Accuracy Analysis on Solution of Initial Value Problems of Ordinary Differential Equations for Some Numerical Methods with Different Step Sizes

In this article, three numerical methods namely Euler’s, Modified Euler, and Runge-Kutta method have been discussed, to solve the initial value problem of ordinary differential equations. The main goal of this research paper is to find out the accurate results of the initial value problem (IVP) of o...

Full description

Saved in:
Bibliographic Details
Published inInternational Annals of Science Vol. 10; no. 1; pp. 118 - 133
Main Authors Arefin, Mohammad Asif, Gain, Biswajit, Karim, Rezaul
Format Journal Article
LanguageEnglish
Published 07.03.2021
Online AccessGet full text
ISSN2456-7132
2456-7132
DOI10.21467/ias.10.1.118-133

Cover

Loading…
Abstract In this article, three numerical methods namely Euler’s, Modified Euler, and Runge-Kutta method have been discussed, to solve the initial value problem of ordinary differential equations. The main goal of this research paper is to find out the accurate results of the initial value problem (IVP) of ordinary differential equations (ODE) by applying the proposed methods. To achieve this goal, solutions of some IVPs of ODEs have been done with the different step sizes by using the proposed three methods, and solutions for each step size are analyzed very sharply. To ensure the accuracy of the proposed methods and to determine the accurate results, numerical solutions are compared with the exact solutions. It is observed that numerical solutions are best fitted with exact solutions when the taken step size is very much small. Consequently, all the proposed three methods are quite efficient and accurate for solving the IVPs of ODEs. Error estimation plays a significant role in the establishment of a comparison among the proposed three methods. On the subject of accuracy and efficiency, comparison is successfully implemented among the proposed three methods.
AbstractList In this article, three numerical methods namely Euler’s, Modified Euler, and Runge-Kutta method have been discussed, to solve the initial value problem of ordinary differential equations. The main goal of this research paper is to find out the accurate results of the initial value problem (IVP) of ordinary differential equations (ODE) by applying the proposed methods. To achieve this goal, solutions of some IVPs of ODEs have been done with the different step sizes by using the proposed three methods, and solutions for each step size are analyzed very sharply. To ensure the accuracy of the proposed methods and to determine the accurate results, numerical solutions are compared with the exact solutions. It is observed that numerical solutions are best fitted with exact solutions when the taken step size is very much small. Consequently, all the proposed three methods are quite efficient and accurate for solving the IVPs of ODEs. Error estimation plays a significant role in the establishment of a comparison among the proposed three methods. On the subject of accuracy and efficiency, comparison is successfully implemented among the proposed three methods.
Author Karim, Rezaul
Gain, Biswajit
Arefin, Mohammad Asif
Author_xml – sequence: 1
  givenname: Mohammad Asif
  orcidid: 0000-0002-2892-1683
  surname: Arefin
  fullname: Arefin, Mohammad Asif
  organization: Department of Mathematics, Jashore University of Science and Technology
– sequence: 2
  givenname: Biswajit
  orcidid: 0000-0003-3651-6220
  surname: Gain
  fullname: Gain, Biswajit
  organization: Department of Mathematics, Jashore University of Science and Technology, Jashore-7408, Bangladesh
– sequence: 3
  givenname: Rezaul
  orcidid: 0000-0002-3986-2068
  surname: Karim
  fullname: Karim, Rezaul
  organization: Department of Mathematics, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
BookMark eNp9UMtOwzAQtFCRKKUfwM0_kOJHYifHqhSoVChSgWvkOLZqyYmLnQiVn-CXcQoSiAOnndXszO7OORi1rlUAXGI0Izhl_MqIMIsNnmGcJ5jSEzAmacYSjikZ_cJnYBqCqVCaMkTzjI3Bx1zK3gt5gPNW2EMwAboWbp3tOxOB03DVms4IC1-E7RV89K6yqgkDs_G1aYU_wGujtfKqPc4tX3sxaAPUzkenRsGHvlHeyEjeq27n6gDfTLf7kcFtp_Zwa95VuACnWtigpt91Ap5vlk-Lu2S9uV0t5utExvdoUnOkiozkDDEsaUErpjkmKRK5kpwjwmsWqTqjBFFK0opkmjNaZ0VaqbwiBZ0A_uUrvQvBK11K0x3v7rwwtsSoPEZbxmiHBpcx2nLYPQH4j3LvTRNj-EfzCY_8gA8
CitedBy_id crossref_primary_10_1155_2022_2895023
crossref_primary_10_1007_s12190_024_02087_3
Cites_doi 10.1002/num.20691
10.4236/ajcm.2015.53034
10.1002/nme.1620320502
10.11648/j.pamj.20200902.11
10.1680/wama.2009.162.3.199
10.11648/j.acm.20170606.12
10.9790/5728-0132531
10.5539/jmr.v7n3p41
10.1016/0045-7949(92)90121-F
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.21467/ias.10.1.118-133
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2456-7132
EndPage 133
ExternalDocumentID 10_21467_ias_10_1_118_133
GroupedDBID AAFWJ
AAYXX
CITATION
M~E
ID FETCH-LOGICAL-c1333-d70e95286061c393b6f71240a8ec77027d6606d53203324b25f763d594be8b293
ISSN 2456-7132
IngestDate Tue Jul 01 01:13:34 EDT 2025
Thu Apr 24 22:56:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1333-d70e95286061c393b6f71240a8ec77027d6606d53203324b25f763d594be8b293
ORCID 0000-0002-2892-1683
0000-0003-3651-6220
0000-0002-3986-2068
OpenAccessLink https://journals.aijr.org/index.php/ias/article/download/3403/375
PageCount 16
ParticipantIDs crossref_citationtrail_10_21467_ias_10_1_118_133
crossref_primary_10_21467_ias_10_1_118_133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-07
PublicationDateYYYYMMDD 2021-03-07
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-07
  day: 07
PublicationDecade 2020
PublicationTitle International Annals of Science
PublicationYear 2021
References ref13
ref12
ref15
ref14
ref11
ref10
ref0
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
– ident: ref2
– ident: ref9
  doi: 10.1002/num.20691
– ident: ref5
– ident: ref12
  doi: 10.4236/ajcm.2015.53034
– ident: ref7
  doi: 10.1002/nme.1620320502
– ident: ref11
  doi: 10.11648/j.pamj.20200902.11
– ident: ref6
  doi: 10.1680/wama.2009.162.3.199
– ident: ref3
  doi: 10.11648/j.acm.20170606.12
– ident: ref0
  doi: 10.9790/5728-0132531
– ident: ref1
  doi: 10.5539/jmr.v7n3p41
– ident: ref8
– ident: ref4
  doi: 10.1016/0045-7949(92)90121-F
– ident: ref10
– ident: ref15
– ident: ref14
SSID ssib044603856
Score 1.7536901
Snippet In this article, three numerical methods namely Euler’s, Modified Euler, and Runge-Kutta method have been discussed, to solve the initial value problem of...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 118
Title Accuracy Analysis on Solution of Initial Value Problems of Ordinary Differential Equations for Some Numerical Methods with Different Step Sizes
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCQIAoL_nAiSolGyexc6zaRRVoy6Et6i2yHUek6m5Ku1GlPfQv8HP69zrjR7IsrUS5RKvE8W52vszD_maGkI_KMJZrwSI0dlHKMwWvlKwinppCikopnmNy8vQg3z9Ov55kJ6PRzQprqVuobb28M6_kf6QK50CumCX7AMn2k8IJ-AzyhSNIGI7_JOMdrbsL7Nc-lBaBt9V_pUsSaRa4JP5DnnUGkwKweYwlb3wHYNhM3D3fIcWOm_zqPDUO2YeH7cxsHXRuTwcJsNhs2qfD9bdZntjWYbP0ZMTTgRo_rDQOZZq9LhlwZmpXxWDa_pSzmawAME3ds4KkbyffXF7J06an6HyDCN_1ZzbLQG30SxeJ427xQcPhpmsEUbJTx-aOc0FFx39B0enbsVfeznSPXU2NdauAvctxY7qRl9toJMBMQOTsxv5ZgXvNMvZ8RYiU7CQlTFFi2ASBkyhhikfkcQLxCVqE6fUkKDIIsXHD1TY2DI_jdtTtLJ_Xf8iKT7Ti3Bw9I099VEJ3HMSek5GZvyC_A7xogBdt5zTAi7Y19fCiFl40wAuvBHjRVXjRHl4U4EURXrSHF_Xwogiv4TaK8KIWXi_J8ZfJ0e5-5Pt3RBoeikUVj02RJQJi5LFmBVN5zcGdjKUwmvM44VUOlypsTcLAr1dJVoO1q7IiVUYo8ENfkY15OzevCQVHVmijc81ziEHqrGCiNsyklRRc5oZtkjj8g6X2xe2xx8pZea_oNsmn_pZzV9nl_sFvHjL4LXkyoP0d2VhcdOY9uK4L9cHC5BY7UpvY
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+Analysis+on+Solution+of+Initial+Value+Problems+of+Ordinary+Differential+Equations+for+Some+Numerical+Methods+with+Different+Step+Sizes&rft.jtitle=International+Annals+of+Science&rft.au=Arefin%2C+Mohammad+Asif&rft.au=Gain%2C+Biswajit&rft.au=Karim%2C+Rezaul&rft.date=2021-03-07&rft.issn=2456-7132&rft.eissn=2456-7132&rft.volume=10&rft.issue=1&rft.spage=118&rft.epage=133&rft_id=info:doi/10.21467%2Fias.10.1.118-133&rft.externalDBID=n%2Fa&rft.externalDocID=10_21467_ias_10_1_118_133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2456-7132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2456-7132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2456-7132&client=summon