tNMN-HscoKzaUl-xc4h5OrP7_GU1Jc8riQTT64eXNWuioQHJnpspmRUN_Yh9_c3-smRS2314xZcn56MjntJ01khMZTxMhHWW440tUJbqZj0uVSZYdSyFKnlAbKpVGqvOUdvRJ55TZGiReGU1pnqsm1ojSdj9xWIQ8HQSUul91wZ1UWDGn3aRa9QGtqGH3NKFw91AY2iAh6pKgJXisiVouFKG7YiDf-va8i388b8N_jUGw0uiov-8OcufI5b1d6RPWiVjzO3H-yFEg8qKfkH6pS7dw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Vital+Signs+Monitoring+of+Speaking+Subjects+Through+mmWave+Radar&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Liu%2C+Zhenyu&rft.au=Ye%2C+Yingjie&rft.au=Jiang%2C+Danke&rft.au=Tu%2C+Silong&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTIM.2025.3588997&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3588997 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |