CoAdapt: Collaborative Adaptation Between Latent EEG Feature Representation and Annotation for Emotion Decoding
Electroencephalogram (EEG) data contain rich neurophysiological information that can objectively express the emotional state of human beings. However, the inherent EEG characteristics such as nonstationarity and weakness, combined with the possible limited immersion and carry-over effect of subjects...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2025.3590828 |
Cover
Abstract | Electroencephalogram (EEG) data contain rich neurophysiological information that can objectively express the emotional state of human beings. However, the inherent EEG characteristics such as nonstationarity and weakness, combined with the possible limited immersion and carry-over effect of subjects during data collection experiments, may cause that the semantic meaning of extracted EEG feature vector cannot well match its annotated emotional state, dubbed the 'feature-label inconsistency dilemma in EEG-based emotion decoding. To this end, this article proposes to alleviate the side effect of feature-label inconsistency from both feature and label aspects. On the one hand, we explore more meaningful emotion-related EEG representation by the latent low-rank representation (LRR). On the other hand, we enhance the correspondence between the explored EEG representation and its annotated emotional state by a label dragging strategy. As a result, a collaborative adaptation (CoAdapt) model between latent EEG feature representation and its annotation is formed for efficient emotion decoding, which is implemented within the semi-supervised framework to better capture the properties of both the labeled and unlabeled EEG data. The experimental results on three publicly available datasets, SEED-IV, SEED-V and MPED, depict that: 1) CoAdapt achieves better emotion recognition performance in comparison with some related models; 2) the improvements of interclass separability and label margin are empirically evaluated, indicating the effectiveness of the purified EEG feature representation and rectified emotion annotation; and 3) some task-related results are identified from data-driven perspective, including the emotion carry-over effect and the discriminative spatial patterns in emotion decoding. |
---|---|
AbstractList | Electroencephalogram (EEG) data contain rich neurophysiological information that can objectively express the emotional state of human beings. However, the inherent EEG characteristics such as nonstationarity and weakness, combined with the possible limited immersion and carry-over effect of subjects during data collection experiments, may cause that the semantic meaning of extracted EEG feature vector cannot well match its annotated emotional state, dubbed the 'feature-label inconsistency dilemma in EEG-based emotion decoding. To this end, this article proposes to alleviate the side effect of feature-label inconsistency from both feature and label aspects. On the one hand, we explore more meaningful emotion-related EEG representation by the latent low-rank representation (LRR). On the other hand, we enhance the correspondence between the explored EEG representation and its annotated emotional state by a label dragging strategy. As a result, a collaborative adaptation (CoAdapt) model between latent EEG feature representation and its annotation is formed for efficient emotion decoding, which is implemented within the semi-supervised framework to better capture the properties of both the labeled and unlabeled EEG data. The experimental results on three publicly available datasets, SEED-IV, SEED-V and MPED, depict that: 1) CoAdapt achieves better emotion recognition performance in comparison with some related models; 2) the improvements of interclass separability and label margin are empirically evaluated, indicating the effectiveness of the purified EEG feature representation and rectified emotion annotation; and 3) some task-related results are identified from data-driven perspective, including the emotion carry-over effect and the discriminative spatial patterns in emotion decoding. |
Author | Peng, Yong Gong, Xiaoxiao Chen, Yuxin Zhang, Pengfei Cichocki, Andrzej Fang, Jinglong |
Author_xml | – sequence: 1 givenname: Xiaoxiao orcidid: 0009-0004-5306-6991 surname: Gong fullname: Gong, Xiaoxiao email: bettygxx@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Yuxin orcidid: 0009-0002-5798-2239 surname: Chen fullname: Chen, Yuxin email: 244050098@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: Pengfei orcidid: 0009-0000-9322-7228 surname: Zhang fullname: Zhang, Pengfei email: 22031122@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 4 givenname: Yong orcidid: 0000-0003-1208-972X surname: Peng fullname: Peng, Yong email: yongpeng@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 5 givenname: Jinglong orcidid: 0000-0002-3560-4926 surname: Fang fullname: Fang, Jinglong email: fjl@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 6 givenname: Andrzej orcidid: 0000-0002-8364-7226 surname: Cichocki fullname: Cichocki, Andrzej email: cichockiand@gmail.com organization: Systems Research Institute of Polish Academy of Sciences, Warszawa, Poland |
BookMark | eNpFkEtPwzAQhC1UJNrCnQMH_4GU9St2uJWQlkpFSKicI8fZoKDWrpwA4t-TPiROOzuamcM3ISMfPBJyy2DGGGT3m9XLjANXM6EyMNxckDFTSidZmvIRGQMwk2RSpVdk0nWfAKBTqcck5GFe233_QPOw3doqRNu330iP5iCDp4_Y_yB6urY9-p4WxZIu0PZfEekb7iN2g3tKWl_Tuffh_DYh0mIXjvoJXahb_3FNLhu77fDmfKfkfVFs8udk_bpc5fN14piQfcJdVWmbKYFcWwvcgaxAWG6MU1LoRtQIHLSVrLFSZYo3pnZ1wyxLK1NJIaYETrsuhq6L2JT72O5s_C0ZlAdg5QCsPAArz8CGyt2p0iLif5yB0ZIZ8QcTL2pS |
CODEN | IEIMAO |
Cites_doi | 10.1016/j.bspc.2023.104998 10.1109/TCSII.2022.3163141 10.1109/TCYB.2025.3550191 10.1016/j.neucom.2023.126262 10.1177/10888683221083398 10.1038/s41598-024-52205-1 10.1109/TCSS.2023.3314508 10.1016/j.bspc.2024.106912 10.1109/JTEHM.2023.3320132 10.1109/TAFFC.2021.3064940 10.1109/TMM.2021.3121567 10.1109/TAFFC.2022.3210441 10.1109/SMC54092.2024.10832104 10.1016/j.ins.2021.04.058 10.1177/1948550620923229 10.1109/TPAMI.2012.88 10.3389/fnins.2018.00162 10.1109/TCDS.2024.3391131 10.3389/fncom.2022.942979 10.1109/TIM.2022.3165741 10.1109/tnnls.2024.3493425 10.1109/TNSRE.2019.2904708 10.1016/j.ins.2018.04.063 10.1109/TAFFC.2023.3288885 10.1016/j.bspc.2022.104389 10.1016/j.jksuci.2023.03.014 10.1109/tcds.2024.3470248 10.1109/TAFFC.2022.3189222 10.1109/TCYB.2021.3060804 10.1007/s11063-014-9396-z 10.3389/fnhum.2020.00173 10.1109/ACCESS.2019.2891579 10.1109/JPROC.2023.3277471 10.1109/TCSVT.2023.3275299 10.1109/TNNLS.2012.2212721 10.1016/j.eij.2019.10.002 10.1109/TNNLS.2017.2648880 10.1109/TNSRE.2024.3389037 10.1007/s00521-019-04688-7 10.1093/scan/nsz078 10.1038/nn.4468 10.1109/TFUZZ.2024.3435390 10.1109/TAFFC.2017.2712143 10.1109/TCDS.2022.3175008 10.24963/ijcai.2017/211 10.1038/srep25826 10.1109/ICCV.2011.6126422 10.1016/j.bbe.2020.02.002 10.1109/TCYB.2018.2797176 10.1109/TIM.2020.3006611 10.1504/IJDMB.2019.100629 10.1088/1741-2552/ad3c28 10.1145/3524499 10.1109/TAFFC.2022.3199075 10.1109/TNSRE.2022.3175464 10.1016/j.bspc.2024.106877 10.1088/1741-2552/ac49a7 10.3389/fnins.2020.615435 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TIM.2025.3590828 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 16 |
ExternalDocumentID | 10_1109_TIM_2025_3590828 11087418 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Education of the People's Republic of China (MoE) Humanities and Social Sciences Project grantid: 24YJCZH225 funderid: 10.13039/100013546 – fundername: General Natural Science Project of Fuyang Normal University grantid: 2021FSKJ1500 funderid: 10.13039/501100012404 – fundername: National Key Research and Development Program of China grantid: 2023YFE0114900 funderid: 10.13039/501100012166 – fundername: Key Laboratory of Embedded System and Services Computing of the Ministry of Education grantid: ESSCKF2024-11 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c134t-2cbb7a953e27aa02c04b03a288c5437f3de0207a41fa45952f8dcdf1a16b8b433 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Wed Aug 06 19:11:28 EDT 2025 Wed Aug 27 01:44:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c134t-2cbb7a953e27aa02c04b03a288c5437f3de0207a41fa45952f8dcdf1a16b8b433 |
ORCID | 0009-0004-5306-6991 0009-0002-5798-2239 0000-0003-1208-972X 0000-0002-3560-4926 0000-0002-8364-7226 0009-0000-9322-7228 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TIM_2025_3590828 ieee_primary_11087418 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref40 doi: 10.1016/j.bspc.2023.104998 – ident: ref49 doi: 10.1109/TCSII.2022.3163141 – ident: ref53 doi: 10.1109/TCYB.2025.3550191 – ident: ref39 doi: 10.1016/j.neucom.2023.126262 – ident: ref48 doi: 10.1177/10888683221083398 – ident: ref11 doi: 10.1038/s41598-024-52205-1 – ident: ref9 doi: 10.1109/TCSS.2023.3314508 – ident: ref42 doi: 10.1016/j.bspc.2024.106912 – ident: ref58 doi: 10.1109/JTEHM.2023.3320132 – ident: ref52 doi: 10.1109/TAFFC.2021.3064940 – ident: ref19 doi: 10.1109/TMM.2021.3121567 – ident: ref38 doi: 10.1109/TAFFC.2022.3210441 – ident: ref57 doi: 10.1109/SMC54092.2024.10832104 – ident: ref30 doi: 10.1016/j.ins.2021.04.058 – ident: ref47 doi: 10.1177/1948550620923229 – ident: ref13 doi: 10.1109/TPAMI.2012.88 – ident: ref32 doi: 10.3389/fnins.2018.00162 – ident: ref1 doi: 10.1109/TCDS.2024.3391131 – ident: ref56 doi: 10.3389/fncom.2022.942979 – ident: ref35 doi: 10.1109/TIM.2022.3165741 – ident: ref37 doi: 10.1109/tnnls.2024.3493425 – ident: ref22 doi: 10.1109/TNSRE.2019.2904708 – ident: ref33 doi: 10.1016/j.ins.2018.04.063 – ident: ref54 doi: 10.1109/TAFFC.2023.3288885 – ident: ref15 doi: 10.1016/j.bspc.2022.104389 – ident: ref27 doi: 10.1016/j.jksuci.2023.03.014 – ident: ref55 doi: 10.1109/tcds.2024.3470248 – ident: ref8 doi: 10.1109/TAFFC.2022.3189222 – ident: ref26 doi: 10.1109/TCYB.2021.3060804 – ident: ref29 doi: 10.1007/s11063-014-9396-z – ident: ref14 doi: 10.3389/fnhum.2020.00173 – ident: ref51 doi: 10.1109/ACCESS.2019.2891579 – ident: ref4 doi: 10.1109/JPROC.2023.3277471 – ident: ref28 doi: 10.1109/TCSVT.2023.3275299 – ident: ref23 doi: 10.1109/TNNLS.2012.2212721 – ident: ref5 doi: 10.1016/j.eij.2019.10.002 – ident: ref24 doi: 10.1109/TNNLS.2017.2648880 – ident: ref41 doi: 10.1109/TNSRE.2024.3389037 – ident: ref20 doi: 10.1007/s00521-019-04688-7 – ident: ref45 doi: 10.1093/scan/nsz078 – ident: ref12 doi: 10.1038/nn.4468 – ident: ref36 doi: 10.1109/TFUZZ.2024.3435390 – ident: ref50 doi: 10.1109/TAFFC.2017.2712143 – ident: ref25 doi: 10.1109/TCDS.2022.3175008 – ident: ref34 doi: 10.24963/ijcai.2017/211 – ident: ref46 doi: 10.1038/srep25826 – ident: ref18 doi: 10.1109/ICCV.2011.6126422 – ident: ref3 doi: 10.1016/j.bbe.2020.02.002 – ident: ref31 doi: 10.1109/TCYB.2018.2797176 – ident: ref2 doi: 10.1109/TIM.2020.3006611 – ident: ref16 doi: 10.1504/IJDMB.2019.100629 – ident: ref44 doi: 10.1088/1741-2552/ad3c28 – ident: ref10 doi: 10.1145/3524499 – ident: ref6 doi: 10.1109/TAFFC.2022.3199075 – ident: ref7 doi: 10.1109/TNSRE.2022.3175464 – ident: ref17 doi: 10.1016/j.bspc.2024.106877 – ident: ref43 doi: 10.1088/1741-2552/ac49a7 – ident: ref21 doi: 10.3389/fnins.2020.615435 |
SSID | ssj0007647 |
Score | 2.4239497 |
Snippet | Electroencephalogram (EEG) data contain rich neurophysiological information that can objectively express the emotional state of human beings. However, the... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 1 |
SubjectTerms | Annotations Brain modeling Collaborative adaptation (CoAdapt) Data mining Decoding electroencephalogram (EEG)-based emotion recognition Electroencephalography Emotion recognition Feature extraction feature-label inconsistency label dragging latent low-rank representation (LRR) Matrix decomposition Noise Sparse matrices |
Title | CoAdapt: Collaborative Adaptation Between Latent EEG Feature Representation and Annotation for Emotion Decoding |
URI | https://ieeexplore.ieee.org/document/11087418 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJSQYeJQiykseWBiSJrHzYislpSDaAbVSt8iOLwuSU5WEgV-P7aS0ICGxJZYjWb7L3Xf23XcI3TDIiSM8ZglBc4sqKVuRcrOWcp1MAQZwOdXVyJNpMJ7T54W_aIrVTS0MAJjkM7D1o7nLF0VW6aOyvk5Z12wrLdRSelYXa32b3TCgNUGmq_5gBQvWd5JO3J89TVQk6Pk2MR2-ox8-aKupivEpo0M0Xa-mTiV5s6uS29nnL6LGfy_3CB006BIPanU4RjsgO2h_i3Owg3ZNzmf2foKKYTEQbFne4eFGGT4Am0EjMHxfZ3HhF4VIZYmT5BFrzFitAL-aFNqmckliJgUeSFk0rwoK46TuEIQfVISrPWQXzUfJbDi2mv4LVuYSWlpexnnIYp-AFzLmeJlDuUOYF0WZT0mYEwEKbIaMujmjfux7eSQykbvMDXjEKSGnqC0LCWcI6x7rmnUUnBiU1XA4h9hlggWhB8pqiB66XUskXdY0G6kJT5w4VdJLtfTSRno91NV7vZnXbPP5H-MXaE9_Xp-bXKJ2uargSiGJkl8bDfoCC_XFFQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BEQIGHqWI8vTAwpCSxE6TsJXS0kLbAbVSt8iOLwtSUpWUgV-P7aS0ICGxJZYVWb7L3Xf23XcANxwTakuXW1KyxGJKylag3KylXCdXgAEdwXQ18nDU7E3Y89SblsXqphYGEU3yGTb0o7nLl1m80EdldzplXbOtbMKWcvzMK8q1vg2v32QFRaaj_mEFDJa3knZ4N-4PVSzoeg1qenwHP7zQWlsV41W6BzBarqdIJnlrLHLRiD9_UTX-e8GHsF_iS9IqFOIINjCtwt4a62AVtk3WZ_x-DFk7a0k-y-9Je6UOH0jMoBEZeSjyuMhAYdI0J53OE9GocTFH8mqSaMvapZTwVJJWmmblqwLDpFP0CCKPKsbVPrIGk25n3O5ZZQcGK3Yoyy03FsLnoUfR9Tm33dhmwqbcDYLYY9RPqEQFN33OnIQzL_TcJJCxTBzuNEUgGKUnUEmzFE-B6C7rmncU7RCV3bCFwNDhkjd9F5XdkHW4XUokmhVEG5EJUOwwUtKLtPSiUnp1qOm9Xs0rt_nsj_Fr2OmNh4No0B-9nMOu_lRxinIBlXy-wEuFK3JxZbTpC4sYyGI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CoAdapt%3A+Collaborative+Adaptation+Between+Latent+EEG+Feature+Representation+and+Annotation+for+Emotion+Decoding&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Gong%2C+Xiaoxiao&rft.au=Chen%2C+Yuxin&rft.au=Zhang%2C+Pengfei&rft.au=Peng%2C+Yong&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTIM.2025.3590828&rft.externalDocID=11087418 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |