Improved 1 H body imaging at 10.5 T: Validation and VOP ‐enabled imaging in vivo with a 16‐channel transceiver dipole array

To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo. The inaccuracy of t...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 91; no. 2; pp. 513 - 529
Main Authors Schmidt, Simon, Ertürk, M. Arcan, He, Xiaoxuan, Haluptzok, Tobey, Eryaman, Yiğitcan, Metzger, Gregory J.
Format Journal Article
LanguageEnglish
Published United States 01.02.2024
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.29866

Cover

Abstract To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo. The inaccuracy of the electromagnetic model of the array was quantified based on B and SAR data. Inter-subject variability was estimated using a new approach based on the relative SAR deviation of different RF shims between human body models. The pTx performance of the 16-channel array was assessed in simulation by comparison to a previously demonstrated 10-channel array. In vivo imaging of the prostate was performed demonstrating SAR-constrained static RF shimming and acquisition modes optimized for refocused echoes (AMORE). The model inaccuracy of 29% and the inter-subject variability of 85% resulted in a total safety factor of 1.91 for pelvis studies. For renal and cardiac imaging, inter-subject variabilities of 121% and 141% lead to total safety factors of 2.25 and 2.45, respectively. The shorter wavelength at 10.5 T supported the increased element density of the 16-channel array which in turn outperformed the 10-channel version for all investigated metrics. Peak 10 g local SAR reduction of more than 25% without a loss of image quality was achieved in vivo, allowing a theoretical improvement in measurement efficiency of up to 66%. By validating and characterizing a 16-channel dipole transceiver array, this work demonstrates, for the first time, a VOP-enabled RF coil for human torso imaging enabling increased pTx performance at 10.5 T.
AbstractList To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo. The inaccuracy of the electromagnetic model of the array was quantified based on B and SAR data. Inter-subject variability was estimated using a new approach based on the relative SAR deviation of different RF shims between human body models. The pTx performance of the 16-channel array was assessed in simulation by comparison to a previously demonstrated 10-channel array. In vivo imaging of the prostate was performed demonstrating SAR-constrained static RF shimming and acquisition modes optimized for refocused echoes (AMORE). The model inaccuracy of 29% and the inter-subject variability of 85% resulted in a total safety factor of 1.91 for pelvis studies. For renal and cardiac imaging, inter-subject variabilities of 121% and 141% lead to total safety factors of 2.25 and 2.45, respectively. The shorter wavelength at 10.5 T supported the increased element density of the 16-channel array which in turn outperformed the 10-channel version for all investigated metrics. Peak 10 g local SAR reduction of more than 25% without a loss of image quality was achieved in vivo, allowing a theoretical improvement in measurement efficiency of up to 66%. By validating and characterizing a 16-channel dipole transceiver array, this work demonstrates, for the first time, a VOP-enabled RF coil for human torso imaging enabling increased pTx performance at 10.5 T.
To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo.PURPOSETo increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo.The inaccuracy of the electromagnetic model of the array was quantified based on B1 + and SAR data. Inter-subject variability was estimated using a new approach based on the relative SAR deviation of different RF shims between human body models. The pTx performance of the 16-channel array was assessed in simulation by comparison to a previously demonstrated 10-channel array. In vivo imaging of the prostate was performed demonstrating SAR-constrained static RF shimming and acquisition modes optimized for refocused echoes (AMORE).METHODSThe inaccuracy of the electromagnetic model of the array was quantified based on B1 + and SAR data. Inter-subject variability was estimated using a new approach based on the relative SAR deviation of different RF shims between human body models. The pTx performance of the 16-channel array was assessed in simulation by comparison to a previously demonstrated 10-channel array. In vivo imaging of the prostate was performed demonstrating SAR-constrained static RF shimming and acquisition modes optimized for refocused echoes (AMORE).The model inaccuracy of 29% and the inter-subject variability of 85% resulted in a total safety factor of 1.91 for pelvis studies. For renal and cardiac imaging, inter-subject variabilities of 121% and 141% lead to total safety factors of 2.25 and 2.45, respectively. The shorter wavelength at 10.5 T supported the increased element density of the 16-channel array which in turn outperformed the 10-channel version for all investigated metrics. Peak 10 g local SAR reduction of more than 25% without a loss of image quality was achieved in vivo, allowing a theoretical improvement in measurement efficiency of up to 66%.RESULTSThe model inaccuracy of 29% and the inter-subject variability of 85% resulted in a total safety factor of 1.91 for pelvis studies. For renal and cardiac imaging, inter-subject variabilities of 121% and 141% lead to total safety factors of 2.25 and 2.45, respectively. The shorter wavelength at 10.5 T supported the increased element density of the 16-channel array which in turn outperformed the 10-channel version for all investigated metrics. Peak 10 g local SAR reduction of more than 25% without a loss of image quality was achieved in vivo, allowing a theoretical improvement in measurement efficiency of up to 66%.By validating and characterizing a 16-channel dipole transceiver array, this work demonstrates, for the first time, a VOP-enabled RF coil for human torso imaging enabling increased pTx performance at 10.5 T.CONCLUSIONSBy validating and characterizing a 16-channel dipole transceiver array, this work demonstrates, for the first time, a VOP-enabled RF coil for human torso imaging enabling increased pTx performance at 10.5 T.
Author He, Xiaoxuan
Eryaman, Yiğitcan
Schmidt, Simon
Haluptzok, Tobey
Metzger, Gregory J.
Ertürk, M. Arcan
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0003-1835-4002
  surname: Schmidt
  fullname: Schmidt, Simon
  organization: Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA
– sequence: 2
  givenname: M. Arcan
  surname: Ertürk
  fullname: Ertürk, M. Arcan
  organization: Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA
– sequence: 3
  givenname: Xiaoxuan
  orcidid: 0000-0003-0885-912X
  surname: He
  fullname: He, Xiaoxuan
  organization: Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA
– sequence: 4
  givenname: Tobey
  surname: Haluptzok
  fullname: Haluptzok, Tobey
  organization: Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA
– sequence: 5
  givenname: Yiğitcan
  surname: Eryaman
  fullname: Eryaman, Yiğitcan
  organization: Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA
– sequence: 6
  givenname: Gregory J.
  orcidid: 0000-0002-3187-6529
  surname: Metzger
  fullname: Metzger, Gregory J.
  organization: Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37705412$$D View this record in MEDLINE/PubMed
BookMark eNplkc9u1DAQxi1U1G5LD7wAmiMc0o4dO15zQxXQSpXKofRqTZJJa5Q4i5Pdak_wCDwjT1L3z15gLnP5fTPzzXco9uIYWYi3Ek8kojod0nCi3LKqXomFNEoVyji9JxZoNRaldPpAHE7TD0R0zup9cVBai0ZLtRC_LoZVGjfcgoRzqMd2C2Gg2xBvgWbICwxcf4Qb6kNLcxgjUGzh5uob_P39hyPVfVbuBCHCJmxGuA_zHRDIKjPNHcXIPcyJ4tRw2HCCNqzGnoFSou0b8bqjfuLjl34kvn_5fH12Xlxefb04-3RZNLJEVbA2lrkmWrK0xFVHzshOG9SuKVXXsSM0XeuwVrrOZZVDQ6qWWFLL2JVH4v3z3Oz255qn2Q8h39P3FHlcT14tK7101roqo-9e0HU9cOtXKRtMW797WgZOn4EmjdOUuPNNmJ--k12G3kv0j7H4HIt_iiUrPvyj2A39n30AuZ-OhQ
CitedBy_id crossref_primary_10_1002_mrm_30032
crossref_primary_10_3390_s24175793
crossref_primary_10_1002_mrm_30495
crossref_primary_10_1002_mrm_30476
crossref_primary_10_1002_mrm_30315
Cites_doi 10.1002/mrm.24794
10.1002/mrm.26704
10.1002/mrm.10353
10.1002/mrm.24138
10.1007/s10334‐022‐01013‐7
10.1002/mrm.27518
10.1002/mrm.25596
10.1063/1.1726676
10.1002/nbm.4457
10.1002/1522‐2586(200007)12:1<46::aid‐jmri6>3.3.co;2‐4
10.1002/mrm.22948
10.1002/mrm.28602
10.1002/mrm.26487
10.1002/mrm.22927
10.1002/cmr.b.21317
10.1002/mrm.21751
10.1002/mrm.25243
10.1002/nbm.3356
10.1088/0031‐9155/57/24/8153
10.1002/mrm.26153
10.1371/journal.pone.0222452
10.1016/j.mric.2020.10.001
10.1016/s0730‐725x(00)00143‐0
10.1002/mrm.24237
10.1002/mrm.21739
10.1088/0031‐9155/55/2/n01
10.1002/mrm.21834
10.1002/mrm.22423
10.1002/mrm.22978
10.1002/mrm.21120
10.1002/mrm.24935
10.1002/mrm.20978
10.1002/mrm.29318
10.1002/mrm.28131
10.1002/nbm.3290
10.1002/nbm.4874
10.1088/0031‐9155/59/18/5287
10.1002/mrm.24818
10.1002/mrm.28952
10.1016/0022‐2364(88)90131‐x
10.1002/mrm.26742
10.1161/circimaging.116.005460
10.1002/mrm.20321
10.1002/mrm.21895
10.1016/j.eururo.2015.08.052
10.1002/mrm.21476
10.1002/mrm.29215
10.1002/nbm.4515
10.1007/s10334‐020‐00890‐0
10.1109/tmi.2021.3103654
10.3978/j.issn.2223‐4292.2014.02.06
10.1109/tbme.2013.2241764
ContentType Journal Article
Copyright 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mrm.29866
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 529
ExternalDocumentID 37705412
10_1002_mrm_29866
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB029985
– fundername: NIBIB NIH HHS
  grantid: P41 EB027061
– fundername: NINDS NIH HHS
  grantid: R01 NS115180
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c1302-e457eebaa8e17ae6fa951f45049c32ffe9a05fd90b24bbbb72905a2b103ade0f3
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 01:24:59 EDT 2025
Mon Jul 21 06:06:50 EDT 2025
Tue Jul 01 04:27:07 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 10.5 T
parallel transmit
body imaging
ultra-high field imaging
MRI
validation
Language English
License 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1302-e457eebaa8e17ae6fa951f45049c32ffe9a05fd90b24bbbb72905a2b103ade0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3187-6529
0000-0003-0885-912X
0000-0003-1835-4002
PMID 37705412
PQID 2864897796
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2864897796
pubmed_primary_37705412
crossref_citationtrail_10_1002_mrm_29866
crossref_primary_10_1002_mrm_29866
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-00
2024-Feb
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
References e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Van de Moortele P‐F (e_1_2_7_40_1) 2009
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
International Electrotechnical Commission (IEC) (e_1_2_7_27_1) 2010
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
Kuehne A (e_1_2_7_54_1) 2020
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
Steensma B (e_1_2_7_45_1) 2020
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
Boulant N (e_1_2_7_29_1) 2017
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – ident: e_1_2_7_33_1
  doi: 10.1002/mrm.24794
– ident: e_1_2_7_50_1
  doi: 10.1002/mrm.26704
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.10353
– ident: e_1_2_7_46_1
  doi: 10.1002/mrm.24138
– ident: e_1_2_7_6_1
  doi: 10.1007/s10334‐022‐01013‐7
– ident: e_1_2_7_3_1
– ident: e_1_2_7_34_1
  doi: 10.1002/mrm.27518
– ident: e_1_2_7_13_1
  doi: 10.1002/mrm.25596
– ident: e_1_2_7_43_1
  doi: 10.1063/1.1726676
– ident: e_1_2_7_44_1
  doi: 10.1002/nbm.4457
– ident: e_1_2_7_17_1
  doi: 10.1002/1522‐2586(200007)12:1<46::aid‐jmri6>3.3.co;2‐4
– ident: e_1_2_7_55_1
  doi: 10.1002/mrm.22948
– ident: e_1_2_7_42_1
  doi: 10.1002/mrm.28602
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.26487
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.22927
– ident: e_1_2_7_2_1
– ident: e_1_2_7_30_1
  doi: 10.1002/cmr.b.21317
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.21751
– ident: e_1_2_7_49_1
  doi: 10.1002/mrm.25243
– ident: e_1_2_7_12_1
  doi: 10.1002/nbm.3356
– ident: e_1_2_7_56_1
  doi: 10.1088/0031‐9155/57/24/8153
– ident: e_1_2_7_59_1
  doi: 10.1002/mrm.26153
– ident: e_1_2_7_36_1
  doi: 10.1371/journal.pone.0222452
– ident: e_1_2_7_4_1
  doi: 10.1016/j.mric.2020.10.001
– ident: e_1_2_7_18_1
  doi: 10.1016/s0730‐725x(00)00143‐0
– ident: e_1_2_7_7_1
  doi: 10.1002/mrm.24237
– ident: e_1_2_7_23_1
  doi: 10.1002/mrm.21739
– ident: e_1_2_7_38_1
  doi: 10.1088/0031‐9155/55/2/n01
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.21834
– ident: e_1_2_7_52_1
  doi: 10.1002/mrm.22423
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.22978
– ident: e_1_2_7_41_1
  doi: 10.1002/mrm.21120
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.24935
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.20978
– ident: e_1_2_7_51_1
  doi: 10.1002/mrm.29318
– volume-title: Proceedings of the 29th Annual Meeting of the ISMRM
  year: 2020
  ident: e_1_2_7_45_1
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.28131
– ident: e_1_2_7_28_1
  doi: 10.1002/nbm.3290
– volume-title: Proceedings of the 26th Annual Meeting of the ISMRM
  year: 2017
  ident: e_1_2_7_29_1
– ident: e_1_2_7_35_1
