A Two-Layer Adaptive Assist-As-Needed Control Scheme for Rehabilitation Robotics

Assist-as-needed (AAN) strategies aim to enhance active participation, thereby promoting neuroplasticity and facilitating motor recovery. However, due to variations in injury severity and motor abilities, non-adaptive AAN control strategies may provide suboptimal assistance. This letter proposes a t...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 10; no. 10; pp. 9830 - 9837
Main Authors Zhang, Maozeng, Li, Huijun, Shi, Ke, Song, Aiguo
Format Journal Article
LanguageEnglish
Published IEEE 01.10.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Assist-as-needed (AAN) strategies aim to enhance active participation, thereby promoting neuroplasticity and facilitating motor recovery. However, due to variations in injury severity and motor abilities, non-adaptive AAN control strategies may provide suboptimal assistance. This letter proposes a two-layer adaptive AAN control scheme that integrates a task-adaptive control strategy with a subject-adaptive algorithm. The scheme utilizes surface electromyography signals, which directly reflect the neuromuscular state, to dynamically assess the subject's motion performance and engagement. The task-adaptive control strategy employs a Kalman filter to fuse torque data from both motion performance and physiological state, enabling within-task adjustments that foster active participation. Furthermore, the subject-adaptive algorithm modulates the assistance level inter-task based on motion performance and physiological state, ensuring that the challenge level aligns with the subject's functional capabilities. Experimental validation was conducted with 10 healthy subjects, confirming the effectiveness and feasibility of the proposed scheme.
AbstractList Assist-as-needed (AAN) strategies aim to enhance active participation, thereby promoting neuroplasticity and facilitating motor recovery. However, due to variations in injury severity and motor abilities, non-adaptive AAN control strategies may provide suboptimal assistance. This letter proposes a two-layer adaptive AAN control scheme that integrates a task-adaptive control strategy with a subject-adaptive algorithm. The scheme utilizes surface electromyography signals, which directly reflect the neuromuscular state, to dynamically assess the subject's motion performance and engagement. The task-adaptive control strategy employs a Kalman filter to fuse torque data from both motion performance and physiological state, enabling within-task adjustments that foster active participation. Furthermore, the subject-adaptive algorithm modulates the assistance level inter-task based on motion performance and physiological state, ensuring that the challenge level aligns with the subject's functional capabilities. Experimental validation was conducted with 10 healthy subjects, confirming the effectiveness and feasibility of the proposed scheme.
Author Li, Huijun
Song, Aiguo
Shi, Ke
Zhang, Maozeng
Author_xml – sequence: 1
  givenname: Maozeng
  orcidid: 0000-0001-6871-1886
  surname: Zhang
  fullname: Zhang, Maozeng
  email: mzzhang@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Huijun
  orcidid: 0000-0002-4395-2461
  surname: Li
  fullname: Li, Huijun
  email: lihuijun@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 3
  givenname: Ke
  orcidid: 0000-0002-6126-9818
  surname: Shi
  fullname: Shi, Ke
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 4
  givenname: Aiguo
  orcidid: 0000-0002-1982-6780
  surname: Song
  fullname: Song, Aiguo
  email: a.g.song@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
BookMark eNpNkEtLAzEYRYNUsNbuXbjIH8iYdybLofiCQaXW9ZDJfEMj7aRMgtJ_b0sLurp3cc9dnGs0GeIACN0yWjBG7X29rApOuSqEskaW7AJNuTCGCKP15F-_QvOUviilTHEjrJqi9wqvfiKp3R5GXHVul8M34CqlkDKpEnkF6KDDizjkMW7wh1_DFnAfR7yEtWvDJmSXQxzwMrYxB59u0GXvNgnm55yhz8eH1eKZ1G9PL4uqJp4JmYnwnsleK91zVXYdc0pz5Z0xXBvKjaXG2l5q6lurjNRSctUCswpESa3XpZghevr1Y0xphL7ZjWHrxn3DaHOU0hykNEcpzVnKAbk7IQEA_uaMcS6oEb9_e12E
CODEN IRALC6
Cites_doi 10.1109/TMECH.2014.2340697
10.1016/S0021-9290(03)00010-1
10.1163/156855307780851975
10.1109/TNSRE.2016.2521160
10.5014/ajot.43.5.313
10.1109/TASE.2022.3225727
10.1016/j.jbiomech.2018.07.045
10.1682/jrrd.2005.06.0103
10.1016/j.jelekin.2003.10.005
10.1109/TNSRE.2023.3315373
10.1109/TASE.2020.2964807
10.1016/j.pmrj.2010.10.016
10.1023/A:1024494031121
10.1109/JBHI.2020.3027303
10.1109/TMECH.2022.3201255
10.1109/TBME.2020.3012296
10.1109/TIE.2009.2025294
10.1186/1743-0003-6-20
10.1109/TNSRE.2008.918389
10.1109/TRO.2012.2189496
10.1177/1545968307305457
10.1109/TNSRE.2023.3323390
10.1145/3674746.3674750
10.23919/ACC.1984.4788393
10.1109/LRA.2021.3118473
10.1109/TNNLS.2019.2892157
10.1109/TNSRE.2009.2033061
10.1109/TMECH.2019.2893055
10.1109/LRA.2019.2891431
10.1109/TNSRE.2005.848352
10.3233/978-1-60750-017-9-261
10.1109/ICORR.2013.6650429
10.1109/TRO.2015.2503726
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LRA.2025.3597481
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 9837
ExternalDocumentID 10_1109_LRA_2025_3597481
11122307
Genre orig-research
GrantInformation_xml – fundername: Jiangsu Key Research and Development Plan
  grantid: BE2023023-3
– fundername: Joint Fund Project
  grantid: 8091B042206
– fundername: National Natural Science Foundation of China; Natural Science Foundation of China
  grantid: 62173088
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c134t-3cc14f656f258dd1a5625ca7726702790799f460cb957464425be195e3809c683
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Wed Aug 27 16:38:38 EDT 2025
Wed Aug 27 07:40:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-3cc14f656f258dd1a5625ca7726702790799f460cb957464425be195e3809c683
ORCID 0000-0001-6871-1886
0000-0002-6126-9818
0000-0002-1982-6780
0000-0002-4395-2461
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2025_3597481
ieee_primary_11122307
PublicationCentury 2000
PublicationDate 2025-Oct.
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-Oct.
PublicationDecade 2020
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref25
  doi: 10.1109/TMECH.2014.2340697
– ident: ref31
  doi: 10.1016/S0021-9290(03)00010-1
– ident: ref12
  doi: 10.1163/156855307780851975
– ident: ref8
  doi: 10.1109/TNSRE.2016.2521160
– ident: ref1
  doi: 10.5014/ajot.43.5.313
– ident: ref20
  doi: 10.1109/TASE.2022.3225727
– ident: ref32
  doi: 10.1016/j.jbiomech.2018.07.045
– ident: ref7
  doi: 10.1682/jrrd.2005.06.0103
– ident: ref30
  doi: 10.1016/j.jelekin.2003.10.005
– ident: ref17
  doi: 10.1109/TNSRE.2023.3315373
– ident: ref4
  doi: 10.1109/TASE.2020.2964807
– ident: ref6
  doi: 10.1016/j.pmrj.2010.10.016
– ident: ref10
  doi: 10.1023/A:1024494031121
– ident: ref19
  doi: 10.1109/JBHI.2020.3027303
– ident: ref28
  doi: 10.1109/TMECH.2022.3201255
– ident: ref15
  doi: 10.1109/TBME.2020.3012296
– ident: ref33
  doi: 10.1109/TIE.2009.2025294
– ident: ref9
  doi: 10.1186/1743-0003-6-20
– ident: ref21
  doi: 10.1109/TNSRE.2008.918389
– ident: ref11
  doi: 10.1109/TRO.2012.2189496
– ident: ref5
  doi: 10.1177/1545968307305457
– ident: ref16
  doi: 10.1109/TNSRE.2023.3323390
– ident: ref27
  doi: 10.1145/3674746.3674750
– ident: ref29
  doi: 10.23919/ACC.1984.4788393
– ident: ref14
  doi: 10.1109/LRA.2021.3118473
– ident: ref22
  doi: 10.1109/TNNLS.2019.2892157
– ident: ref13
  doi: 10.1109/TNSRE.2009.2033061
– ident: ref18
  doi: 10.1109/TMECH.2019.2893055
– ident: ref23
  doi: 10.1109/LRA.2019.2891431
– ident: ref3
  doi: 10.1109/TNSRE.2005.848352
– ident: ref2
  doi: 10.3233/978-1-60750-017-9-261
– ident: ref24
  doi: 10.1109/ICORR.2013.6650429
– ident: ref26
  doi: 10.1109/TRO.2015.2503726
SSID ssj0001527395
Score 2.3046417
Snippet Assist-as-needed (AAN) strategies aim to enhance active participation, thereby promoting neuroplasticity and facilitating motor recovery. However, due to...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 9830
SubjectTerms adaptive control
assist-as-needed (AAN)
Assistive robots
Exoskeletons
Impedance
Kalman filters
Limbs
Motors
Rehabilitation robotics
Springs
surface electromyography (sEMG)
Torque
Trajectory
Wheels
Title A Two-Layer Adaptive Assist-As-Needed Control Scheme for Rehabilitation Robotics
URI https://ieeexplore.ieee.org/document/11122307
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwEBZNpnboM6XpI2jo0kGOZPml0YSEUNJQ0gSyGVk-L6VxaBMKHfrbe7IdkhQK3YywQdxJvu-k774j5D4yKtcmFUxlKWee0S7TYR4yDC3CNWBsw23LthgHw5n3OPfndbF6WQsDACX5DBz7WN7lZ4VZ26OyLu5L1xKXG6SBmVtVrLU9ULFSYsrfXEVy1R1NYkwAXd-RFjVHYi_07PRSKUPJ4ISMN5OoGCSvznqVOubrlz7jv2d5So5rUEnjahWckQNYnJOjHanBC_Ic0-lnwUYaITaNM720vzmKzkE3s_iDjTGKQUZ7FXOdvqAv34AioqWTPS1vOinSwko7t8hs0J_2hqzupsCMkN6KSWOElyN8y10_yjKhbepjNKLrIMTcFJNkpXIv4CZVfughTHL9FITyQUZcmSCSl6S5KBZwRSjInOc47gFwT2rQXJhQggQOwgRu2CYPG0Mny0o0IymTDa4SdEpinZLUTmmTljXh9r3aetd_jN-QQ_t5xae7Jc3V-xruEBes0g5pPH33O-Wq-AF8z7Wb
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D-rBz4nzMwcvHrIlTb9yLEOZWofMDXYrafp6EdehG4J_vS9txzZB8FZCKeH9kr7fS977PUJuQqNybVLBVJZy5hrtMB3kAUPXIhwDxjbcttkWfb83ch_H3rguVi9rYQCgTD6Dtn0s7_KzwsztUVkH96VjE5c3yRY6fs-pyrWWRypWTEx5i8tIrjrxIMIQ0PHa0vLmUKw5n5VuKqUzud8n_cU0qhySt_Z8lrbN9y-Fxn_P84Ds1bSSRtU6OCQbMDkiuytig8fkJaLDr4LFGkk2jTI9tT86ivAg0Cz6ZH30Y5DRbpW7Tl8RzXegyGnpYE3Nmw6KtLDizk0yur8bdnus7qfAjJDujEljhJsjgcsdL8wyoW3wYzTyaz_A6BTDZKVy1-cmVV7gIlFyvBSE8kCGXBk_lCekMSkmcEooyJznOO4CcFdq0FyYQIIEDsL4TtAitwtDJ9NKNiMpww2uEgQlsaAkNSgt0rQmXL5XW-_sj_Frst0bPsdJ_NB_Oic79lNVdt0Facw-5nCJLGGWXpVr4wfcI7e0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Layer+Adaptive+Assist-As-Needed+Control+Scheme+for+Rehabilitation+Robotics&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Zhang%2C+Maozeng&rft.au=Li%2C+Huijun&rft.au=Shi%2C+Ke&rft.au=Song%2C+Aiguo&rft.date=2025-10-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=10&rft.issue=10&rft.spage=9830&rft.epage=9837&rft_id=info:doi/10.1109%2FLRA.2025.3597481&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2025_3597481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon