Machine Learning for Nonorographic Gravity Waves in a Climate Model

Abstract There is growing use of machine learning algorithms to replicate subgrid parameterization schemes in global climate models. Parameterizations rely on approximations; thus, there is potential for machine learning to aid improvements. In this study, a neural network is used to mimic the behav...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence for the earth systems Vol. 2; no. 4
Main Authors Hardiman, Steven C., Scaife, Adam A., van Niekerk, Annelize, Prudden, Rachel, Owen, Aled, Adams, Samantha V., Dunstan, Tom, Dunstone, Nick J., Madge, Sam
Format Journal Article
LanguageEnglish
Published 01.10.2023
Online AccessGet full text

Cover

Loading…
Abstract Abstract There is growing use of machine learning algorithms to replicate subgrid parameterization schemes in global climate models. Parameterizations rely on approximations; thus, there is potential for machine learning to aid improvements. In this study, a neural network is used to mimic the behavior of the nonorographic gravity wave scheme used in the Met Office climate model, important for stratospheric climate and variability. The neural network is found to require only two of the six inputs used by the parameterization scheme, suggesting the potential for greater efficiency in this scheme. Use of a one-dimensional mechanistic model is advocated, allowing neural network hyperparameters to be chosen based on emergent features of the coupled system with minimal computational cost, and providing a testbed prior to coupling to a climate model. A climate model simulation, using the neural network in place of the existing parameterization scheme, is found to accurately generate a quasi-biennial oscillation of the tropical stratospheric winds, and correctly simulate the nonorographic gravity wave variability associated with El Niño–Southern Oscillation and stratospheric polar vortex variability. These internal sources of variability are essential for providing seasonal forecast skill, and the gravity wave forcing associated with them is reproduced without explicit training for these patterns. Significance Statement Climate simulations are required for providing advice to government, industry, and society regarding the expected climate on time scales of months to decades. Machine learning has the potential to improve the representation of some sources of variability in climate models that are too small to be directly simulated by the model. This study demonstrates that a neural network can simulate the variability due to atmospheric gravity waves that is associated with El Niño–Southern Oscillation and with the tropical and polar regions of the stratosphere. These details are important for a model to produce more accurate predictions of regional climate.
AbstractList Abstract There is growing use of machine learning algorithms to replicate subgrid parameterization schemes in global climate models. Parameterizations rely on approximations; thus, there is potential for machine learning to aid improvements. In this study, a neural network is used to mimic the behavior of the nonorographic gravity wave scheme used in the Met Office climate model, important for stratospheric climate and variability. The neural network is found to require only two of the six inputs used by the parameterization scheme, suggesting the potential for greater efficiency in this scheme. Use of a one-dimensional mechanistic model is advocated, allowing neural network hyperparameters to be chosen based on emergent features of the coupled system with minimal computational cost, and providing a testbed prior to coupling to a climate model. A climate model simulation, using the neural network in place of the existing parameterization scheme, is found to accurately generate a quasi-biennial oscillation of the tropical stratospheric winds, and correctly simulate the nonorographic gravity wave variability associated with El Niño–Southern Oscillation and stratospheric polar vortex variability. These internal sources of variability are essential for providing seasonal forecast skill, and the gravity wave forcing associated with them is reproduced without explicit training for these patterns. Significance Statement Climate simulations are required for providing advice to government, industry, and society regarding the expected climate on time scales of months to decades. Machine learning has the potential to improve the representation of some sources of variability in climate models that are too small to be directly simulated by the model. This study demonstrates that a neural network can simulate the variability due to atmospheric gravity waves that is associated with El Niño–Southern Oscillation and with the tropical and polar regions of the stratosphere. These details are important for a model to produce more accurate predictions of regional climate.
Author Hardiman, Steven C.
van Niekerk, Annelize
Dunstone, Nick J.
Dunstan, Tom
Adams, Samantha V.
Owen, Aled
Prudden, Rachel
Madge, Sam
Scaife, Adam A.
Author_xml – sequence: 1
  givenname: Steven C.
  surname: Hardiman
  fullname: Hardiman, Steven C.
  organization: a Met Office Hadley Centre, Exeter, Devon, United Kingdom
– sequence: 2
  givenname: Adam A.
  surname: Scaife
  fullname: Scaife, Adam A.
  organization: a Met Office Hadley Centre, Exeter, Devon, United Kingdom, b Department of Mathematics, University of Exeter, Exeter, Devon, United Kingdom
– sequence: 3
  givenname: Annelize
  surname: van Niekerk
  fullname: van Niekerk, Annelize
  organization: c Met Office, Exeter, Devon, United Kingdom
– sequence: 4
  givenname: Rachel
  surname: Prudden
  fullname: Prudden, Rachel
  organization: d Informatics Lab, Met Office, Exeter, Devon, United Kingdom
– sequence: 5
  givenname: Aled
  surname: Owen
  fullname: Owen, Aled
  organization: d Informatics Lab, Met Office, Exeter, Devon, United Kingdom
– sequence: 6
  givenname: Samantha V.
  surname: Adams
  fullname: Adams, Samantha V.
  organization: c Met Office, Exeter, Devon, United Kingdom
– sequence: 7
  givenname: Tom
  surname: Dunstan
  fullname: Dunstan, Tom
  organization: d Informatics Lab, Met Office, Exeter, Devon, United Kingdom
– sequence: 8
  givenname: Nick J.
  surname: Dunstone
  fullname: Dunstone, Nick J.
  organization: a Met Office Hadley Centre, Exeter, Devon, United Kingdom
– sequence: 9
  givenname: Sam
  surname: Madge
  fullname: Madge, Sam
  organization: d Informatics Lab, Met Office, Exeter, Devon, United Kingdom
BookMark eNpNkEtrAjEYRUOxUGvdd5k_EJsvj3ksZbQqjO2iLV2GTB46xSaSiOC_r0O76OpeuHC4nHs0CjE4hB6BzgBK-TTfLN_IgjBGKK1gBjdozMqiJqVkcvSv36Fpzl-UUs64ABBj1Gy12ffB4dbpFPqwwz4m_BJDTHGX9HHfG7xK-tyfLvhTn13GfcAaN4f-W58c3kbrDg_o1utDdtO_nKCP5-V7sybt62rTzFtigFMgXlqgvvNFV1FbQy0LTo0TojJ13fnqunBRCWOd8LI0YIFLKyRAXTjPQQCfIPrLNSnmnJxXx3S9kS4KqBo8qMGDWijG1OBBAf8BVn1RkQ
CitedBy_id crossref_primary_10_1002_qj_4707
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1175/AIES-D-22-0081.1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2769-7525
ExternalDocumentID 10_1175_AIES_D_22_0081_1
GroupedDBID AAYXX
ADBSO
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
FRP
M~E
RWE
ID FETCH-LOGICAL-c1301-f5d10fbf6b80d9195630ce448c99bf8fbf3484cde4f57c1d135d451196ef31413
ISSN 2769-7525
IngestDate Thu Sep 12 20:51:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1301-f5d10fbf6b80d9195630ce448c99bf8fbf3484cde4f57c1d135d451196ef31413
OpenAccessLink https://journals.ametsoc.org/downloadpdf/journals/aies/2/4/AIES-D-22-0081.1.pdf
ParticipantIDs crossref_primary_10_1175_AIES_D_22_0081_1
PublicationCentury 2000
PublicationDate 2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationTitle Artificial intelligence for the earth systems
PublicationYear 2023
References Bell, C. J. (bib5) 2009; 22
Bell, B. (bib4) 2021; 147
Alexander, M. J. (bib1) 2010; 136
Russell, S. J. (bib38) 2010
Cohen, N. Y. (bib13) 2014; 71
Walters, D. (bib42) 2019; 12
Kretschmer, M. (bib27) 2021; 102
Butchart, N. (bib8) 2011; 116
Chantry, M. (bib9) 2021a; A379
Scaife, A. A. (bib41) 2014; 41
Dueben, P. D. (bib15) 2022; 1
Meyer, D. (bib32) 2022b; 14
Wu, Y. (bib45) 2022; 6
Scaife, A. A. (bib40) 2002; 59
Plougonven, R. (bib35) 2020; 146
Chantry, M. (bib10) 2021b; 13
Garcia, R. R. (bib17) 2017; 74
Domeisen, D. I. V. (bib14) 2015; 28
Warner, C. D. (bib44) 2001; 58
Brönnimann, S. (bib6) 2004; 431
Espinosa, Z. I. (bib16) 2022; 49
Hersbach, H. (bib23) 2020; 146
Lindzen, R. S. (bib28) 1968; 25
Plumb, R. A. (bib36) 1977; 34
Matsuoka, D. (bib30) 2020; 47
O’Reilly, C. H. (bib34) 2019; 145
Andrews, M. B. (bib3) 2019; 124
Gardner, M. W. (bib18) 1998; 32
Goodfellow, I. (bib19) 2016
Scaife, A. A. (bib39) 2000; 27
Cohen, N. Y. (bib12) 2013; 70
Charlton, A. J. (bib11) 2007; 20
Nowack, P. (bib33) 2020; 11
Martin, Z. K. (bib29) 2022; 14
Ineson, S. (bib25) 2009; 2
Meyer, D. (bib31) 2022a; 14
Amemiya, A. (bib2) 2016; 94
Irrgang, C. (bib26) 2021; 3
Ribstein, B. (bib37) 2022; 14
Gray, L. J. (bib20) 2018; 18
Bushell, A. C. (bib7) 2015; 72
Guan, Y. (bib21) 2022; 458
Warner, C. D. (bib43) 1999; 51
Ham, Y.-G. (bib22) 2019; 573
Holton, J. R. (bib24) 1980; 37
References_xml – volume: 59
  start-page: 1473
  year: 2002
  ident: bib40
  article-title: Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model
  contributor:
    fullname: Scaife, A. A.
– volume: 124
  start-page: 1219
  year: 2019
  ident: bib3
  article-title: Observed and simulated teleconnections between the stratospheric quasi-biennial oscillation and Northern Hemisphere winter atmospheric circulation
  contributor:
    fullname: Andrews, M. B.
– volume: 11
  start-page: 1415
  year: 2020
  ident: bib33
  article-title: Causal networks for climate model evaluation and constrained projections
  contributor:
    fullname: Nowack, P.
– volume: 145
  start-page: 131
  year: 2019
  ident: bib34
  article-title: The importance of stratospheric initial conditions for winter North Atlantic oscillation predictability and implications for the signal-to-noise paradox
  contributor:
    fullname: O’Reilly, C. H.
– volume: 51
  start-page: 475
  year: 1999
  ident: bib43
  article-title: Toward an ultra-simple spectral gravity wave parameterization for general circulation models
  contributor:
    fullname: Warner, C. D.
– volume: 58
  start-page: 1837
  year: 2001
  ident: bib44
  article-title: An ultrasimple spectral parameterization for nonorographic gravity waves
  contributor:
    fullname: Warner, C. D.
– volume: 13
  start-page: e2021MS002477
  year: 2021b
  ident: bib10
  article-title: Machine learning emulation of gravity wave drag in numerical weather forecasting
  contributor:
    fullname: Chantry, M.
– volume: 3
  start-page: 667
  year: 2021
  ident: bib26
  article-title: Towards neural Earth system modelling by integrating artificial intelligence in Earth system science
  contributor:
    fullname: Irrgang, C.
– volume: 22
  start-page: 4083
  year: 2009
  ident: bib5
  article-title: Stratospheric communication of El Niño teleconnections to European winter
  contributor:
    fullname: Bell, C. J.
– volume: A379
  start-page: 20200083
  year: 2021a
  ident: bib9
  article-title: Opportunities and challenges for machine learning in weather and climate modelling: Hard, medium and soft AI
  contributor:
    fullname: Chantry, M.
– volume: 74
  start-page: 275
  year: 2017
  ident: bib17
  article-title: Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: Motivation and results
  contributor:
    fullname: Garcia, R. R.
– volume: 37
  start-page: 2200
  year: 1980
  ident: bib24
  article-title: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb
  contributor:
    fullname: Holton, J. R.
– volume: 147
  start-page: 4186
  year: 2021
  ident: bib4
  article-title: The ERA5 global reanalysis: Preliminary extension to 1950
  contributor:
    fullname: Bell, B.
– volume: 116
  start-page: D05102
  year: 2011
  ident: bib8
  article-title: Multimodel climate and variability of the stratosphere
  contributor:
    fullname: Butchart, N.
– volume: 573
  start-page: 568
  year: 2019
  ident: bib22
  article-title: Deep learning for multi-year ENSO forecasts
  contributor:
    fullname: Ham, Y.-G.
– volume: 146
  start-page: 1529
  year: 2020
  ident: bib35
  article-title: How does knowledge of atmospheric gravity waves guide their parameterizations?
  contributor:
    fullname: Plougonven, R.
– volume: 14
  start-page: e2021MS002563
  year: 2022
  ident: bib37
  article-title: Can we improve the realism of gravity wave parameterizations by imposing sources at all altitudes in the atmosphere?
  contributor:
    fullname: Ribstein, B.
– volume: 18
  start-page: 8227
  year: 2018
  ident: bib20
  article-title: Surface impacts of the quasi biennial oscillation
  contributor:
    fullname: Gray, L. J.
– volume: 49
  start-page: e2022GL098174
  year: 2022
  ident: bib16
  article-title: Machine learning gravity wave parameterization generalizes to capture the QBO and response to increased CO2
  contributor:
    fullname: Espinosa, Z. I.
– volume: 20
  start-page: 449
  year: 2007
  ident: bib11
  article-title: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks
  contributor:
    fullname: Charlton, A. J.
– volume: 102
  start-page: E2247
  year: 2021
  ident: bib27
  article-title: Quantifying causal pathways of teleconnections
  contributor:
    fullname: Kretschmer, M.
– volume: 25
  start-page: 1095
  year: 1968
  ident: bib28
  article-title: A theory of the quasi-biennial oscillation
  contributor:
    fullname: Lindzen, R. S.
– volume: 1
  start-page: e210002
  year: 2022
  ident: bib15
  article-title: Challenges and benchmark datasets for machine learning in the atmospheric sciences: Definition, status, and outlook
  contributor:
    fullname: Dueben, P. D.
– volume: 32
  start-page: 2627
  year: 1998
  ident: bib18
  article-title: Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences
  contributor:
    fullname: Gardner, M. W.
– volume: 458
  start-page: 111090
  year: 2022
  ident: bib21
  article-title: Stable a posteriori LES of 2D turbulence using convolutional neural networks: Backscattering analysis and generalization to higher Re via transfer learning
  contributor:
    fullname: Guan, Y.
– volume: 431
  start-page: 971
  year: 2004
  ident: bib6
  article-title: Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño
  contributor:
    fullname: Brönnimann, S.
– volume: 14
  start-page: e2021MS002774
  year: 2022
  ident: bib29
  article-title: Using simple, explainable neural networks to predict the Madden-Julian oscillation
  contributor:
    fullname: Martin, Z. K.
– volume: 70
  start-page: 3780
  year: 2013
  ident: bib12
  article-title: Compensation between resolved and unresolved wave driving in the stratosphere: Implications for downward control
  contributor:
    fullname: Cohen, N. Y.
– volume: 41
  start-page: 1752
  year: 2014
  ident: bib41
  article-title: Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales
  contributor:
    fullname: Scaife, A. A.
– volume: 47
  start-page: e2020GL089436
  year: 2020
  ident: bib30
  article-title: Application of deep learning to estimate atmospheric gravity wave parameters in reanalysis data sets
  contributor:
    fullname: Matsuoka, D.
– volume: 14
  start-page: e2021MS002550
  year: 2022b
  ident: bib32
  article-title: Machine learning emulation of 3D cloud radiative effects
  contributor:
    fullname: Meyer, D.
– year: 2016
  ident: bib19
  contributor:
    fullname: Goodfellow, I.
– volume: 28
  start-page: 256
  year: 2015
  ident: bib14
  article-title: Seasonal predictability over Europe arising from El Niño and stratospheric variability in the MPI-ESM seasonal prediction system
  contributor:
    fullname: Domeisen, D. I. V.
– volume: 72
  start-page: 4349
  year: 2015
  ident: bib7
  article-title: Parameterized gravity wave momentum fluxes from sources related to convection and large-scale precipitation processes in a global atmosphere model
  contributor:
    fullname: Bushell, A. C.
– volume: 146
  start-page: 1999
  year: 2020
  ident: bib23
  article-title: The ERA5 global reanalysis
  contributor:
    fullname: Hersbach, H.
– volume: 71
  start-page: 3837
  year: 2014
  ident: bib13
  article-title: What drives the Brewer–Dobson circulation?
  contributor:
    fullname: Cohen, N. Y.
– volume: 2
  start-page: 32
  year: 2009
  ident: bib25
  article-title: The role of the stratosphere in the European climate response to El Niño
  contributor:
    fullname: Ineson, S.
– volume: 27
  start-page: 3481
  year: 2000
  ident: bib39
  article-title: Realistic quasi-biennial oscillations in a simulation of the global climate
  contributor:
    fullname: Scaife, A. A.
– volume: 136
  start-page: 1103
  year: 2010
  ident: bib1
  article-title: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models
  contributor:
    fullname: Alexander, M. J.
– volume: 34
  start-page: 1847
  year: 1977
  ident: bib36
  article-title: The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation
  contributor:
    fullname: Plumb, R. A.
– year: 2010
  ident: bib38
  contributor:
    fullname: Russell, S. J.
– volume: 12
  start-page: 1909
  year: 2019
  ident: bib42
  article-title: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations
  contributor:
    fullname: Walters, D.
– volume: 6
  start-page: 70
  year: 2022
  ident: bib45
  article-title: Application of deep learning to estimate stratospheric gravity wave potential energy
  contributor:
    fullname: Wu, Y.
– volume: 94
  start-page: 237
  year: 2016
  ident: bib2
  article-title: A new gravity wave parameterization including three-dimensional propagation
  contributor:
    fullname: Amemiya, A.
– volume: 14
  start-page: e2021MS002744
  year: 2022a
  ident: bib31
  article-title: Machine learning emulation of urban land surface processes
  contributor:
    fullname: Meyer, D.
SSID ssj0003234114
Score 2.2857654
Snippet Abstract There is growing use of machine learning algorithms to replicate subgrid parameterization schemes in global climate models. Parameterizations rely on...
SourceID crossref
SourceType Aggregation Database
Title Machine Learning for Nonorographic Gravity Waves in a Climate Model
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBehfdnL2LqNdV_oYQyGURbLkhU_mrRdGSSM0bK-GUk-g1nmDJPuIQ_723eSP6KVDNa9iFg2ssn9ON2dfndHyFsVayUMByasG6QCloEWbGbnWoMRII0LDSxX6eW1-HQjbyaTXZhdsjVTuzuYV_I_UsU5lKvLkr2HZMdFcQJ_o3xxRAnj-E8yXnomJAxFUjtK5GrTbNquEHVto4-t9t0hvuqfnnoV6WixrtFMBd8GbR0ap3nriUO-jUdYqXNgIuJbHJ89qHHuVRdCbAij-hZp0WIaHO_UVRcyLfX3KB9vuKypVQ3foGNq545tU-9GkH1ubweF-MVVnF6HwQm-p7n1OoyrNGNKdrnNUzgw1ythHmBNHFbtylXByNFIZmcMPWhnzEzj_TY2HN3f2d1GzqH3dpQs3ArFWcF54VYo0HM-5qiknHZc_trH5xKO-7svDT9-73jKLT_c_YzAqgnMk6tH5GHvV9C8A8ljMoHmhJwu0SVCMLiTE_qOdoL3V0_IogcPHcBDUcz0D_DQHjzUg4fWDdX9GkA9eJ6S64vzq8Ul6ztqMIu2SswqWcazylSpmc_KzKWKJjML6KHbLDPVHO8kYi5sCaKSysZlnMjSFbDLUqiSGO2dZ-So2TTwnFCeJiUkSlqthdDaGum0uVZWGoObQHZK3g__SPGjK5xS_E0EL-7x7EvyYA-0V-Ro297Ca7QLt-aNF-Bvn3th0A
link.rule.ids 315,783,787,27936,27937
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Nonorographic+Gravity+Waves+in+a+Climate+Model&rft.jtitle=Artificial+intelligence+for+the+earth+systems&rft.au=Hardiman%2C+Steven+C.&rft.au=Scaife%2C+Adam+A.&rft.au=van+Niekerk%2C+Annelize&rft.au=Prudden%2C+Rachel&rft.date=2023-10-01&rft.issn=2769-7525&rft.eissn=2769-7525&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1175%2FAIES-D-22-0081.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1175_AIES_D_22_0081_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2769-7525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2769-7525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2769-7525&client=summon