  doi: 10.1002/nbm.4874
– ident: e_1_2_7_39_1
  doi: 10.1088/0031‐9155/59/18/5287
– ident: e_1_2_7_62_1
  doi: 10.1002/mrm.24818
– ident: e_1_2_7_58_1
  doi: 10.1002/mrm.28952
– ident: e_1_2_7_61_1
  doi: 10.1016/0022‐2364(88)90131‐x
– volume-title: Proceedings of the 26th Annual Meeting of the ISMRM
  year: 2020
  ident: e_1_2_7_54_1
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.26742
– ident: e_1_2_7_11_1
  doi: 10.1161/circimaging.116.005460
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.20321
– ident: e_1_2_7_10_1
  doi: 10.1002/mrm.21895
– ident: e_1_2_7_60_1
  doi: 10.1016/j.eururo.2015.08.052
– ident: e_1_2_7_5_1
  doi: 10.1002/mrm.21476
– ident: e_1_2_7_57_1
  doi: 10.1002/mrm.29215
– ident: e_1_2_7_26_1
  doi: 10.1002/nbm.4515
– ident: e_1_2_7_48_1
  doi: 10.1007/s10334‐020‐00890‐0
– ident: e_1_2_7_53_1
– start-page: 367
  volume-title: Proceedings of the 17th Annual Meeting of the ISMRM
  year: 2009
  ident: e_1_2_7_40_1
– ident: e_1_2_7_37_1
  doi: 10.1109/tmi.2021.3103654
– ident: e_1_2_7_31_1
– ident: e_1_2_7_9_1
  doi: 10.3978/j.issn.2223‐4292.2014.02.06
– volume-title: Medical Electrical Equipment‐Part 2–33: Particular Requirements for the Basic Safety and Essential Performance of Magnetic Resonance Equipment for Medical Diagnosis (IEC‐60601‐2‐33)
  year: 2010
  ident: e_1_2_7_27_1
– ident: e_1_2_7_47_1
  doi: 10.1109/tbme.2013.2241764
SSID ssj0009974
Score 2.4365304
Snippet To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array,...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 513
SubjectTerms Computer Simulation
Equipment Design
Humans
Magnetic Resonance Imaging - methods
Male
Phantoms, Imaging
Prostate
Radio Waves
Title Improved 1 H body imaging at 10.5 T: Validation and VOP ‐enabled imaging in vivo with a 16‐channel transceiver dipole array
URI https://www.ncbi.nlm.nih.gov/pubmed/37705412
https://www.proquest.com/docview/2864897796
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKEIgbBONv_MkgLpCilMSx88PdmIYqpAJi3bS7yHYciLQmVZZOsBt4BF6Il-FJOI6dNNuKNOhFVUV2ovZ8PT6fz-dzEHrhMSJZIj1XhEQAQeHETUiUuHkAwW4eennM9dbA9H042afvDtnhaPRroFpaNmIsT9eeK_kfq8I1sKs-JfsPlu1vChfgM9gX3sHC8H4pG5sdAQgZfWfiiCr75hRz03UIaD84KubMNOM_gFjbtE5qUwUHHz46vcZBtWensn5iUTonxUllz7w5wLm7kfqIcKm0NB1WN6m0nsPJioVWJ_K65mfSw1P-uVSmOrQO9bXzgBufz-PvyS_zImtXgb1ivtID7NaNzt-_2TEy7unY2a7lCsWTdg_2sODV1-XgKj9aLprTyii_K2Hz1XZDg9BOA937vYjqpcH0Ph4r65eBMwNTo0PHnfgDgJKBF2bmeKtd0JnZUrmwVpjas_N6PiZJHK6px31unezVi6bSM0lhatpOvYKukigyKoFPq-plSWKKgHffpyts5ZFX_VPPhkN_4ThtrDO7hW5akoK3DeJuo5EqN9H1qTXfJrrW6obl8R30vYMg9vEEawhiiyTMGy1oY3j2Gq8AiAGAGACIf__4aaHXTyhKrKGHNfQwx34IYyzo8AB02IAOt6C7i_bf7s52Jq7t6eFKnSJ3FWWRUoLzWPkRV2HOIcTPKQOiKgOS5yrhHsuzxBOECngB9_MYJ8L3Ap4pLw_uoY2yKtUDhDOVUd0kPQ4DQXUz4wzIj4QIO6Bc9zHYQi-7nzaVtuC97rtylF4w4BZ63g9dmCov6wY96-yTgg_WiTVeqmp5nJI4pDEQqQTG3DeG628TRBGwIp88vMwjHqEbq3_EY7TR1Ev1BILeRjxtofUHyjuqFA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+1+H+body+imaging+at+10.5+T%3A+Validation+and+VOP+%E2%80%90enabled+imaging+in+vivo+with+a+16%E2%80%90channel+transceiver+dipole+array&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Schmidt%2C+Simon&rft.au=Ert%C3%BCrk%2C+M.+Arcan&rft.au=He%2C+Xiaoxuan&rft.au=Haluptzok%2C+Tobey&rft.date=2024-02-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=91&rft.issue=2&rft.spage=513&rft.epage=529&rft_id=info:doi/10.1002%2Fmrm.29866&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_29866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon