TRANSIT-EEG-A Framework for Cross-Subject Classification With Subject Specific Adaptation
Electroencephalography (EEG) is pivotal in monitoring and analyzing cerebral activity across diverse domains, including medical diagnostics, cognitive neuroscience, and brain-computer interfaces. However, the inherent intricacy of EEG signals and their subject-specific characteristics pose formidabl...
Saved in:
Published in | IEEE transactions on cognitive and developmental systems Vol. 17; no. 4; pp. 923 - 937 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalography (EEG) is pivotal in monitoring and analyzing cerebral activity across diverse domains, including medical diagnostics, cognitive neuroscience, and brain-computer interfaces. However, the inherent intricacy of EEG signals and their subject-specific characteristics pose formidable challenges in devising robust and generalizable classification models. Traditional EEG signal classification paradigms rely on extensive subject-specific datasets. Also, the domain adaption for new subjects often leads to "catastrophic forgetting," thereby diminishing the performance of model trained on prior subjects. This article proposes a novel framework, transfer, and robust adaptation of new subjects in EEG technology (TRANSIT-EEG), designed to adapt adeptly to new subjects. TRANSIT-EEG demonstrates resilience to subject-specific artifacts by integrating synthetic data generation using the proposed subject-specific augmentation model - individualized diffusion probabilistic model (IDPM). Also, it employs a robust self organising graph attention transformer (SOGAT) that dynamically constructs a graph for each subject, fostering a more accurate classification. Moreover, TRANSIT-EEG introduces adapter-based finetuning using low-rank adaptation (LoRA) for new subjects, enriching the adaptation process. The TRANSIT-EEG framework presents a promising avenue for advancing the realm of EEG signal classification. Evaluation of widely studied datasets, specifically focusing on two significant tasks, SEED for emotion recognition and PhyAat for auditory activity recognition, substantiates the efficacy and versatility of TRANSIT-EEG. This validation indicates a substantial stride toward achieving more generalizable and accurate EEG signal classification. |
---|---|
AbstractList | Electroencephalography (EEG) is pivotal in monitoring and analyzing cerebral activity across diverse domains, including medical diagnostics, cognitive neuroscience, and brain-computer interfaces. However, the inherent intricacy of EEG signals and their subject-specific characteristics pose formidable challenges in devising robust and generalizable classification models. Traditional EEG signal classification paradigms rely on extensive subject-specific datasets. Also, the domain adaption for new subjects often leads to "catastrophic forgetting," thereby diminishing the performance of model trained on prior subjects. This article proposes a novel framework, transfer, and robust adaptation of new subjects in EEG technology (TRANSIT-EEG), designed to adapt adeptly to new subjects. TRANSIT-EEG demonstrates resilience to subject-specific artifacts by integrating synthetic data generation using the proposed subject-specific augmentation model - individualized diffusion probabilistic model (IDPM). Also, it employs a robust self organising graph attention transformer (SOGAT) that dynamically constructs a graph for each subject, fostering a more accurate classification. Moreover, TRANSIT-EEG introduces adapter-based finetuning using low-rank adaptation (LoRA) for new subjects, enriching the adaptation process. The TRANSIT-EEG framework presents a promising avenue for advancing the realm of EEG signal classification. Evaluation of widely studied datasets, specifically focusing on two significant tasks, SEED for emotion recognition and PhyAat for auditory activity recognition, substantiates the efficacy and versatility of TRANSIT-EEG. This validation indicates a substantial stride toward achieving more generalizable and accurate EEG signal classification. |
Author | Sethia, Divyashikha Ahuja, Chirag |
Author_xml | – sequence: 1 givenname: Chirag orcidid: 0000-0002-3683-0845 surname: Ahuja fullname: Ahuja, Chirag email: chiragahuja_2k20phdco13@dtu.ac.in organization: Department of Computer Science and Engineering, Delhi Technology University, Delhi, India – sequence: 2 givenname: Divyashikha orcidid: 0000-0002-8562-5530 surname: Sethia fullname: Sethia, Divyashikha email: divyashikha@dtu.ac.in organization: Department of Software Engineering, Delhi Technology University, Delhi, India |
BookMark | eNpNkF9LwzAUxYNMcM59AMGHfIHMm2RNmsdStzkYCrYiPpU0f7BzW0dSEb-9q5vi071wzrnc87tEg127cwhdU5hQCuq2zO-KCQOWTHjClBDqDA0Zl4qkiqvB387gAo1jXAMAFVymUzlEr-VT9lAsSzKbLUiG50Fv3Wcb3rFvA85DGyMpPuq1Mx3ONzrGxjdGd027wy9N94Z_tWLvTC_hzOp992O4Qudeb6Ibn-YIPc9nZX5PVo-LZZ6tiKGcd4SB4SCV8SxJbTJNreaCg5O18L72tfYgjOKitloC49pIaZ0FdyjKNKXG8hGix7um_zY4X-1Ds9Xhq6JQ9XiqHk_V46lOeA6Zm2Omcc7986dcJSrh36w2YyE |
CODEN | ITCDA4 |
Cites_doi | 10.1109/INFOTEH60418.2024.10495995 10.1109/TCDS.2020.2999337 10.1109/TAFFC.2022.3170369 10.1088/1741-2552/ad200e 10.1109/ACCESS.2019.2939288 10.1016/0013-4694(94)90095-7 10.1109/ICASSP40776.2020.9053405 10.1109/ICASSP49357.2023.10095837 10.1109/TAFFC.2020.2994159 10.1109/EMBC46164.2021.9630194 10.3390/s22093331 10.1109/EMBC48229.2022.9871984 10.1016/j.biopsycho.2009.10.007 10.1109/CVPRW63382.2024.00546 10.3389/fpsyg.2017.01454 10.3389/fnsys.2021.729707 10.3389/fnins.2021.611653 10.1088/1741-2552/aac960 10.1109/IJCNN.2019.8852227 10.1109/NER.2013.6695876 10.1109/BIBM49941.2020.9313436 10.1109/icassp49357.2023.10095837 10.1016/j.schres.2006.06.028 10.1088/1741-2552/abb5be 10.1016/s0925-2312(99)00126-5 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TCDS.2025.3529669 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2379-8939 |
EndPage | 937 |
ExternalDocumentID | 10_1109_TCDS_2025_3529669 10839595 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c133t-20c3079cf258d548da3630e7b6ffbfbaf06c936bda7023ac77ded0e3522a11cd3 |
IEDL.DBID | RIE |
ISSN | 2379-8920 |
IngestDate | Thu Aug 14 00:17:15 EDT 2025 Wed Aug 13 06:23:04 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c133t-20c3079cf258d548da3630e7b6ffbfbaf06c936bda7023ac77ded0e3522a11cd3 |
ORCID | 0000-0002-3683-0845 0000-0002-8562-5530 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TCDS_2025_3529669 ieee_primary_10839595 |
PublicationCentury | 2000 |
PublicationDate | 2025-Aug. |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug. |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on cognitive and developmental systems |
PublicationTitleAbbrev | TCDS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref34 ref37 ref31 ref30 ref11 ref33 ref10 ref32 (ref15) 2023 ref2 ref1 ref17 ref39 ref38 ref19 ref18 He (ref22) 2021 ref24 Luo (ref21) 2020 ref25 Bajaj (ref16) 2020 Louizos (ref20) 2019 Song (ref26) 2021 Veličković (ref7) 2018 Ren (ref36) 2024 Hu (ref23) 2021 Torma (ref13) 2023 Dhariwal (ref12) 2021; 34 ref27 Kipf (ref14) 2017 ref8 ref9 ref4 ref3 ref6 ref5 Houlsby (ref28) 2019 ref40 Nichol (ref29) 2021; 139 |
References_xml | – ident: ref25 doi: 10.1109/INFOTEH60418.2024.10495995 – ident: ref6 doi: 10.1109/TCDS.2020.2999337 – year: 2024 ident: ref36 article-title: Analyzing and reducing catastrophic forgetting in parameter efficient tuning – volume-title: Proc. Int. Conf. Learn. Representations year: 2018 ident: ref7 article-title: Graph attention networks – ident: ref10 doi: 10.1109/TAFFC.2022.3170369 – ident: ref11 doi: 10.1088/1741-2552/ad200e – ident: ref4 doi: 10.1109/ACCESS.2019.2939288 – volume: 139 start-page: 8162 volume-title: Proc. 38th Int. Conf. Mach. Learn. year: 2021 ident: ref29 article-title: Improved denoising diffusion probabilistic models – ident: ref1 doi: 10.1016/0013-4694(94)90095-7 – year: 2023 ident: ref15 article-title: SEED Dataset – ident: ref30 doi: 10.1109/ICASSP40776.2020.9053405 – ident: ref37 doi: 10.1109/ICASSP49357.2023.10095837 – ident: ref5 doi: 10.1109/TAFFC.2020.2994159 – volume: 34 start-page: 8780 year: 2021 ident: ref12 article-title: Diffusion models beat gans on image synthesis publication-title: Adv. Neural Inf. Process. Syst. – ident: ref17 doi: 10.1109/EMBC46164.2021.9630194 – ident: ref2 doi: 10.3390/s22093331 – ident: ref18 doi: 10.1109/EMBC48229.2022.9871984 – ident: ref40 doi: 10.1016/j.biopsycho.2009.10.007 – ident: ref24 doi: 10.1109/CVPRW63382.2024.00546 – year: 2019 ident: ref20 article-title: A recurrent VAE architecture for capturing temporal dynamics in EEG signals – ident: ref39 doi: 10.3389/fpsyg.2017.01454 – ident: ref34 doi: 10.3389/fnsys.2021.729707 – ident: ref3 doi: 10.3389/fnins.2021.611653 – ident: ref33 doi: 10.1088/1741-2552/aac960 – year: 2021 ident: ref23 article-title: LoRA: Low-rank adaptation of large language models – ident: ref8 doi: 10.1109/ACCESS.2019.2939288 – year: 2023 ident: ref13 article-title: Brain signal generation and data augmentation with a single-step diffusion probabilistic model – year: 2021 ident: ref26 article-title: Common spatial generative adversarial networks based EEG data augmentation for cross-subject brain-computer interface – ident: ref19 doi: 10.1109/IJCNN.2019.8852227 – volume-title: Proc. 36th Int. Conf. Mach. Learn. (ICML) year: 2019 ident: ref28 article-title: Parameter-efficient transfer learning for NLP – year: 2020 ident: ref16 article-title: PhyAAt: Physiology of auditory attention to speech dataset – ident: ref35 doi: 10.1109/NER.2013.6695876 – start-page: 2208 volume-title: Proc. 59th Annu. Meeting Assoc. Comput. Linguistics 11th Int. Joint Conf. Natural Lang. Process. (Volume 1: Long Papers) year: 2021 ident: ref22 article-title: On the effectiveness of adapter-based tuning for pretrained language model adaptation – ident: ref27 doi: 10.1109/BIBM49941.2020.9313436 – ident: ref38 doi: 10.1109/icassp49357.2023.10095837 – year: 2020 ident: ref21 article-title: EEG signal generation using adversarial variational autoencoders for improved realism and diversity – ident: ref31 doi: 10.1016/j.schres.2006.06.028 – ident: ref9 doi: 10.1088/1741-2552/abb5be – ident: ref32 doi: 10.1016/s0925-2312(99)00126-5 – volume-title: Proc. Int. Conf. Learn. Representations (ICLR) year: 2017 ident: ref14 article-title: Semi-supervised classification with graph convolutional networks |
SSID | ssj0001637847 |
Score | 2.3555152 |
Snippet | Electroencephalography (EEG) is pivotal in monitoring and analyzing cerebral activity across diverse domains, including medical diagnostics, cognitive... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 923 |
SubjectTerms | Accuracy Adaptation models Analytical models Brain modeling Cross-subject transfer Data augmentation Data models diffusion model Electroencephalography few-shot learning graph neural network (GNN) Graph neural networks LoRA Pattern classification Training transfer learning |
Title | TRANSIT-EEG-A Framework for Cross-Subject Classification With Subject Specific Adaptation |
URI | https://ieeexplore.ieee.org/document/10839595 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT158tWJ9sQfxIGxNsk2yewy1tQr2YFusp7BPFDEtkh701zu7abAIgreQ3cAys5uZb-abHYQuwEulqYopsYGJSE9yS5ihIVHMJoILJYQPXTyMk9Gsdz-P5-tidV8LY4zx5DPTdY8-l68XauVCZXDCwZzHPG6gBiC3qljrJ6CS0JT5hmIRTTlhPKqzmGHAr6f9mwmgwSjuUpdpdPzmDTu00VjF25XhLhrXK6roJG_dVSm76uvXZY3_XvIe2ll7mDirtsQ-2jLFAWplBaDr9098iT3n0wfTW-h5-piNJ3dTMhjckgwPa6YWBlcW993CCfxZXKgG--6ZjlfkVYmfXssXXI_5JvYwhDMtllVuv41mw8G0PyLrZgtEAUwt4bQoOO5c2ShmGmCMFjShgUllYq20UtggUZwmUosUzLxQaaqNDozz30QYKk0PUbNYFOYIYWVsEBqpmWKmBw4EV6EVAEuYZJQKyjroqhZ9vqzu1Mg9Fgl47vSUOz3laz11UNtJdWNiJdDjP96foG33ecXRO0XN8mNlzsBvKOW53y_fkwq_BA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9NAEB2V9gAXoLSoLaXsATggbbC9sb174GClSRPa5kBcUU7ufqoIkUTFEWr_C3-F38bsOi4RUo-VuFn2aiXvPHvezLzdAXiNLJXlOmXURTahXSUc5ZbFVHOXSSG1lCF1cTrOhmfdj-fp-Rr8ut0LY60N4jPb8Zehlm9meuFTZfiFoztPRauhPLbXPzFC-_FhdIjmfJMkg37ZG9JlEwGqMfyqEQUaYSy0S1JukJ4byTIW2VxlzimnpIsyLVimjMzRfUmd58aayHpeIuNYG4bzPoANJBpp0mwP-5vCyVjOQwuzhOWCcpG0ddM4Eu_L3uEE488k7TBf2_SK6hXPt9LKJXiywRP43a5BI2D51lnUqqNv_jke8r9dpKfweMmhSdGAfhPW7PQZbBVTWc--X5O3JKhaQ7lgC76Un4rxZFTSfv-IFmTQatEIknXS8wtF8d_pk1Ek9Af1yqkAVvL5a31J2meTuQ3iRVIYOW_UC9twdi8v-RzWp7Op3QGirYtiqwzX3HaRIgkdO4mBF1ecMcn4LrxrTV3Nm1NDqhBtRaLyuKg8LqolLnZh21txZWBjwL077r-Ch8Py9KQ6GY2PX8AjP1WjSNyH9fpqYV8iS6rVQcAqgYv7tvsf0CIeLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRANSIT-EEG-A+Framework+for+Cross-Subject+Classification+With+Subject+Specific+Adaptation&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Ahuja%2C+Chirag&rft.au=Sethia%2C+Divyashikha&rft.date=2025-08-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=17&rft.issue=4&rft.spage=923&rft.epage=937&rft_id=info:doi/10.1109%2FTCDS.2025.3529669&rft.externalDocID=10839595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon |