TRANSIT-EEG-A Framework for Cross-Subject Classification With Subject Specific Adaptation

Electroencephalography (EEG) is pivotal in monitoring and analyzing cerebral activity across diverse domains, including medical diagnostics, cognitive neuroscience, and brain-computer interfaces. However, the inherent intricacy of EEG signals and their subject-specific characteristics pose formidabl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive and developmental systems Vol. 17; no. 4; pp. 923 - 937
Main Authors Ahuja, Chirag, Sethia, Divyashikha
Format Journal Article
LanguageEnglish
Published IEEE 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) is pivotal in monitoring and analyzing cerebral activity across diverse domains, including medical diagnostics, cognitive neuroscience, and brain-computer interfaces. However, the inherent intricacy of EEG signals and their subject-specific characteristics pose formidable challenges in devising robust and generalizable classification models. Traditional EEG signal classification paradigms rely on extensive subject-specific datasets. Also, the domain adaption for new subjects often leads to "catastrophic forgetting," thereby diminishing the performance of model trained on prior subjects. This article proposes a novel framework, transfer, and robust adaptation of new subjects in EEG technology (TRANSIT-EEG), designed to adapt adeptly to new subjects. TRANSIT-EEG demonstrates resilience to subject-specific artifacts by integrating synthetic data generation using the proposed subject-specific augmentation model - individualized diffusion probabilistic model (IDPM). Also, it employs a robust self organising graph attention transformer (SOGAT) that dynamically constructs a graph for each subject, fostering a more accurate classification. Moreover, TRANSIT-EEG introduces adapter-based finetuning using low-rank adaptation (LoRA) for new subjects, enriching the adaptation process. The TRANSIT-EEG framework presents a promising avenue for advancing the realm of EEG signal classification. Evaluation of widely studied datasets, specifically focusing on two significant tasks, SEED for emotion recognition and PhyAat for auditory activity recognition, substantiates the efficacy and versatility of TRANSIT-EEG. This validation indicates a substantial stride toward achieving more generalizable and accurate EEG signal classification.
AbstractList Electroencephalography (EEG) is pivotal in monitoring and analyzing cerebral activity across diverse domains, including medical diagnostics, cognitive neuroscience, and brain-computer interfaces. However, the inherent intricacy of EEG signals and their subject-specific characteristics pose formidable challenges in devising robust and generalizable classification models. Traditional EEG signal classification paradigms rely on extensive subject-specific datasets. Also, the domain adaption for new subjects often leads to "catastrophic forgetting," thereby diminishing the performance of model trained on prior subjects. This article proposes a novel framework, transfer, and robust adaptation of new subjects in EEG technology (TRANSIT-EEG), designed to adapt adeptly to new subjects. TRANSIT-EEG demonstrates resilience to subject-specific artifacts by integrating synthetic data generation using the proposed subject-specific augmentation model - individualized diffusion probabilistic model (IDPM). Also, it employs a robust self organising graph attention transformer (SOGAT) that dynamically constructs a graph for each subject, fostering a more accurate classification. Moreover, TRANSIT-EEG introduces adapter-based finetuning using low-rank adaptation (LoRA) for new subjects, enriching the adaptation process. The TRANSIT-EEG framework presents a promising avenue for advancing the realm of EEG signal classification. Evaluation of widely studied datasets, specifically focusing on two significant tasks, SEED for emotion recognition and PhyAat for auditory activity recognition, substantiates the efficacy and versatility of TRANSIT-EEG. This validation indicates a substantial stride toward achieving more generalizable and accurate EEG signal classification.
Author Sethia, Divyashikha
Ahuja, Chirag
Author_xml – sequence: 1
  givenname: Chirag
  orcidid: 0000-0002-3683-0845
  surname: Ahuja
  fullname: Ahuja, Chirag
  email: chiragahuja_2k20phdco13@dtu.ac.in
  organization: Department of Computer Science and Engineering, Delhi Technology University, Delhi, India
– sequence: 2
  givenname: Divyashikha
  orcidid: 0000-0002-8562-5530
  surname: Sethia
  fullname: Sethia, Divyashikha
  email: divyashikha@dtu.ac.in
  organization: Department of Software Engineering, Delhi Technology University, Delhi, India
BookMark eNpNkF9LwzAUxYNMcM59AMGHfIHMm2RNmsdStzkYCrYiPpU0f7BzW0dSEb-9q5vi071wzrnc87tEg127cwhdU5hQCuq2zO-KCQOWTHjClBDqDA0Zl4qkiqvB387gAo1jXAMAFVymUzlEr-VT9lAsSzKbLUiG50Fv3Wcb3rFvA85DGyMpPuq1Mx3ONzrGxjdGd027wy9N94Z_tWLvTC_hzOp992O4Qudeb6Ibn-YIPc9nZX5PVo-LZZ6tiKGcd4SB4SCV8SxJbTJNreaCg5O18L72tfYgjOKitloC49pIaZ0FdyjKNKXG8hGix7um_zY4X-1Ds9Xhq6JQ9XiqHk_V46lOeA6Zm2Omcc7986dcJSrh36w2YyE
CODEN ITCDA4
Cites_doi 10.1109/INFOTEH60418.2024.10495995
10.1109/TCDS.2020.2999337
10.1109/TAFFC.2022.3170369
10.1088/1741-2552/ad200e
10.1109/ACCESS.2019.2939288
10.1016/0013-4694(94)90095-7
10.1109/ICASSP40776.2020.9053405
10.1109/ICASSP49357.2023.10095837
10.1109/TAFFC.2020.2994159
10.1109/EMBC46164.2021.9630194
10.3390/s22093331
10.1109/EMBC48229.2022.9871984
10.1016/j.biopsycho.2009.10.007
10.1109/CVPRW63382.2024.00546
10.3389/fpsyg.2017.01454
10.3389/fnsys.2021.729707
10.3389/fnins.2021.611653
10.1088/1741-2552/aac960
10.1109/IJCNN.2019.8852227
10.1109/NER.2013.6695876
10.1109/BIBM49941.2020.9313436
10.1109/icassp49357.2023.10095837
10.1016/j.schres.2006.06.028
10.1088/1741-2552/abb5be
10.1016/s0925-2312(99)00126-5
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCDS.2025.3529669
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 937
ExternalDocumentID 10_1109_TCDS_2025_3529669
10839595
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c133t-20c3079cf258d548da3630e7b6ffbfbaf06c936bda7023ac77ded0e3522a11cd3
IEDL.DBID RIE
ISSN 2379-8920
IngestDate Thu Aug 14 00:17:15 EDT 2025
Wed Aug 13 06:23:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c133t-20c3079cf258d548da3630e7b6ffbfbaf06c936bda7023ac77ded0e3522a11cd3
ORCID 0000-0002-3683-0845
0000-0002-8562-5530
PageCount 15
ParticipantIDs crossref_primary_10_1109_TCDS_2025_3529669
ieee_primary_10839595
PublicationCentury 2000
PublicationDate 2025-Aug.
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug.
PublicationDecade 2020
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref34
ref37
ref31
ref30
ref11
ref33
ref10
ref32
(ref15) 2023
ref2
ref1
ref17
ref39
ref38
ref19
ref18
He (ref22) 2021
ref24
Luo (ref21) 2020
ref25
Bajaj (ref16) 2020
Louizos (ref20) 2019
Song (ref26) 2021
Veličković (ref7) 2018
Ren (ref36) 2024
Hu (ref23) 2021
Torma (ref13) 2023
Dhariwal (ref12) 2021; 34
ref27
Kipf (ref14) 2017
ref8
ref9
ref4
ref3
ref6
ref5
Houlsby (ref28) 2019
ref40
Nichol (ref29) 2021; 139
References_xml – ident: ref25
  doi: 10.1109/INFOTEH60418.2024.10495995
– ident: ref6
  doi: 10.1109/TCDS.2020.2999337
– year: 2024
  ident: ref36
  article-title: Analyzing and reducing catastrophic forgetting in parameter efficient tuning
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2018
  ident: ref7
  article-title: Graph attention networks
– ident: ref10
  doi: 10.1109/TAFFC.2022.3170369
– ident: ref11
  doi: 10.1088/1741-2552/ad200e
– ident: ref4
  doi: 10.1109/ACCESS.2019.2939288
– volume: 139
  start-page: 8162
  volume-title: Proc. 38th Int. Conf. Mach. Learn.
  year: 2021
  ident: ref29
  article-title: Improved denoising diffusion probabilistic models
– ident: ref1
  doi: 10.1016/0013-4694(94)90095-7
– year: 2023
  ident: ref15
  article-title: SEED Dataset
– ident: ref30
  doi: 10.1109/ICASSP40776.2020.9053405
– ident: ref37
  doi: 10.1109/ICASSP49357.2023.10095837
– ident: ref5
  doi: 10.1109/TAFFC.2020.2994159
– volume: 34
  start-page: 8780
  year: 2021
  ident: ref12
  article-title: Diffusion models beat gans on image synthesis
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref17
  doi: 10.1109/EMBC46164.2021.9630194
– ident: ref2
  doi: 10.3390/s22093331
– ident: ref18
  doi: 10.1109/EMBC48229.2022.9871984
– ident: ref40
  doi: 10.1016/j.biopsycho.2009.10.007
– ident: ref24
  doi: 10.1109/CVPRW63382.2024.00546
– year: 2019
  ident: ref20
  article-title: A recurrent VAE architecture for capturing temporal dynamics in EEG signals
– ident: ref39
  doi: 10.3389/fpsyg.2017.01454
– ident: ref34
  doi: 10.3389/fnsys.2021.729707
– ident: ref3
  doi: 10.3389/fnins.2021.611653
– ident: ref33
  doi: 10.1088/1741-2552/aac960
– year: 2021
  ident: ref23
  article-title: LoRA: Low-rank adaptation of large language models
– ident: ref8
  doi: 10.1109/ACCESS.2019.2939288
– year: 2023
  ident: ref13
  article-title: Brain signal generation and data augmentation with a single-step diffusion probabilistic model
– year: 2021
  ident: ref26
  article-title: Common spatial generative adversarial networks based EEG data augmentation for cross-subject brain-computer interface
– ident: ref19
  doi: 10.1109/IJCNN.2019.8852227
– volume-title: Proc. 36th Int. Conf. Mach. Learn. (ICML)
  year: 2019
  ident: ref28
  article-title: Parameter-efficient transfer learning for NLP
– year: 2020
  ident: ref16
  article-title: PhyAAt: Physiology of auditory attention to speech dataset
– ident: ref35
  doi: 10.1109/NER.2013.6695876
– start-page: 2208
  volume-title: Proc. 59th Annu. Meeting Assoc. Comput. Linguistics 11th Int. Joint Conf. Natural Lang. Process. (Volume 1: Long Papers)
  year: 2021
  ident: ref22
  article-title: On the effectiveness of adapter-based tuning for pretrained language model adaptation
– ident: ref27
  doi: 10.1109/BIBM49941.2020.9313436
– ident: ref38
  doi: 10.1109/icassp49357.2023.10095837
– year: 2020
  ident: ref21
  article-title: EEG signal generation using adversarial variational autoencoders for improved realism and diversity
– ident: ref31
  doi: 10.1016/j.schres.2006.06.028
– ident: ref9
  doi: 10.1088/1741-2552/abb5be
– ident: ref32
  doi: 10.1016/s0925-2312(99)00126-5
– volume-title: Proc. Int. Conf. Learn. Representations (ICLR)
  year: 2017
  ident: ref14
  article-title: Semi-supervised classification with graph convolutional networks
SSID ssj0001637847
Score 2.3555152
Snippet Electroencephalography (EEG) is pivotal in monitoring and analyzing cerebral activity across diverse domains, including medical diagnostics, cognitive...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 923
SubjectTerms Accuracy
Adaptation models
Analytical models
Brain modeling
Cross-subject transfer
Data augmentation
Data models
diffusion model
Electroencephalography
few-shot learning
graph neural network (GNN)
Graph neural networks
LoRA
Pattern classification
Training
transfer learning
Title TRANSIT-EEG-A Framework for Cross-Subject Classification With Subject Specific Adaptation
URI https://ieeexplore.ieee.org/document/10839595
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT158tWJ9sQfxIGxNsk2yewy1tQr2YFusp7BPFDEtkh701zu7abAIgreQ3cAys5uZb-abHYQuwEulqYopsYGJSE9yS5ihIVHMJoILJYQPXTyMk9Gsdz-P5-tidV8LY4zx5DPTdY8-l68XauVCZXDCwZzHPG6gBiC3qljrJ6CS0JT5hmIRTTlhPKqzmGHAr6f9mwmgwSjuUpdpdPzmDTu00VjF25XhLhrXK6roJG_dVSm76uvXZY3_XvIe2ll7mDirtsQ-2jLFAWplBaDr9098iT3n0wfTW-h5-piNJ3dTMhjckgwPa6YWBlcW993CCfxZXKgG--6ZjlfkVYmfXssXXI_5JvYwhDMtllVuv41mw8G0PyLrZgtEAUwt4bQoOO5c2ShmGmCMFjShgUllYq20UtggUZwmUosUzLxQaaqNDozz30QYKk0PUbNYFOYIYWVsEBqpmWKmBw4EV6EVAEuYZJQKyjroqhZ9vqzu1Mg9Fgl47vSUOz3laz11UNtJdWNiJdDjP96foG33ecXRO0XN8mNlzsBvKOW53y_fkwq_BA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9NAEB2V9gAXoLSoLaXsATggbbC9sb174GClSRPa5kBcUU7ufqoIkUTFEWr_C3-F38bsOi4RUo-VuFn2aiXvPHvezLzdAXiNLJXlOmXURTahXSUc5ZbFVHOXSSG1lCF1cTrOhmfdj-fp-Rr8ut0LY60N4jPb8Zehlm9meuFTZfiFoztPRauhPLbXPzFC-_FhdIjmfJMkg37ZG9JlEwGqMfyqEQUaYSy0S1JukJ4byTIW2VxlzimnpIsyLVimjMzRfUmd58aayHpeIuNYG4bzPoANJBpp0mwP-5vCyVjOQwuzhOWCcpG0ddM4Eu_L3uEE488k7TBf2_SK6hXPt9LKJXiywRP43a5BI2D51lnUqqNv_jke8r9dpKfweMmhSdGAfhPW7PQZbBVTWc--X5O3JKhaQ7lgC76Un4rxZFTSfv-IFmTQatEIknXS8wtF8d_pk1Ek9Af1yqkAVvL5a31J2meTuQ3iRVIYOW_UC9twdi8v-RzWp7Op3QGirYtiqwzX3HaRIgkdO4mBF1ecMcn4LrxrTV3Nm1NDqhBtRaLyuKg8LqolLnZh21txZWBjwL077r-Ch8Py9KQ6GY2PX8AjP1WjSNyH9fpqYV8iS6rVQcAqgYv7tvsf0CIeLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRANSIT-EEG-A+Framework+for+Cross-Subject+Classification+With+Subject+Specific+Adaptation&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Ahuja%2C+Chirag&rft.au=Sethia%2C+Divyashikha&rft.date=2025-08-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=17&rft.issue=4&rft.spage=923&rft.epage=937&rft_id=info:doi/10.1109%2FTCDS.2025.3529669&rft.externalDocID=10839595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon