k-Subgraph Isomorphism on AC0 Circuits
. Recently, Rossman (STOC ’08) established a lower bound of ω( n k /4 ) on the size of constant-depth circuits computing the k -clique function on n -vertex graphs for any constant k . This is the first lower bound that does not depend on the depth of circuits in the exponent of n . He showed, in fa...
Saved in:
Published in | Computational complexity Vol. 19; no. 2; pp. 183 - 210 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
Birkhäuser-Verlag
01.05.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1016-3328 1420-8954 |
DOI | 10.1007/s00037-010-0288-y |
Cover
Abstract | .
Recently, Rossman (STOC ’08) established a lower bound of ω(
n
k
/4
) on the size of constant-depth circuits computing the
k
-clique function on
n
-vertex graphs for any constant
k
. This is the first lower bound that does not depend on the depth of circuits in the exponent of
n
. He showed, in fact, a stronger statement: Suppose
is a sequence of functions computed by constant-depth circuits of size
O
(
n
t
). For any positive integer
k
and 0 < α ≤ 1/(2
t
− 1), let
be an Erdős-Rényi random graph with edge probability
n
−α
and let
K
A
be a
k
-clique on a uniformly chosen
k
vertices of
G
. Then
asymptotically almost surely.
In this paper, we prove that this bound is essentially tight by showing that there
exists
a sequence of Boolean functions
that can be computed by constant-depth circuits of size
O
(
n
t
) such that
asymptotically almost surely for the same distributions with α = 1/(2
t
− 9.5) and
k
= 4
t
−
c
(where
c
is a small constant independent of
k
). This means that there are constant-depth circuits of size
that correctly compute the
k
-clique function with high probability when the input is a random graph with independent edge probability around
n
–2/(
k
–1)
. Several extensions of Rossman’s lower bound method to the problem of detecting general patterns as well as some upper bounds are also described. In addition, we provide an explicit construction of DNF formulas that are almost incompressible by any constant-depth circuits. |
---|---|
AbstractList | .
Recently, Rossman (STOC ’08) established a lower bound of ω(
n
k
/4
) on the size of constant-depth circuits computing the
k
-clique function on
n
-vertex graphs for any constant
k
. This is the first lower bound that does not depend on the depth of circuits in the exponent of
n
. He showed, in fact, a stronger statement: Suppose
is a sequence of functions computed by constant-depth circuits of size
O
(
n
t
). For any positive integer
k
and 0 < α ≤ 1/(2
t
− 1), let
be an Erdős-Rényi random graph with edge probability
n
−α
and let
K
A
be a
k
-clique on a uniformly chosen
k
vertices of
G
. Then
asymptotically almost surely.
In this paper, we prove that this bound is essentially tight by showing that there
exists
a sequence of Boolean functions
that can be computed by constant-depth circuits of size
O
(
n
t
) such that
asymptotically almost surely for the same distributions with α = 1/(2
t
− 9.5) and
k
= 4
t
−
c
(where
c
is a small constant independent of
k
). This means that there are constant-depth circuits of size
that correctly compute the
k
-clique function with high probability when the input is a random graph with independent edge probability around
n
–2/(
k
–1)
. Several extensions of Rossman’s lower bound method to the problem of detecting general patterns as well as some upper bounds are also described. In addition, we provide an explicit construction of DNF formulas that are almost incompressible by any constant-depth circuits. |
Author | Amano, Kazuyuki |
Author_xml | – sequence: 1 givenname: Kazuyuki surname: Amano fullname: Amano, Kazuyuki email: amano@cs.gunma-u.ac.jp organization: Department of Computer Science, Gunma University |
BookMark | eNp9z7FOwzAQgGELFYm28ABsmdgM59iOnbGKgFaqxEB3K3Hs1qWJIzsZ8vakChNDp7vlv9O3QovWtwahZwKvBEC8RQCgAgMBDKmUeLxDS8JSwDLnbDHtQDJMaSof0CrGMwDhkrIlevnB30N1DGV3SnbRNz50JxebxLfJpoCkcEEPro-P6N6Wl2ie_uYaHT7eD8UW778-d8VmjzWhdMQyywnntGSy4hJMXnFjQdfCCptpxmhNrU1rzjnTmhojRQ5ZBaKmhoiqFnSNyHxWBx9jMFZ1wTVlGBUBdXWq2akmp7o61Tg14l-jXV_2zrd9KN3lZpnOZZy-tEcT1NkPoZ18N6Jf1v9ohg |
CitedBy_id | crossref_primary_10_1145_3026744_3026746 crossref_primary_10_1007_s00453_021_00813_y crossref_primary_10_1137_110839059 crossref_primary_10_1145_2499937_2499941 crossref_primary_10_1137_20M1372925 crossref_primary_10_1137_14099721X crossref_primary_10_1137_19M1276467 crossref_primary_10_1007_s00224_018_9864_3 |
ContentType | Journal Article |
Copyright | Springer Basel AG 2010 |
Copyright_xml | – notice: Springer Basel AG 2010 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00037-010-0288-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1420-8954 |
EndPage | 210 |
ExternalDocumentID | 10_1007_s00037_010_0288_y |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c133y-8691553a48b580e9b5ef0cd7f7f6c443d3ff2d5554cc3ee87906b07d3e17bd73 |
IEDL.DBID | AGYKE |
ISSN | 1016-3328 |
IngestDate | Thu Apr 24 23:02:59 EDT 2025 Tue Jul 01 01:36:14 EDT 2025 Fri Feb 21 02:32:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | clique 68Q12 68Q17 constant depth circuits upper bounds 03D15 Circuit complexity 68Q10 lower bounds |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c133y-8691553a48b580e9b5ef0cd7f7f6c443d3ff2d5554cc3ee87906b07d3e17bd73 |
PageCount | 28 |
ParticipantIDs | crossref_primary_10_1007_s00037_010_0288_y crossref_citationtrail_10_1007_s00037_010_0288_y springer_journals_10_1007_s00037_010_0288_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100500 2010-05-00 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 20100500 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Computational complexity |
PublicationTitleAbbrev | comput. complex |
PublicationYear | 2010 |
Publisher | Birkhäuser-Verlag |
Publisher_xml | – name: Birkhäuser-Verlag |
SSID | ssj0015834 |
Score | 1.795558 |
Snippet | .
Recently, Rossman (STOC ’08) established a lower bound of ω(
n
k
/4
) on the size of constant-depth circuits computing the
k
-clique function on
n
-vertex... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 183 |
SubjectTerms | Algorithm Analysis and Problem Complexity Computational Mathematics and Numerical Analysis Computer Science |
Title | k-Subgraph Isomorphism on AC0 Circuits |
URI | https://link.springer.com/article/10.1007/s00037-010-0288-y |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IXPQgihrxQXowHjRLlm63XY6FgKiBEyR4atp9JAQphpYD_nq3zwSjJt6nzWZmd-fbfDPfANw5-s1lc0mQqRRBOuMzxKyOQNqaEyIZozxhdMcTezSzXuZ0nvdxR0W1e0FJpjd12eyWaqWglLw1dXh3FajRDuuyKtTcp7fXQUkeUJaRyRrNIEJMVpCZP_1kPx3tc6FpihnWYVosLqssWba3cdDmn990G_-5-hM4ziGn4WZ75BQOZNiAejHOwchPdwOOxqWEa3QG90ukL5VUz9p4jtartQ7IIloZ69Bw-9joLzZ8u4ijc5gOB9P-COVDFRDXz9EdYnaiCE98iwWUYdkNqFSYC0c5yuaWRQRRyhRUowwdLCmZ08V2gB1BZMcJhEMuoBquQ3kJBpYa_VCfKeFjDbqoL7EQSZMz5kqYqtsEXLjW47ngeDL34t0rpZJTp3jaKV7iFG_XhIfyk49MbeMv48fC1V5-8KLfra_-ZX0Nh0WZAO7cQDXebOWtRh9x0NK7bdjrTVr5rmtBZWa6X1LX0RM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0oHtSDH6gRP_dgPGg2WbrddjkSIgEFTpBwa9r9SIjQGgoH_r3T0jYhURPvsz287ey8zdt5A_Dk453LU4ZTx1pOseJLKt2mphitODdSCpUpusOR15u471MxLfq40_K1eylJ5id11eyWe6XQXLx1cHs3-3CAXEBmYwsmTruSDoTcSsnIZSjnjiylzJ8-sVuMdpXQvMB0z-CkYIakvd3Kc9gzcR1Oy6kLpEjCOhwPK6fV9AKePynmfm47TfppskgQt1m6IElM2h1GOrOlWs9W6SWMu2_jTo8Wsw-owlvjhkovM27noSsjIZlpRcJYprRvfesp1-WaW-togWQAMTVG-i3mRczX3DT9SPv8CmpxEptrIMwgSRGhtDpkyI1EaJjWWS8yU1Y7ttUAVmIQqMIXPBtPMQ8qR-MctgBhCzLYgk0DXqolX1tTjL-CX0tggyI_0t-jb_4V_QiHvfFwEAz6o49bOCqVfda8g9pquTb3SBhW0UP-g3wDeLu0jg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFL1oBdGFj6pYn1mIC2Vwkskk02WpllZtcdFCdyGZBxRtUpp00b938phAQQX3d2Zx5nHPcOaeC3Dn6zeXxyVBjlIE6YzPEHNtgXQ0J0QyRnmu6A5HXn_ivk7ptOpzmprf7kaSLGsacpemOHtaCPVUF74VvimoEHIdvdTrbdjRt7Gdb_SJ06llBMpKWVnzGkSIw4ys-dMUm4lpUxUtkk3vCA4qlmh1ymU9hi0ZN-HQdGCwqgPZhP1h7bqansD9J9L3QGFBbQ3SZJ5oDGfp3Epiq9PFVne25KtZlp7CuPcy7vZR1QcBcf2CXCPm5SbuJHRZRBmW7YhKhbnwla887rpEEKUcQTUx0PhKyfw29iLsCyJtPxI-OYNGnMTyHCwsNWGhIVMixJon0VBiIfK6ZMyVcFS7BdhgEPDKIzxvVfEV1O7GBWyBhi3IYQvWLXiohyxKg4y_gh8NsEF1VtLfoy_-FX0Lux_PveB9MHq7hD0j8mP7ChrZciWvNXfIoptif3wDYh-4yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=k-Subgraph+Isomorphism+on+AC0+Circuits&rft.jtitle=Computational+complexity&rft.au=Amano%2C+Kazuyuki&rft.date=2010-05-01&rft.pub=Birkh%C3%A4user-Verlag&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=19&rft.issue=2&rft.spage=183&rft.epage=210&rft_id=info:doi/10.1007%2Fs00037-010-0288-y&rft.externalDocID=10_1007_s00037_010_0288_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon |