Improved 1 H body imaging at 10.5 T: Validation and VOP ‐enabled imaging in vivo with a 16‐channel transceiver dipole array
To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo. The inaccuracy of t...
Saved in:
Published in | Magnetic resonance in medicine Vol. 91; no. 2; pp. 513 - 529 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.29866 |
Cover
Abstract | To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo.
The inaccuracy of the electromagnetic model of the array was quantified based on B
and SAR data. Inter-subject variability was estimated using a new approach based on the relative SAR deviation of different RF shims between human body models. The pTx performance of the 16-channel array was assessed in simulation by comparison to a previously demonstrated 10-channel array. In vivo imaging of the prostate was performed demonstrating SAR-constrained static RF shimming and acquisition modes optimized for refocused echoes (AMORE).
The model inaccuracy of 29% and the inter-subject variability of 85% resulted in a total safety factor of 1.91 for pelvis studies. For renal and cardiac imaging, inter-subject variabilities of 121% and 141% lead to total safety factors of 2.25 and 2.45, respectively. The shorter wavelength at 10.5 T supported the increased element density of the 16-channel array which in turn outperformed the 10-channel version for all investigated metrics. Peak 10 g local SAR reduction of more than 25% without a loss of image quality was achieved in vivo, allowing a theoretical improvement in measurement efficiency of up to 66%.
By validating and characterizing a 16-channel dipole transceiver array, this work demonstrates, for the first time, a VOP-enabled RF coil for human torso imaging enabling increased pTx performance at 10.5 T. |
---|---|
AbstractList | To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo.
The inaccuracy of the electromagnetic model of the array was quantified based on B
and SAR data. Inter-subject variability was estimated using a new approach based on the relative SAR deviation of different RF shims between human body models. The pTx performance of the 16-channel array was assessed in simulation by comparison to a previously demonstrated 10-channel array. In vivo imaging of the prostate was performed demonstrating SAR-constrained static RF shimming and acquisition modes optimized for refocused echoes (AMORE).
The model inaccuracy of 29% and the inter-subject variability of 85% resulted in a total safety factor of 1.91 for pelvis studies. For renal and cardiac imaging, inter-subject variabilities of 121% and 141% lead to total safety factors of 2.25 and 2.45, respectively. The shorter wavelength at 10.5 T supported the increased element density of the 16-channel array which in turn outperformed the 10-channel version for all investigated metrics. Peak 10 g local SAR reduction of more than 25% without a loss of image quality was achieved in vivo, allowing a theoretical improvement in measurement efficiency of up to 66%.
By validating and characterizing a 16-channel dipole transceiver array, this work demonstrates, for the first time, a VOP-enabled RF coil for human torso imaging enabling increased pTx performance at 10.5 T. To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo.PURPOSETo increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo.The inaccuracy of the electromagnetic model of the array was quantified based on B1 + and SAR data. Inter-subject variability was estimated using a new approach based on the relative SAR deviation of different RF shims between human body models. The pTx performance of the 16-channel array was assessed in simulation by comparison to a previously demonstrated 10-channel array. In vivo imaging of the prostate was performed demonstrating SAR-constrained static RF shimming and acquisition modes optimized for refocused echoes (AMORE).METHODSThe inaccuracy of the electromagnetic model of the array was quantified based on B1 + and SAR data. Inter-subject variability was estimated using a new approach based on the relative SAR deviation of different RF shims between human body models. The pTx performance of the 16-channel array was assessed in simulation by comparison to a previously demonstrated 10-channel array. In vivo imaging of the prostate was performed demonstrating SAR-constrained static RF shimming and acquisition modes optimized for refocused echoes (AMORE).The model inaccuracy of 29% and the inter-subject variability of 85% resulted in a total safety factor of 1.91 for pelvis studies. For renal and cardiac imaging, inter-subject variabilities of 121% and 141% lead to total safety factors of 2.25 and 2.45, respectively. The shorter wavelength at 10.5 T supported the increased element density of the 16-channel array which in turn outperformed the 10-channel version for all investigated metrics. Peak 10 g local SAR reduction of more than 25% without a loss of image quality was achieved in vivo, allowing a theoretical improvement in measurement efficiency of up to 66%.RESULTSThe model inaccuracy of 29% and the inter-subject variability of 85% resulted in a total safety factor of 1.91 for pelvis studies. For renal and cardiac imaging, inter-subject variabilities of 121% and 141% lead to total safety factors of 2.25 and 2.45, respectively. The shorter wavelength at 10.5 T supported the increased element density of the 16-channel array which in turn outperformed the 10-channel version for all investigated metrics. Peak 10 g local SAR reduction of more than 25% without a loss of image quality was achieved in vivo, allowing a theoretical improvement in measurement efficiency of up to 66%.By validating and characterizing a 16-channel dipole transceiver array, this work demonstrates, for the first time, a VOP-enabled RF coil for human torso imaging enabling increased pTx performance at 10.5 T.CONCLUSIONSBy validating and characterizing a 16-channel dipole transceiver array, this work demonstrates, for the first time, a VOP-enabled RF coil for human torso imaging enabling increased pTx performance at 10.5 T. |
Author | He, Xiaoxuan Eryaman, Yiğitcan Schmidt, Simon Haluptzok, Tobey Metzger, Gregory J. Ertürk, M. Arcan |
Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0003-1835-4002 surname: Schmidt fullname: Schmidt, Simon organization: Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA – sequence: 2 givenname: M. Arcan surname: Ertürk fullname: Ertürk, M. Arcan organization: Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA – sequence: 3 givenname: Xiaoxuan orcidid: 0000-0003-0885-912X surname: He fullname: He, Xiaoxuan organization: Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA – sequence: 4 givenname: Tobey surname: Haluptzok fullname: Haluptzok, Tobey organization: Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA – sequence: 5 givenname: Yiğitcan surname: Eryaman fullname: Eryaman, Yiğitcan organization: Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA – sequence: 6 givenname: Gregory J. orcidid: 0000-0002-3187-6529 surname: Metzger fullname: Metzger, Gregory J. organization: Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37705412$$D View this record in MEDLINE/PubMed |
BookMark | eNplkc9u1DAQxi1U1G5LD7wAmiMc0o4dO15zQxXQSpXKofRqTZJJa5Q4i5Pdak_wCDwjT1L3z15gLnP5fTPzzXco9uIYWYi3Ek8kojod0nCi3LKqXomFNEoVyji9JxZoNRaldPpAHE7TD0R0zup9cVBai0ZLtRC_LoZVGjfcgoRzqMd2C2Gg2xBvgWbICwxcf4Qb6kNLcxgjUGzh5uob_P39hyPVfVbuBCHCJmxGuA_zHRDIKjPNHcXIPcyJ4tRw2HCCNqzGnoFSou0b8bqjfuLjl34kvn_5fH12Xlxefb04-3RZNLJEVbA2lrkmWrK0xFVHzshOG9SuKVXXsSM0XeuwVrrOZZVDQ6qWWFLL2JVH4v3z3Oz255qn2Q8h39P3FHlcT14tK7101roqo-9e0HU9cOtXKRtMW797WgZOn4EmjdOUuPNNmJ--k12G3kv0j7H4HIt_iiUrPvyj2A39n30AuZ-OhQ |
CitedBy_id | crossref_primary_10_1002_mrm_30032 crossref_primary_10_3390_s24175793 crossref_primary_10_1002_mrm_30495 crossref_primary_10_1002_mrm_30476 crossref_primary_10_1002_mrm_30315 |
Cites_doi | 10.1002/mrm.24794 10.1002/mrm.26704 10.1002/mrm.10353 10.1002/mrm.24138 10.1007/s10334‐022‐01013‐7 10.1002/mrm.27518 10.1002/mrm.25596 10.1063/1.1726676 10.1002/nbm.4457 10.1002/1522‐2586(200007)12:1<46::aid‐jmri6>3.3.co;2‐4 10.1002/mrm.22948 10.1002/mrm.28602 10.1002/mrm.26487 10.1002/mrm.22927 10.1002/cmr.b.21317 10.1002/mrm.21751 10.1002/mrm.25243 10.1002/nbm.3356 10.1088/0031‐9155/57/24/8153 10.1002/mrm.26153 10.1371/journal.pone.0222452 10.1016/j.mric.2020.10.001 10.1016/s0730‐725x(00)00143‐0 10.1002/mrm.24237 10.1002/mrm.21739 10.1088/0031‐9155/55/2/n01 10.1002/mrm.21834 10.1002/mrm.22423 10.1002/mrm.22978 10.1002/mrm.21120 10.1002/mrm.24935 10.1002/mrm.20978 10.1002/mrm.29318 10.1002/mrm.28131 10.1002/nbm.3290 10.1002/nbm.4874 10.1088/0031‐9155/59/18/5287 10.1002/mrm.24818 10.1002/mrm.28952 10.1016/0022‐2364(88)90131‐x 10.1002/mrm.26742 10.1161/circimaging.116.005460 10.1002/mrm.20321 10.1002/mrm.21895 10.1016/j.eururo.2015.08.052 10.1002/mrm.21476 10.1002/mrm.29215 10.1002/nbm.4515 10.1007/s10334‐020‐00890‐0 10.1109/tmi.2021.3103654 10.3978/j.issn.2223‐4292.2014.02.06 10.1109/tbme.2013.2241764 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/mrm.29866 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 529 |
ExternalDocumentID | 37705412 10_1002_mrm_29866 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB029985 – fundername: NIBIB NIH HHS grantid: P41 EB027061 – fundername: NINDS NIH HHS grantid: R01 NS115180 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CITATION CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c1302-e457eebaa8e17ae6fa951f45049c32ffe9a05fd90b24bbbb72905a2b103ade0f3 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 01:24:59 EDT 2025 Mon Jul 21 06:06:50 EDT 2025 Tue Jul 01 04:27:07 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 10.5 T parallel transmit body imaging ultra-high field imaging MRI validation |
Language | English |
License | 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1302-e457eebaa8e17ae6fa951f45049c32ffe9a05fd90b24bbbb72905a2b103ade0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3187-6529 0000-0003-0885-912X 0000-0003-1835-4002 |
PMID | 37705412 |
PQID | 2864897796 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2864897796 pubmed_primary_37705412 crossref_citationtrail_10_1002_mrm_29866 crossref_primary_10_1002_mrm_29866 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-00 2024-Feb 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2024 |
References | e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 Van de Moortele P‐F (e_1_2_7_40_1) 2009 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 International Electrotechnical Commission (IEC) (e_1_2_7_27_1) 2010 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 Kuehne A (e_1_2_7_54_1) 2020 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 Steensma B (e_1_2_7_45_1) 2020 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 Boulant N (e_1_2_7_29_1) 2017 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – ident: e_1_2_7_33_1 doi: 10.1002/mrm.24794 – ident: e_1_2_7_50_1 doi: 10.1002/mrm.26704 – ident: e_1_2_7_21_1 doi: 10.1002/mrm.10353 – ident: e_1_2_7_46_1 doi: 10.1002/mrm.24138 – ident: e_1_2_7_6_1 doi: 10.1007/s10334‐022‐01013‐7 – ident: e_1_2_7_3_1 – ident: e_1_2_7_34_1 doi: 10.1002/mrm.27518 – ident: e_1_2_7_13_1 doi: 10.1002/mrm.25596 – ident: e_1_2_7_43_1 doi: 10.1063/1.1726676 – ident: e_1_2_7_44_1 doi: 10.1002/nbm.4457 – ident: e_1_2_7_17_1 doi: 10.1002/1522‐2586(200007)12:1<46::aid‐jmri6>3.3.co;2‐4 – ident: e_1_2_7_55_1 doi: 10.1002/mrm.22948 – ident: e_1_2_7_42_1 doi: 10.1002/mrm.28602 – ident: e_1_2_7_14_1 doi: 10.1002/mrm.26487 – ident: e_1_2_7_32_1 doi: 10.1002/mrm.22927 – ident: e_1_2_7_2_1 – ident: e_1_2_7_30_1 doi: 10.1002/cmr.b.21317 – ident: e_1_2_7_16_1 doi: 10.1002/mrm.21751 – ident: e_1_2_7_49_1 doi: 10.1002/mrm.25243 – ident: e_1_2_7_12_1 doi: 10.1002/nbm.3356 – ident: e_1_2_7_56_1 doi: 10.1088/0031‐9155/57/24/8153 – ident: e_1_2_7_59_1 doi: 10.1002/mrm.26153 – ident: e_1_2_7_36_1 doi: 10.1371/journal.pone.0222452 – ident: e_1_2_7_4_1 doi: 10.1016/j.mric.2020.10.001 – ident: e_1_2_7_18_1 doi: 10.1016/s0730‐725x(00)00143‐0 – ident: e_1_2_7_7_1 doi: 10.1002/mrm.24237 – ident: e_1_2_7_23_1 doi: 10.1002/mrm.21739 – ident: e_1_2_7_38_1 doi: 10.1088/0031‐9155/55/2/n01 – ident: e_1_2_7_24_1 doi: 10.1002/mrm.21834 – ident: e_1_2_7_52_1 doi: 10.1002/mrm.22423 – ident: e_1_2_7_25_1 doi: 10.1002/mrm.22978 – ident: e_1_2_7_41_1 doi: 10.1002/mrm.21120 – ident: e_1_2_7_20_1 doi: 10.1002/mrm.24935 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.20978 – ident: e_1_2_7_51_1 doi: 10.1002/mrm.29318 – volume-title: Proceedings of the 29th Annual Meeting of the ISMRM year: 2020 ident: e_1_2_7_45_1 – ident: e_1_2_7_15_1 doi: 10.1002/mrm.28131 – ident: e_1_2_7_28_1 doi: 10.1002/nbm.3290 – volume-title: Proceedings of the 26th Annual Meeting of the ISMRM year: 2017 ident: e_1_2_7_29_1 – ident: e_1_2_7_35_1 doi: 10.1002/nbm.4874 – ident: e_1_2_7_39_1 doi: 10.1088/0031‐9155/59/18/5287 – ident: e_1_2_7_62_1 doi: 10.1002/mrm.24818 – ident: e_1_2_7_58_1 doi: 10.1002/mrm.28952 – ident: e_1_2_7_61_1 doi: 10.1016/0022‐2364(88)90131‐x – volume-title: Proceedings of the 26th Annual Meeting of the ISMRM year: 2020 ident: e_1_2_7_54_1 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.26742 – ident: e_1_2_7_11_1 doi: 10.1161/circimaging.116.005460 – ident: e_1_2_7_19_1 doi: 10.1002/mrm.20321 – ident: e_1_2_7_10_1 doi: 10.1002/mrm.21895 – ident: e_1_2_7_60_1 doi: 10.1016/j.eururo.2015.08.052 – ident: e_1_2_7_5_1 doi: 10.1002/mrm.21476 – ident: e_1_2_7_57_1 doi: 10.1002/mrm.29215 – ident: e_1_2_7_26_1 doi: 10.1002/nbm.4515 – ident: e_1_2_7_48_1 doi: 10.1007/s10334‐020‐00890‐0 – ident: e_1_2_7_53_1 – start-page: 367 volume-title: Proceedings of the 17th Annual Meeting of the ISMRM year: 2009 ident: e_1_2_7_40_1 – ident: e_1_2_7_37_1 doi: 10.1109/tmi.2021.3103654 – ident: e_1_2_7_31_1 – ident: e_1_2_7_9_1 doi: 10.3978/j.issn.2223‐4292.2014.02.06 – volume-title: Medical Electrical Equipment‐Part 2–33: Particular Requirements for the Basic Safety and Essential Performance of Magnetic Resonance Equipment for Medical Diagnosis (IEC‐60601‐2‐33) year: 2010 ident: e_1_2_7_27_1 – ident: e_1_2_7_47_1 doi: 10.1109/tbme.2013.2241764 |
SSID | ssj0009974 |
Score | 2.4365304 |
Snippet | To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array,... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 513 |
SubjectTerms | Computer Simulation Equipment Design Humans Magnetic Resonance Imaging - methods Male Phantoms, Imaging Prostate Radio Waves |
Title | Improved 1 H body imaging at 10.5 T: Validation and VOP ‐enabled imaging in vivo with a 16‐channel transceiver dipole array |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37705412 https://www.proquest.com/docview/2864897796 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKEIgbBONv_MkgLpCilMSx88PdmIYqpAJi3bS7yHYciLQmVZZOsBt4BF6Il-FJOI6dNNuKNOhFVUV2ovZ8PT6fz-dzEHrhMSJZIj1XhEQAQeHETUiUuHkAwW4eennM9dbA9H042afvDtnhaPRroFpaNmIsT9eeK_kfq8I1sKs-JfsPlu1vChfgM9gX3sHC8H4pG5sdAQgZfWfiiCr75hRz03UIaD84KubMNOM_gFjbtE5qUwUHHz46vcZBtWensn5iUTonxUllz7w5wLm7kfqIcKm0NB1WN6m0nsPJioVWJ_K65mfSw1P-uVSmOrQO9bXzgBufz-PvyS_zImtXgb1ivtID7NaNzt-_2TEy7unY2a7lCsWTdg_2sODV1-XgKj9aLprTyii_K2Hz1XZDg9BOA937vYjqpcH0Ph4r65eBMwNTo0PHnfgDgJKBF2bmeKtd0JnZUrmwVpjas_N6PiZJHK6px31unezVi6bSM0lhatpOvYKukigyKoFPq-plSWKKgHffpyts5ZFX_VPPhkN_4ThtrDO7hW5akoK3DeJuo5EqN9H1qTXfJrrW6obl8R30vYMg9vEEawhiiyTMGy1oY3j2Gq8AiAGAGACIf__4aaHXTyhKrKGHNfQwx34IYyzo8AB02IAOt6C7i_bf7s52Jq7t6eFKnSJ3FWWRUoLzWPkRV2HOIcTPKQOiKgOS5yrhHsuzxBOECngB9_MYJ8L3Ap4pLw_uoY2yKtUDhDOVUd0kPQ4DQXUz4wzIj4QIO6Bc9zHYQi-7nzaVtuC97rtylF4w4BZ63g9dmCov6wY96-yTgg_WiTVeqmp5nJI4pDEQqQTG3DeG628TRBGwIp88vMwjHqEbq3_EY7TR1Ev1BILeRjxtofUHyjuqFA |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+1+H+body+imaging+at+10.5+T%3A+Validation+and+VOP+%E2%80%90enabled+imaging+in+vivo+with+a+16%E2%80%90channel+transceiver+dipole+array&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Schmidt%2C+Simon&rft.au=Ert%C3%BCrk%2C+M.+Arcan&rft.au=He%2C+Xiaoxuan&rft.au=Haluptzok%2C+Tobey&rft.date=2024-02-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=91&rft.issue=2&rft.spage=513&rft.epage=529&rft_id=info:doi/10.1002%2Fmrm.29866&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_29866 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |