k-Subgraph Isomorphism on AC0 Circuits

. Recently, Rossman (STOC ’08) established a lower bound of ω( n k /4 ) on the size of constant-depth circuits computing the k -clique function on n -vertex graphs for any constant k . This is the first lower bound that does not depend on the depth of circuits in the exponent of n . He showed, in fa...

Full description

Saved in:
Bibliographic Details
Published inComputational complexity Vol. 19; no. 2; pp. 183 - 210
Main Author Amano, Kazuyuki
Format Journal Article
LanguageEnglish
Published Basel Birkhäuser-Verlag 01.05.2010
Subjects
Online AccessGet full text
ISSN1016-3328
1420-8954
DOI10.1007/s00037-010-0288-y

Cover

Abstract . Recently, Rossman (STOC ’08) established a lower bound of ω( n k /4 ) on the size of constant-depth circuits computing the k -clique function on n -vertex graphs for any constant k . This is the first lower bound that does not depend on the depth of circuits in the exponent of n . He showed, in fact, a stronger statement: Suppose is a sequence of functions computed by constant-depth circuits of size O ( n t ). For any positive integer k and 0 < α ≤ 1/(2 t − 1), let be an Erdős-Rényi random graph with edge probability n −α and let K A be a k -clique on a uniformly chosen k vertices of G . Then asymptotically almost surely. In this paper, we prove that this bound is essentially tight by showing that there exists a sequence of Boolean functions that can be computed by constant-depth circuits of size O ( n t ) such that asymptotically almost surely for the same distributions with α = 1/(2 t  − 9.5) and k = 4 t  −  c (where c is a small constant independent of k ). This means that there are constant-depth circuits of size that correctly compute the k -clique function with high probability when the input is a random graph with independent edge probability around n –2/( k –1) . Several extensions of Rossman’s lower bound method to the problem of detecting general patterns as well as some upper bounds are also described. In addition, we provide an explicit construction of DNF formulas that are almost incompressible by any constant-depth circuits.
AbstractList . Recently, Rossman (STOC ’08) established a lower bound of ω( n k /4 ) on the size of constant-depth circuits computing the k -clique function on n -vertex graphs for any constant k . This is the first lower bound that does not depend on the depth of circuits in the exponent of n . He showed, in fact, a stronger statement: Suppose is a sequence of functions computed by constant-depth circuits of size O ( n t ). For any positive integer k and 0 < α ≤ 1/(2 t − 1), let be an Erdős-Rényi random graph with edge probability n −α and let K A be a k -clique on a uniformly chosen k vertices of G . Then asymptotically almost surely. In this paper, we prove that this bound is essentially tight by showing that there exists a sequence of Boolean functions that can be computed by constant-depth circuits of size O ( n t ) such that asymptotically almost surely for the same distributions with α = 1/(2 t  − 9.5) and k = 4 t  −  c (where c is a small constant independent of k ). This means that there are constant-depth circuits of size that correctly compute the k -clique function with high probability when the input is a random graph with independent edge probability around n –2/( k –1) . Several extensions of Rossman’s lower bound method to the problem of detecting general patterns as well as some upper bounds are also described. In addition, we provide an explicit construction of DNF formulas that are almost incompressible by any constant-depth circuits.
Author Amano, Kazuyuki
Author_xml – sequence: 1
  givenname: Kazuyuki
  surname: Amano
  fullname: Amano, Kazuyuki
  email: amano@cs.gunma-u.ac.jp
  organization: Department of Computer Science, Gunma University
BookMark eNp9z7FOwzAQgGELFYm28ABsmdgM59iOnbGKgFaqxEB3K3Hs1qWJIzsZ8vakChNDp7vlv9O3QovWtwahZwKvBEC8RQCgAgMBDKmUeLxDS8JSwDLnbDHtQDJMaSof0CrGMwDhkrIlevnB30N1DGV3SnbRNz50JxebxLfJpoCkcEEPro-P6N6Wl2ie_uYaHT7eD8UW778-d8VmjzWhdMQyywnntGSy4hJMXnFjQdfCCptpxmhNrU1rzjnTmhojRQ5ZBaKmhoiqFnSNyHxWBx9jMFZ1wTVlGBUBdXWq2akmp7o61Tg14l-jXV_2zrd9KN3lZpnOZZy-tEcT1NkPoZ18N6Jf1v9ohg
CitedBy_id crossref_primary_10_1145_3026744_3026746
crossref_primary_10_1007_s00453_021_00813_y
crossref_primary_10_1137_110839059
crossref_primary_10_1145_2499937_2499941
crossref_primary_10_1137_20M1372925
crossref_primary_10_1137_14099721X
crossref_primary_10_1137_19M1276467
crossref_primary_10_1007_s00224_018_9864_3
ContentType Journal Article
Copyright Springer Basel AG 2010
Copyright_xml – notice: Springer Basel AG 2010
DBID AAYXX
CITATION
DOI 10.1007/s00037-010-0288-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1420-8954
EndPage 210
ExternalDocumentID 10_1007_s00037_010_0288_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c133y-8691553a48b580e9b5ef0cd7f7f6c443d3ff2d5554cc3ee87906b07d3e17bd73
IEDL.DBID AGYKE
ISSN 1016-3328
IngestDate Thu Apr 24 23:02:59 EDT 2025
Tue Jul 01 01:36:14 EDT 2025
Fri Feb 21 02:32:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords clique
68Q12
68Q17
constant depth circuits
upper bounds
03D15
Circuit complexity
68Q10
lower bounds
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c133y-8691553a48b580e9b5ef0cd7f7f6c443d3ff2d5554cc3ee87906b07d3e17bd73
PageCount 28
ParticipantIDs crossref_primary_10_1007_s00037_010_0288_y
crossref_citationtrail_10_1007_s00037_010_0288_y
springer_journals_10_1007_s00037_010_0288_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100500
2010-05-00
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 20100500
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Computational complexity
PublicationTitleAbbrev comput. complex
PublicationYear 2010
Publisher Birkhäuser-Verlag
Publisher_xml – name: Birkhäuser-Verlag
SSID ssj0015834
Score 1.795558
Snippet . Recently, Rossman (STOC ’08) established a lower bound of ω( n k /4 ) on the size of constant-depth circuits computing the k -clique function on n -vertex...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms Algorithm Analysis and Problem Complexity
Computational Mathematics and Numerical Analysis
Computer Science
Title k-Subgraph Isomorphism on AC0 Circuits
URI https://link.springer.com/article/10.1007/s00037-010-0288-y
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IXPQgihrxQXowHjRLlm63XY6FgKiBEyR4atp9JAQphpYD_nq3zwSjJt6nzWZmd-fbfDPfANw5-s1lc0mQqRRBOuMzxKyOQNqaEyIZozxhdMcTezSzXuZ0nvdxR0W1e0FJpjd12eyWaqWglLw1dXh3FajRDuuyKtTcp7fXQUkeUJaRyRrNIEJMVpCZP_1kPx3tc6FpihnWYVosLqssWba3cdDmn990G_-5-hM4ziGn4WZ75BQOZNiAejHOwchPdwOOxqWEa3QG90ukL5VUz9p4jtartQ7IIloZ69Bw-9joLzZ8u4ijc5gOB9P-COVDFRDXz9EdYnaiCE98iwWUYdkNqFSYC0c5yuaWRQRRyhRUowwdLCmZ08V2gB1BZMcJhEMuoBquQ3kJBpYa_VCfKeFjDbqoL7EQSZMz5kqYqtsEXLjW47ngeDL34t0rpZJTp3jaKV7iFG_XhIfyk49MbeMv48fC1V5-8KLfra_-ZX0Nh0WZAO7cQDXebOWtRh9x0NK7bdjrTVr5rmtBZWa6X1LX0RM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0oHtSDH6gRP_dgPGg2WbrddjkSIgEFTpBwa9r9SIjQGgoH_r3T0jYhURPvsz287ey8zdt5A_Dk453LU4ZTx1pOseJLKt2mphitODdSCpUpusOR15u471MxLfq40_K1eylJ5id11eyWe6XQXLx1cHs3-3CAXEBmYwsmTruSDoTcSsnIZSjnjiylzJ8-sVuMdpXQvMB0z-CkYIakvd3Kc9gzcR1Oy6kLpEjCOhwPK6fV9AKePynmfm47TfppskgQt1m6IElM2h1GOrOlWs9W6SWMu2_jTo8Wsw-owlvjhkovM27noSsjIZlpRcJYprRvfesp1-WaW-togWQAMTVG-i3mRczX3DT9SPv8CmpxEptrIMwgSRGhtDpkyI1EaJjWWS8yU1Y7ttUAVmIQqMIXPBtPMQ8qR-MctgBhCzLYgk0DXqolX1tTjL-CX0tggyI_0t-jb_4V_QiHvfFwEAz6o49bOCqVfda8g9pquTb3SBhW0UP-g3wDeLu0jg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFL1oBdGFj6pYn1mIC2Vwkskk02WpllZtcdFCdyGZBxRtUpp00b938phAQQX3d2Zx5nHPcOaeC3Dn6zeXxyVBjlIE6YzPEHNtgXQ0J0QyRnmu6A5HXn_ivk7ptOpzmprf7kaSLGsacpemOHtaCPVUF74VvimoEHIdvdTrbdjRt7Gdb_SJ06llBMpKWVnzGkSIw4ys-dMUm4lpUxUtkk3vCA4qlmh1ymU9hi0ZN-HQdGCwqgPZhP1h7bqansD9J9L3QGFBbQ3SZJ5oDGfp3Epiq9PFVne25KtZlp7CuPcy7vZR1QcBcf2CXCPm5SbuJHRZRBmW7YhKhbnwla887rpEEKUcQTUx0PhKyfw29iLsCyJtPxI-OYNGnMTyHCwsNWGhIVMixJon0VBiIfK6ZMyVcFS7BdhgEPDKIzxvVfEV1O7GBWyBhi3IYQvWLXiohyxKg4y_gh8NsEF1VtLfoy_-FX0Lux_PveB9MHq7hD0j8mP7ChrZciWvNXfIoptif3wDYh-4yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=k-Subgraph+Isomorphism+on+AC0+Circuits&rft.jtitle=Computational+complexity&rft.au=Amano%2C+Kazuyuki&rft.date=2010-05-01&rft.pub=Birkh%C3%A4user-Verlag&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=19&rft.issue=2&rft.spage=183&rft.epage=210&rft_id=info:doi/10.1007%2Fs00037-010-0288-y&rft.externalDocID=10_1007_s00037_010_0288_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon