A Two-Layer Adaptive Assist-As-Needed Control Scheme for Rehabilitation Robotics
Assist-as-needed (AAN) strategies aim to enhance active participation, thereby promoting neuroplasticity and facilitating motor recovery. However, due to variations in injury severity and motor abilities, non-adaptive AAN control strategies may provide suboptimal assistance. This letter proposes a t...
Saved in:
Published in | IEEE robotics and automation letters Vol. 10; no. 10; pp. 9830 - 9837 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Assist-as-needed (AAN) strategies aim to enhance active participation, thereby promoting neuroplasticity and facilitating motor recovery. However, due to variations in injury severity and motor abilities, non-adaptive AAN control strategies may provide suboptimal assistance. This letter proposes a two-layer adaptive AAN control scheme that integrates a task-adaptive control strategy with a subject-adaptive algorithm. The scheme utilizes surface electromyography signals, which directly reflect the neuromuscular state, to dynamically assess the subject's motion performance and engagement. The task-adaptive control strategy employs a Kalman filter to fuse torque data from both motion performance and physiological state, enabling within-task adjustments that foster active participation. Furthermore, the subject-adaptive algorithm modulates the assistance level inter-task based on motion performance and physiological state, ensuring that the challenge level aligns with the subject's functional capabilities. Experimental validation was conducted with 10 healthy subjects, confirming the effectiveness and feasibility of the proposed scheme. |
---|---|
AbstractList | Assist-as-needed (AAN) strategies aim to enhance active participation, thereby promoting neuroplasticity and facilitating motor recovery. However, due to variations in injury severity and motor abilities, non-adaptive AAN control strategies may provide suboptimal assistance. This letter proposes a two-layer adaptive AAN control scheme that integrates a task-adaptive control strategy with a subject-adaptive algorithm. The scheme utilizes surface electromyography signals, which directly reflect the neuromuscular state, to dynamically assess the subject's motion performance and engagement. The task-adaptive control strategy employs a Kalman filter to fuse torque data from both motion performance and physiological state, enabling within-task adjustments that foster active participation. Furthermore, the subject-adaptive algorithm modulates the assistance level inter-task based on motion performance and physiological state, ensuring that the challenge level aligns with the subject's functional capabilities. Experimental validation was conducted with 10 healthy subjects, confirming the effectiveness and feasibility of the proposed scheme. |
Author | Li, Huijun Song, Aiguo Shi, Ke Zhang, Maozeng |
Author_xml | – sequence: 1 givenname: Maozeng orcidid: 0000-0001-6871-1886 surname: Zhang fullname: Zhang, Maozeng email: mzzhang@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Huijun orcidid: 0000-0002-4395-2461 surname: Li fullname: Li, Huijun email: lihuijun@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 3 givenname: Ke orcidid: 0000-0002-6126-9818 surname: Shi fullname: Shi, Ke organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 4 givenname: Aiguo orcidid: 0000-0002-1982-6780 surname: Song fullname: Song, Aiguo email: a.g.song@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China |
BookMark | eNpNkEtLAzEYRYNUsNbuXbjIH8iYdybLofiCQaXW9ZDJfEMj7aRMgtJ_b0sLurp3cc9dnGs0GeIACN0yWjBG7X29rApOuSqEskaW7AJNuTCGCKP15F-_QvOUviilTHEjrJqi9wqvfiKp3R5GXHVul8M34CqlkDKpEnkF6KDDizjkMW7wh1_DFnAfR7yEtWvDJmSXQxzwMrYxB59u0GXvNgnm55yhz8eH1eKZ1G9PL4uqJp4JmYnwnsleK91zVXYdc0pz5Z0xXBvKjaXG2l5q6lurjNRSctUCswpESa3XpZghevr1Y0xphL7ZjWHrxn3DaHOU0hykNEcpzVnKAbk7IQEA_uaMcS6oEb9_e12E |
CODEN | IRALC6 |
Cites_doi | 10.1109/TMECH.2014.2340697 10.1016/S0021-9290(03)00010-1 10.1163/156855307780851975 10.1109/TNSRE.2016.2521160 10.5014/ajot.43.5.313 10.1109/TASE.2022.3225727 10.1016/j.jbiomech.2018.07.045 10.1682/jrrd.2005.06.0103 10.1016/j.jelekin.2003.10.005 10.1109/TNSRE.2023.3315373 10.1109/TASE.2020.2964807 10.1016/j.pmrj.2010.10.016 10.1023/A:1024494031121 10.1109/JBHI.2020.3027303 10.1109/TMECH.2022.3201255 10.1109/TBME.2020.3012296 10.1109/TIE.2009.2025294 10.1186/1743-0003-6-20 10.1109/TNSRE.2008.918389 10.1109/TRO.2012.2189496 10.1177/1545968307305457 10.1109/TNSRE.2023.3323390 10.1145/3674746.3674750 10.23919/ACC.1984.4788393 10.1109/LRA.2021.3118473 10.1109/TNNLS.2019.2892157 10.1109/TNSRE.2009.2033061 10.1109/TMECH.2019.2893055 10.1109/LRA.2019.2891431 10.1109/TNSRE.2005.848352 10.3233/978-1-60750-017-9-261 10.1109/ICORR.2013.6650429 10.1109/TRO.2015.2503726 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LRA.2025.3597481 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 9837 |
ExternalDocumentID | 10_1109_LRA_2025_3597481 11122307 |
Genre | orig-research |
GrantInformation_xml | – fundername: Jiangsu Key Research and Development Plan grantid: BE2023023-3 – fundername: Joint Fund Project grantid: 8091B042206 – fundername: National Natural Science Foundation of China; Natural Science Foundation of China grantid: 62173088 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c134t-3cc14f656f258dd1a5625ca7726702790799f460cb957464425be195e3809c683 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Wed Aug 27 16:38:38 EDT 2025 Wed Aug 27 07:40:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c134t-3cc14f656f258dd1a5625ca7726702790799f460cb957464425be195e3809c683 |
ORCID | 0000-0001-6871-1886 0000-0002-6126-9818 0000-0002-1982-6780 0000-0002-4395-2461 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_LRA_2025_3597481 ieee_primary_11122307 |
PublicationCentury | 2000 |
PublicationDate | 2025-Oct. |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-Oct. |
PublicationDecade | 2020 |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref25 doi: 10.1109/TMECH.2014.2340697 – ident: ref31 doi: 10.1016/S0021-9290(03)00010-1 – ident: ref12 doi: 10.1163/156855307780851975 – ident: ref8 doi: 10.1109/TNSRE.2016.2521160 – ident: ref1 doi: 10.5014/ajot.43.5.313 – ident: ref20 doi: 10.1109/TASE.2022.3225727 – ident: ref32 doi: 10.1016/j.jbiomech.2018.07.045 – ident: ref7 doi: 10.1682/jrrd.2005.06.0103 – ident: ref30 doi: 10.1016/j.jelekin.2003.10.005 – ident: ref17 doi: 10.1109/TNSRE.2023.3315373 – ident: ref4 doi: 10.1109/TASE.2020.2964807 – ident: ref6 doi: 10.1016/j.pmrj.2010.10.016 – ident: ref10 doi: 10.1023/A:1024494031121 – ident: ref19 doi: 10.1109/JBHI.2020.3027303 – ident: ref28 doi: 10.1109/TMECH.2022.3201255 – ident: ref15 doi: 10.1109/TBME.2020.3012296 – ident: ref33 doi: 10.1109/TIE.2009.2025294 – ident: ref9 doi: 10.1186/1743-0003-6-20 – ident: ref21 doi: 10.1109/TNSRE.2008.918389 – ident: ref11 doi: 10.1109/TRO.2012.2189496 – ident: ref5 doi: 10.1177/1545968307305457 – ident: ref16 doi: 10.1109/TNSRE.2023.3323390 – ident: ref27 doi: 10.1145/3674746.3674750 – ident: ref29 doi: 10.23919/ACC.1984.4788393 – ident: ref14 doi: 10.1109/LRA.2021.3118473 – ident: ref22 doi: 10.1109/TNNLS.2019.2892157 – ident: ref13 doi: 10.1109/TNSRE.2009.2033061 – ident: ref18 doi: 10.1109/TMECH.2019.2893055 – ident: ref23 doi: 10.1109/LRA.2019.2891431 – ident: ref3 doi: 10.1109/TNSRE.2005.848352 – ident: ref2 doi: 10.3233/978-1-60750-017-9-261 – ident: ref24 doi: 10.1109/ICORR.2013.6650429 – ident: ref26 doi: 10.1109/TRO.2015.2503726 |
SSID | ssj0001527395 |
Score | 2.3046417 |
Snippet | Assist-as-needed (AAN) strategies aim to enhance active participation, thereby promoting neuroplasticity and facilitating motor recovery. However, due to... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 9830 |
SubjectTerms | adaptive control assist-as-needed (AAN) Assistive robots Exoskeletons Impedance Kalman filters Limbs Motors Rehabilitation robotics Springs surface electromyography (sEMG) Torque Trajectory Wheels |
Title | A Two-Layer Adaptive Assist-As-Needed Control Scheme for Rehabilitation Robotics |
URI | https://ieeexplore.ieee.org/document/11122307 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwEBZNpnboM6XpI2jo0kGOZPml0YSEUNJQ0gSyGVk-L6VxaBMKHfrbe7IdkhQK3YywQdxJvu-k774j5D4yKtcmFUxlKWee0S7TYR4yDC3CNWBsw23LthgHw5n3OPfndbF6WQsDACX5DBz7WN7lZ4VZ26OyLu5L1xKXG6SBmVtVrLU9ULFSYsrfXEVy1R1NYkwAXd-RFjVHYi_07PRSKUPJ4ISMN5OoGCSvznqVOubrlz7jv2d5So5rUEnjahWckQNYnJOjHanBC_Ic0-lnwUYaITaNM720vzmKzkE3s_iDjTGKQUZ7FXOdvqAv34AioqWTPS1vOinSwko7t8hs0J_2hqzupsCMkN6KSWOElyN8y10_yjKhbepjNKLrIMTcFJNkpXIv4CZVfughTHL9FITyQUZcmSCSl6S5KBZwRSjInOc47gFwT2rQXJhQggQOwgRu2CYPG0Mny0o0IymTDa4SdEpinZLUTmmTljXh9r3aetd_jN-QQ_t5xae7Jc3V-xruEBes0g5pPH33O-Wq-AF8z7Wb |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D-rBz4nzMwcvHrIlTb9yLEOZWofMDXYrafp6EdehG4J_vS9txzZB8FZCKeH9kr7fS977PUJuQqNybVLBVJZy5hrtMB3kAUPXIhwDxjbcttkWfb83ch_H3rguVi9rYQCgTD6Dtn0s7_KzwsztUVkH96VjE5c3yRY6fs-pyrWWRypWTEx5i8tIrjrxIMIQ0PHa0vLmUKw5n5VuKqUzud8n_cU0qhySt_Z8lrbN9y-Fxn_P84Ds1bSSRtU6OCQbMDkiuytig8fkJaLDr4LFGkk2jTI9tT86ivAg0Cz6ZH30Y5DRbpW7Tl8RzXegyGnpYE3Nmw6KtLDizk0yur8bdnus7qfAjJDujEljhJsjgcsdL8wyoW3wYzTyaz_A6BTDZKVy1-cmVV7gIlFyvBSE8kCGXBk_lCekMSkmcEooyJznOO4CcFdq0FyYQIIEDsL4TtAitwtDJ9NKNiMpww2uEgQlsaAkNSgt0rQmXL5XW-_sj_Frst0bPsdJ_NB_Oic79lNVdt0Facw-5nCJLGGWXpVr4wfcI7e0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Layer+Adaptive+Assist-As-Needed+Control+Scheme+for+Rehabilitation+Robotics&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Zhang%2C+Maozeng&rft.au=Li%2C+Huijun&rft.au=Shi%2C+Ke&rft.au=Song%2C+Aiguo&rft.date=2025-10-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=10&rft.issue=10&rft.spage=9830&rft.epage=9837&rft_id=info:doi/10.1109%2FLRA.2025.3597481&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2025_3597481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |