Uses of artificial intelligence in glioma: A systematic review
Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising results. The present study performed a systematic review of the applications of AI in glioma as regards diagnosis, grading, prediction of ge...
Saved in:
Published in | Medicine international (London) Vol. 4; no. 4; p. 40 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising results. The present study performed a systematic review of the applications of AI in glioma as regards diagnosis, grading, prediction of genotype, progression and treatment response using different databases. The aim of the present study was to demonstrate the trends (main directions) of the recent applications of AI within the field of glioma, and to highlight emerging challenges in integrating AI within clinical practice. A search in four databases (Scopus, PubMed, Wiley and Google Scholar) yielded a total of 42 articles specifically using AI in glioma and glioblastoma. The articles were retrieved and reviewed, and the data were summarized and analyzed. The majority of the articles were from the USA (n=18) followed by China (n=11). The number of articles increased by year reaching the maximum number in 2022. The majority of the articles studied glioma as opposed to glioblastoma. In terms of grading, the majority of the articles were about both low-grade glioma (LGG) and high-grade glioma (HGG) (n=23), followed by HGG/glioblastoma (n=13). Additionally, three articles were about LGG only; two articles did not specify the grade. It was found that one article had the highest sample size among the other studies, reaching 897 samples. Despite the limitations and challenges that face AI, the use of AI in glioma has increased in recent years with promising results, with a variety of applications ranging from diagnosis, grading, prognosis prediction, and reaching to treatment and post-operative care. |
---|---|
AbstractList | Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising results. The present study performed a systematic review of the applications of AI in glioma as regards diagnosis, grading, prediction of genotype, progression and treatment response using different databases. The aim of the present study was to demonstrate the trends (main directions) of the recent applications of AI within the field of glioma, and to highlight emerging challenges in integrating AI within clinical practice. A search in four databases (Scopus, PubMed, Wiley and Google Scholar) yielded a total of 42 articles specifically using AI in glioma and glioblastoma. The articles were retrieved and reviewed, and the data were summarized and analyzed. The majority of the articles were from the USA (n=18) followed by China (n=11). The number of articles increased by year reaching the maximum number in 2022. The majority of the articles studied glioma as opposed to glioblastoma. In terms of grading, the majority of the articles were about both low-grade glioma (LGG) and high-grade glioma (HGG) (n=23), followed by HGG/glioblastoma (n=13). Additionally, three articles were about LGG only; two articles did not specify the grade. It was found that one article had the highest sample size among the other studies, reaching 897 samples. Despite the limitations and challenges that face AI, the use of AI in glioma has increased in recent years with promising results, with a variety of applications ranging from diagnosis, grading, prognosis prediction, and reaching to treatment and post-operative care. |
ArticleNumber | 40 |
Author | Al-Rahbi, Adham Al-Saadi, Tariq Al-Mahrouqi, Omar |
Author_xml | – sequence: 1 givenname: Adham surname: Al-Rahbi fullname: Al-Rahbi, Adham organization: College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman – sequence: 2 givenname: Omar surname: Al-Mahrouqi fullname: Al-Mahrouqi, Omar organization: College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman – sequence: 3 givenname: Tariq surname: Al-Saadi fullname: Al-Saadi, Tariq organization: Department of Neurology and Neurosurgery-Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38827949$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kMtLAzEQxoNUbK09eZccBdma1-bhQSjFFxS82POSzU5KZB91s1X635vS6hzmwXzzMfwu0ajtWkDompI514bdN2HOCBNzKsUZmjCVi4xyIkannjPBxmgW4ychhBnGpaEXaMy1ZsoIM0GP6wgRdx7bfgg-uGBrHNoB6jpsoHWQBrypQ9fYB7zAcR8HaOwQHO7hO8DPFTr3to4wO9UpWj8_fSxfs9X7y9tyscocZUZkjGlfUa4UE6UimgjvuUkbX9lSVpWSFYE8J1oDpVVKKoUVwL3KmZMl51N0e_Td9t3XDuJQNCG69KVtodvFghMpqODKyCS9O0pd38XYgy-2fWhsvy8oKQ7M0mlxYFYkZkl9czLelQ1U_9o_QvwXOLNm2w |
Cites_doi | 10.1038/s41598-022-05077-2 10.3389/fonc.2020.00798 10.7717/peerj.5982 10.1007/978-3-030-85292-4_18 10.1002/cnr2.1226 10.1093/neuonc/nov022 10.1093/neuonc/noz106 10.5114/fn.2022.118183 10.1093/neuonc/noz199 10.1148/radiol.2016160845 10.1002/cncr.32790 10.1148/radiol.2018181928 10.1002/jmri.26964 10.1007/978-3-319-46723-8_25 10.1016/j.canlet.2019.02.054 10.3174/ajnr.A5667 10.1007/s10278-017-0009-z 10.1136/bmj.n71 10.1002/ima.22590 10.1111/jcmm.17182 10.1117/1.JMI.6.4.046003 10.1056/NEJMoa043331 10.1002/ima.22536 10.1016/j.acra.2020.06.016 10.1002/jmri.27536 10.1002/jmri.27498 10.1002/jmri.26704 10.1007/s00330-017-5302-1 10.1002/jmri.26643 10.1097/RMR.0000000000000237 10.18632/oncotarget.18001 10.1109/EMBC.2018.8513556 10.3390/jpm11121336 10.1093/neuonc/nox158 10.1002/cnr2.1220 10.1186/s13244-021-01102-6 10.1002/mp.12356 10.1007/978-3-642-04271-3_64 10.1007/s11548-017-1691-5 10.1007/s10278-017-9984-3 10.7759/cureus.19580 10.1007/978-3-319-12048-5_1 10.3390/cancers11060829 10.1002/jmri.25860 10.3171/2014.10.FOCUS12367 10.1002/ima.22331 10.3390/cancers14061369 10.1007/s41095-019-0139-y 10.3389/fncom.2019.00081 10.1093/neuonc/noy021 10.1001/jamaoncol.2018.1789 10.3389/fonc.2021.788819 10.1038/s42003-022-03190-6 10.1007/s11060-018-2953-y 10.1007/s00401-016-1545-1 10.3390/biomedicines9030324 10.1002/cam4.1908 10.1002/mp.14168 10.1002/cam4.3838 10.1002/jmri.26010 10.3348/kjr.2019.0847 10.1038/s41598-022-09985-1 10.1186/s40644-019-0246-0 |
ContentType | Journal Article |
Copyright | Copyright: © 2024 Al-Rahbi et al. |
Copyright_xml | – notice: Copyright: © 2024 Al-Rahbi et al. |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.3892/mi.2024.164 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2754-1304 |
EndPage | 40 |
ExternalDocumentID | 10_3892_mi_2024_164 38827949 |
Genre | Journal Article |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS EIHBH NPM PGMZT RPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c1294-228fd137724b70804ff39129fdab6dd76d0e55088e11d8e17777a4e3f752c6b33 |
ISSN | 2754-3242 |
IngestDate | Sat Oct 26 05:02:53 EDT 2024 Thu Aug 22 11:31:39 EDT 2024 Sat Nov 02 12:08:06 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | glioma glioblastoma machine learning artificial intelligence algorithm |
Language | English |
License | Copyright: © 2024 Al-Rahbi et al. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1294-228fd137724b70804ff39129fdab6dd76d0e55088e11d8e17777a4e3f752c6b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.spandidos-publications.com/10.3892/mi.2024.164/download |
PMID | 38827949 |
PQID | 3064143796 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3064143796 crossref_primary_10_3892_mi_2024_164 pubmed_primary_38827949 |
PublicationCentury | 2000 |
PublicationDate | 2024 Jul-Aug |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024 Jul-Aug |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Medicine international (London) |
PublicationTitleAlternate | Med Int (Lond) |
PublicationYear | 2024 |
References | Chang (key20240621102659_b14-MI-4-4-00164) 2019; 21 Razek (key20240621102659_b50-MI-4-4-00164) 2021; 12 key20240621102659_b9-MI-4-4-00164 Akkus (key20240621102659_b54-MI-4-4-00164) 2017; 30 Ehret (key20240621102659_b13-MI-4-4-00164) 2022; 134 Peeken (key20240621102659_b60-MI-4-4-00164) 2019; 8 Xiang (key20240621102659_b62-MI-4-4-00164) 2022; 26 Shaver (key20240621102659_b15-MI-4-4-00164) 2019; 11 Alqazzaz (key20240621102659_b17-MI-4-4-00164) 2019; 5 Korfiatis (key20240621102659_b43-MI-4-4-00164) 2017; 30 Louis (key20240621102659_b6-MI-4-4-00164) 2016; 131 Hegi (key20240621102659_b41-MI-4-4-00164) 2005; 352 Xu (key20240621102659_b59-MI-4-4-00164) 2021; 54 Cho (key20240621102659_b5-MI-4-4-00164) 2018; 6 Tian (key20240621102659_b32-MI-4-4-00164) 2018; 48 Hedyehzadeh (key20240621102659_b34-MI-4-4-00164) 2021; 31 Hagiwara (key20240621102659_b37-MI-4-4-00164) 2022; 12 Shofty (key20240621102659_b51-MI-4-4-00164) 2018; 13 Mathiyalagan (key20240621102659_b19-MI-4-4-00164) 2021; 31 Zhang (key20240621102659_b45-MI-4-4-00164) 2021; 54 Ostrom (key20240621102659_b4-MI-4-4-00164) 2018; 4 Sejda (key20240621102659_b11-MI-4-4-00164) 2022; 60 Fekonja (key20240621102659_b22-MI-4-4-00164) 2022; 23 Hsu (key20240621102659_b36-MI-4-4-00164) 2022; 12 Jovčevska (key20240621102659_b46-MI-4-4-00164) 2020; 10 Rathore (key20240621102659_b29-MI-4-4-00164) 2019; 13 Verma (key20240621102659_b27-MI-4-4-00164) 2017; 44 Akbari (key20240621102659_b63-MI-4-4-00164) 2020; 126 Kickingereder (key20240621102659_b61-MI-4-4-00164) 2016; 280 Rajagopal (key20240621102659_b16-MI-4-4-00164) 2019; 29 Fisher (key20240621102659_b8-MI-4-4-00164) 2021; 9 Alhasan (key20240621102659_b65-MI-4-4-00164) 2021; 14 Nie (key20240621102659_b56-MI-4-4-00164) 2016; 9901 Park (key20240621102659_b23-MI-4-4-00164) 2020; 21 Subramanian (key20240621102659_b20-MI-4-4-00164) 2021; 11 Ozturk-Isik (key20240621102659_b38-MI-4-4-00164) 2020; 51 Nalawade (key20240621102659_b40-MI-4-4-00164) 2019; 6 Chen (key20240621102659_b55-MI-4-4-00164) 2021; 10 Chato (key20240621102659_b57-MI-4-4-00164) 2021; 11 Levner (key20240621102659_b42-MI-4-4-00164) 2009; 12(Pt2) Ostrom (key20240621102659_b2-MI-4-4-00164) 2018; 17 Xi (key20240621102659_b48-MI-4-4-00164) 2021; 47 Artzi (key20240621102659_b24-MI-4-4-00164) 2019; 50 Zhuge (key20240621102659_b31-MI-4-4-00164) 2020; 47 Li (key20240621102659_b47-MI-4-4-00164) 2020; 28 Yogananda (key20240621102659_b39-MI-4-4-00164) 2020; 22 Valdebenito (key20240621102659_b12-MI-4-4-00164) 2019; 2 Gore (key20240621102659_b28-MI-4-4-00164) 2021; 28 Kong (key20240621102659_b49-MI-4-4-00164) 2019; 19 Das (key20240621102659_b58-MI-4-4-00164) 2021; 34 Reddy (key20240621102659_b18-MI-4-4-00164) 2022; 76 Valdebenito (key20240621102659_b64-MI-4-4-00164) 2019; 2 Ge (key20240621102659_b52-MI-4-4-00164) 2018; 2018 Chang (key20240621102659_b44-MI-4-4-00164) 2018; 39 Page (key20240621102659_b67-MI-4-4-00164) 2021; 372 Han (key20240621102659_b53-MI-4-4-00164) 2018; 140 Claus (key20240621102659_b7-MI-4-4-00164) 2015; 38 Qian (key20240621102659_b25-MI-4-4-00164) 2019; 451 Sengupta (key20240621102659_b35-MI-4-4-00164) 2019; 50 Al-Saadi (key20240621102659_b10-MI-4-4-00164) Rudie (key20240621102659_b66-MI-4-4-00164) 2019; 290 Ostrom (key20240621102659_b1-MI-4-4-00164) 2017; 19 (suppl_5) Jekel (key20240621102659_b21-MI-4-4-00164) 2022; 14 Zlochower (key20240621102659_b30-MI-4-4-00164) 2020; 29 Ostrom (key20240621102659_b3-MI-4-4-00164) 2015; 163 Kang (key20240621102659_b26-MI-4-4-00164) 2018; 20 Zhang (key20240621102659_b33-MI-4-4-00164) 2017; 8 |
References_xml | – volume: 12 issue: 1078 year: 2022 ident: key20240621102659_b37-MI-4-4-00164 article-title: Visualization of tumor heterogeneity and prediction of isocitrate dehydrogenase mutation status for human gliomas using multiparametric physiologic and metabolic MRI publication-title: Sci Rep doi: 10.1038/s41598-022-05077-2 contributor: fullname: Hagiwara – volume: 10 issue: 798 year: 2020 ident: key20240621102659_b46-MI-4-4-00164 article-title: Next generation sequencing and machine learning technologies are painting the epigenetic portrait of glioblastoma publication-title: Front Oncol doi: 10.3389/fonc.2020.00798 contributor: fullname: Jovčevska – volume: 6 issue: e5982 year: 2018 ident: key20240621102659_b5-MI-4-4-00164 article-title: Classification of the glioma grading using radiomics analysis publication-title: PeerJ doi: 10.7717/peerj.5982 contributor: fullname: Cho – volume: 134 start-page: 139 year: 2022 ident: key20240621102659_b13-MI-4-4-00164 article-title: Machine learning-based radiomics in neuro-oncology publication-title: Acta Neurochir Suppl doi: 10.1007/978-3-030-85292-4_18 contributor: fullname: Ehret – volume: 2 issue: e1226 year: 2019 ident: key20240621102659_b12-MI-4-4-00164 article-title: Machine learning approaches to study glioblastoma: A review of the last decade of applications publication-title: Cancer Rep (Hoboken) doi: 10.1002/cnr2.1226 contributor: fullname: Valdebenito – volume: 17 start-page: 624 year: 2018 ident: key20240621102659_b2-MI-4-4-00164 article-title: Response to ‘the epidemiology of glioma in adults: A ‘state of the science’ review’ publication-title: Neuro Oncol doi: 10.1093/neuonc/nov022 contributor: fullname: Ostrom – volume: 21 start-page: 1412 year: 2019 ident: key20240621102659_b14-MI-4-4-00164 article-title: Automatic assessment of glioma burden: A deep learning algorithm for fully automated volumetric and bidimensional measurement publication-title: Neuro Oncol doi: 10.1093/neuonc/noz106 contributor: fullname: Chang – volume: 60 start-page: 137 year: 2022 ident: key20240621102659_b11-MI-4-4-00164 article-title: WHO CNS5 2021 classification of gliomas: A practical review and road signs for diagnosing pathologists and proper patho-clinical and neuro-oncological cooperation publication-title: Folia Neuropathol doi: 10.5114/fn.2022.118183 contributor: fullname: Sejda – ident: key20240621102659_b9-MI-4-4-00164 – volume: 22 start-page: 402 year: 2020 ident: key20240621102659_b39-MI-4-4-00164 article-title: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas publication-title: Neuro Oncol doi: 10.1093/neuonc/noz199 contributor: fullname: Yogananda – volume: 280 start-page: 880 year: 2016 ident: key20240621102659_b61-MI-4-4-00164 article-title: Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models publication-title: Radiology doi: 10.1148/radiol.2016160845 contributor: fullname: Kickingereder – volume: 126 start-page: 2625 year: 2020 ident: key20240621102659_b63-MI-4-4-00164 article-title: Histopathology-Validated machine learning radiographic Biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma publication-title: Cancer doi: 10.1002/cncr.32790 contributor: fullname: Akbari – volume: 290 start-page: 607 year: 2019 ident: key20240621102659_b66-MI-4-4-00164 article-title: Emerging applications of artificial intelligence in neuro-oncology publication-title: Radiology doi: 10.1148/radiol.2018181928 contributor: fullname: Rudie – volume: 51 start-page: 1799 year: 2020 ident: key20240621102659_b38-MI-4-4-00164 article-title: Identification of IDH and TERTp mutation status using 1 H-MRS in 112 hemispheric diffuse gliomas publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26964 contributor: fullname: Ozturk-Isik – volume: 9901 start-page: 212 year: 2016 ident: key20240621102659_b56-MI-4-4-00164 article-title: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients publication-title: Med Image Comput Comput Assist Interv doi: 10.1007/978-3-319-46723-8_25 contributor: fullname: Nie – volume: 451 start-page: 128 year: 2019 ident: key20240621102659_b25-MI-4-4-00164 article-title: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers publication-title: Cancer Lett doi: 10.1016/j.canlet.2019.02.054 contributor: fullname: Qian – volume: 39 start-page: 1201 year: 2018 ident: key20240621102659_b44-MI-4-4-00164 article-title: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5667 contributor: fullname: Chang – volume: 30 start-page: 622 year: 2017 ident: key20240621102659_b43-MI-4-4-00164 article-title: Residual deep convolutional neural network predicts MGMT methylation status publication-title: J Dig Imaging doi: 10.1007/s10278-017-0009-z contributor: fullname: Korfiatis – volume: 372 issue: n71 year: 2021 ident: key20240621102659_b67-MI-4-4-00164 article-title: The PRISMA 2020 statement: An updated guideline for reporting systematic reviews publication-title: BMJ doi: 10.1136/bmj.n71 contributor: fullname: Page – volume: 31 start-page: 1424 year: 2021 ident: key20240621102659_b19-MI-4-4-00164 article-title: A machine learning classification approach based glioma brain tumor detection publication-title: Int J Imag Syst Tech doi: 10.1002/ima.22590 contributor: fullname: Mathiyalagan – volume: 26 start-page: 1253 year: 2022 ident: key20240621102659_b62-MI-4-4-00164 article-title: Identification of a glioma functional network from Gene Fitness data using machine learning publication-title: J Cell Mol Med doi: 10.1111/jcmm.17182 contributor: fullname: Xiang – volume: 6 issue: 046003 year: 2019 ident: key20240621102659_b40-MI-4-4-00164 article-title: Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning publication-title: J Med Imaging (Bellingham) doi: 10.1117/1.JMI.6.4.046003 contributor: fullname: Nalawade – volume: 352 start-page: 997 year: 2005 ident: key20240621102659_b41-MI-4-4-00164 article-title: MGMT gene silencing and benefit from temozolomide in glioblastoma publication-title: N Engl J Med doi: 10.1056/NEJMoa043331 contributor: fullname: Hegi – volume: 31 start-page: 1670 year: 2021 ident: key20240621102659_b34-MI-4-4-00164 article-title: Glioma grade detection using grasshopper optimization algorithm-optimized machine learning methods: The cancer imaging archive study publication-title: Int J Imaging Syst Tech doi: 10.1002/ima.22536 contributor: fullname: Hedyehzadeh – volume: 28 start-page: 1599 year: 2021 ident: key20240621102659_b28-MI-4-4-00164 article-title: A review of Radiomics and deep predictive modeling in glioma characterization publication-title: Acad Radiol doi: 10.1016/j.acra.2020.06.016 contributor: fullname: Gore – volume: 54 start-page: 571 year: 2021 ident: key20240621102659_b59-MI-4-4-00164 article-title: The nomogram of MRI based radiomics with complementary visual features by machine learning improves stratification of glioblastoma patients: A multicenter study publication-title: J Magn Reson Imaging doi: 10.1002/jmri.27536 contributor: fullname: Xu – volume: 54 start-page: 197 year: 2021 ident: key20240621102659_b45-MI-4-4-00164 article-title: Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O6-methylguanine-DNA methyltransferase promoter methylation in patients with gliomas publication-title: J Magn Reson Imaging doi: 10.1002/jmri.27498 contributor: fullname: Zhang – volume: 50 start-page: 1295 year: 2019 ident: key20240621102659_b35-MI-4-4-00164 article-title: Glioma grading using a machine-learning framework based on optimized features obtained from T1 perfusion MRI and volumes of tumor components publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26704 contributor: fullname: Sengupta – volume: 28 start-page: 3640 year: 2020 ident: key20240621102659_b47-MI-4-4-00164 article-title: Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study publication-title: Eur Radiol doi: 10.1007/s00330-017-5302-1 contributor: fullname: Li – volume: 50 start-page: 519 year: 2019 ident: key20240621102659_b24-MI-4-4-00164 article-title: Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26643 contributor: fullname: Artzi – volume: 29 start-page: 115 year: 2020 ident: key20240621102659_b30-MI-4-4-00164 article-title: Deep learning AI applications in the imaging of Glioma publication-title: Top Magn Reson Imaging doi: 10.1097/RMR.0000000000000237 contributor: fullname: Zlochower – volume: 8 start-page: 47816 year: 2017 ident: key20240621102659_b33-MI-4-4-00164 article-title: Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features publication-title: Oncotarget doi: 10.18632/oncotarget.18001 contributor: fullname: Zhang – volume: 2018 start-page: 5894 year: 2018 ident: key20240621102659_b52-MI-4-4-00164 article-title: Deep learning and multi-sensor fusion for glioma classification using multistream 2d convolutional networks publication-title: Ann Int Conf IEEE Eng Med Biol Soc doi: 10.1109/EMBC.2018.8513556 contributor: fullname: Ge – volume: 34 issue: e6501 year: 2021 ident: key20240621102659_b58-MI-4-4-00164 article-title: Brain tumor segmentation and overall survival period prediction in glioblastoma multiforme using radiomic features publication-title: Concurrency Computat Pract Exper contributor: fullname: Das – volume: 11 issue: 1336 year: 2021 ident: key20240621102659_b57-MI-4-4-00164 article-title: Machine learning and radiomic features to predict overall survival time for glioblastoma patients publication-title: J Pers Med doi: 10.3390/jpm11121336 contributor: fullname: Chato – volume: 19 (suppl_5) start-page: v1 year: 2017 ident: key20240621102659_b1-MI-4-4-00164 article-title: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014 publication-title: Neuro Oncol doi: 10.1093/neuonc/nox158 contributor: fullname: Ostrom – volume: 2 issue: e1220 year: 2019 ident: key20240621102659_b64-MI-4-4-00164 article-title: Novel approaches for glioblastoma treatment: Focus on tumor heterogeneity, treatment resistance, and computational tools publication-title: Cancer Rep (Hoboken) doi: 10.1002/cnr2.1220 contributor: fullname: Valdebenito – volume: 12 issue: 152 year: 2021 ident: key20240621102659_b50-MI-4-4-00164 article-title: Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging publication-title: Insights Imaging doi: 10.1186/s13244-021-01102-6 contributor: fullname: Razek – volume: 44 start-page: 4000 year: 2017 ident: key20240621102659_b27-MI-4-4-00164 article-title: Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with dynamic texture parameters analysis (DTPA): A feasibility study publication-title: Med Phys doi: 10.1002/mp.12356 contributor: fullname: Verma – volume: 12(Pt2) start-page: 522 year: 2009 ident: key20240621102659_b42-MI-4-4-00164 article-title: Predicting MGMT methylation status of glioblastomas from MRI texture publication-title: Med Image Comput Comput Assist Interv doi: 10.1007/978-3-642-04271-3_64 contributor: fullname: Levner – volume: 13 start-page: 563 year: 2018 ident: key20240621102659_b51-MI-4-4-00164 article-title: MRI radiomics analysis of molecular alterations in low-grade gliomas publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-017-1691-5 contributor: fullname: Shofty – volume: 30 start-page: 469 year: 2017 ident: key20240621102659_b54-MI-4-4-00164 article-title: Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence publication-title: J Digit Imaging doi: 10.1007/s10278-017-9984-3 contributor: fullname: Akkus – volume: 14 issue: e19580 year: 2021 ident: key20240621102659_b65-MI-4-4-00164 article-title: Clinical applications of artificial intelligence, machine learning, and deep learning in the imaging of gliomas: A systematic review publication-title: Cureus doi: 10.7759/cureus.19580 contributor: fullname: Alhasan – volume: 163 start-page: 1 year: 2015 ident: key20240621102659_b3-MI-4-4-00164 article-title: Epidemiology of gliomas publication-title: Cancer Treat Res doi: 10.1007/978-3-319-12048-5_1 contributor: fullname: Ostrom – volume: 11 issue: 829 year: 2019 ident: key20240621102659_b15-MI-4-4-00164 article-title: Optimizing neuro-oncology imaging: A review of deep learning approaches for glioma imaging publication-title: Cancers (Basel) doi: 10.3390/cancers11060829 contributor: fullname: Shaver – volume: 47 start-page: 1380 year: 2021 ident: key20240621102659_b48-MI-4-4-00164 article-title: Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma publication-title: J Magn Resonan Imaging doi: 10.1002/jmri.25860 contributor: fullname: Xi – volume: 38 issue: E6 year: 2015 ident: key20240621102659_b7-MI-4-4-00164 article-title: Survival and low-grade glioma: The emergence of genetic information publication-title: Neurosurg Focus doi: 10.3171/2014.10.FOCUS12367 contributor: fullname: Claus – volume: 29 start-page: 353 year: 2019 ident: key20240621102659_b16-MI-4-4-00164 article-title: Glioma brain tumor detection and segmentation using weighting random forest classifier with optimized ant colony features publication-title: Int J Imag Syst Tech doi: 10.1002/ima.22331 contributor: fullname: Rajagopal – volume: 14 issue: 1369 year: 2022 ident: key20240621102659_b21-MI-4-4-00164 article-title: Machine learning applications for differentiation of glioma from brain metastasis-a systematic review publication-title: Cancers (Basel) doi: 10.3390/cancers14061369 contributor: fullname: Jekel – volume: 5 start-page: 209 year: 2019 ident: key20240621102659_b17-MI-4-4-00164 article-title: Automated brain tumor segmentation on multi-modal mr image using segnet publication-title: Computational Visual Media doi: 10.1007/s41095-019-0139-y contributor: fullname: Alqazzaz – volume: 13 issue: 81 year: 2019 ident: key20240621102659_b29-MI-4-4-00164 article-title: Multivariate analysis of preoperative magnetic resonance imaging reveals transcriptomic classification of de novo glioblastoma patients publication-title: Front Comput Neurosci doi: 10.3389/fncom.2019.00081 contributor: fullname: Rathore – volume: 20 start-page: 1251 year: 2018 ident: key20240621102659_b26-MI-4-4-00164 article-title: Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: Development and multicenter external validation publication-title: Neuro Oncol doi: 10.1093/neuonc/noy021 contributor: fullname: Kang – volume: 4 start-page: 1254 year: 2018 ident: key20240621102659_b4-MI-4-4-00164 article-title: Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014 publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2018.1789 contributor: fullname: Ostrom – volume: 11 issue: 788819 year: 2021 ident: key20240621102659_b20-MI-4-4-00164 article-title: Trends in development of novel machine learning methods for the identification of gliomas in datasets that include Non-Glioma images: A systematic review publication-title: Front Oncol doi: 10.3389/fonc.2021.788819 contributor: fullname: Subramanian – volume: 23 issue: 258 year: 2022 ident: key20240621102659_b22-MI-4-4-00164 article-title: Network analysis shows decreased ipsilesional structural connectivity in glioma patients publication-title: Commun Biol doi: 10.1038/s42003-022-03190-6 contributor: fullname: Fekonja – volume: 140 start-page: 297 year: 2018 ident: key20240621102659_b53-MI-4-4-00164 article-title: Non-invasive genotype prediction of chromosome 1p/19Q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas publication-title: J Neurooncol doi: 10.1007/s11060-018-2953-y contributor: fullname: Han – volume: 131 start-page: 803 year: 2016 ident: key20240621102659_b6-MI-4-4-00164 article-title: The 2016 world health organization classification of tumors of the central nervous system: A summary publication-title: Acta Neuropathol doi: 10.1007/s00401-016-1545-1 contributor: fullname: Louis – volume: 9 issue: 324 year: 2021 ident: key20240621102659_b8-MI-4-4-00164 article-title: Current FDA-approved therapies for high-grade malignant gliomas publication-title: Biomedicines doi: 10.3390/biomedicines9030324 contributor: fullname: Fisher – volume: 8 start-page: 128 year: 2019 ident: key20240621102659_b60-MI-4-4-00164 article-title: Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme publication-title: Cancer Med doi: 10.1002/cam4.1908 contributor: fullname: Peeken – volume: 47 start-page: 3044 year: 2020 ident: key20240621102659_b31-MI-4-4-00164 article-title: Automated glioma grading on conventional MRI images using deep convolutional neural networks publication-title: Med Phys doi: 10.1002/mp.14168 contributor: fullname: Zhuge – volume: 10 start-page: 2774 year: 2021 ident: key20240621102659_b55-MI-4-4-00164 article-title: A machine learning-based survival prediction model of high grade glioma by integration of clinical and dose-volume histogram parameters publication-title: Cancer Med doi: 10.1002/cam4.3838 contributor: fullname: Chen – volume: 48 start-page: 1518 year: 2018 ident: key20240621102659_b32-MI-4-4-00164 article-title: Radiomics strategy for glioma grading using texture features from multiparametric MRI publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26010 contributor: fullname: Tian – volume: 76 issue: 103704 year: 2022 ident: key20240621102659_b18-MI-4-4-00164 article-title: Segmentation and classification of brain tumors from MRI images based on adaptive mechanisms and ELDP feature descriptor publication-title: Biomed Signal Proc Control contributor: fullname: Reddy – ident: key20240621102659_b10-MI-4-4-00164 contributor: fullname: Al-Saadi – volume: 21 start-page: 1126 year: 2020 ident: key20240621102659_b23-MI-4-4-00164 article-title: Radiomics and deep learning from research to clinical workflow: Neuro-oncologic imaging publication-title: Korean J Radiol doi: 10.3348/kjr.2019.0847 contributor: fullname: Park – volume: 12 issue: 6111 year: 2022 ident: key20240621102659_b36-MI-4-4-00164 article-title: A weakly supervised deep learning-based method for glioma subtype classification using WSI and mpMRIs publication-title: Sci Rep doi: 10.1038/s41598-022-09985-1 contributor: fullname: Hsu – volume: 19 issue: 58 year: 2019 ident: key20240621102659_b49-MI-4-4-00164 article-title: 18F-FDG-PET-based Radiomics signature predicts MGMT promoter methylation status in primary diffuse glioma publication-title: Cancer Imaging doi: 10.1186/s40644-019-0246-0 contributor: fullname: Kong |
SSID | ssj0002923691 |
Score | 2.3093593 |
Snippet | Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 40 |
Title | Uses of artificial intelligence in glioma: A systematic review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38827949 https://www.proquest.com/docview/3064143796 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZbB6MvY2W_0m1Fg74NZ7N0luY9DMJoKYVssCXQNyNZ0mqonbZJGfSv70mKY62s0C0PSqLDEtxn676TpU-E7HPA7MbZHJ9vxzNwkmXIWlWmmSlEXWDEDyJJ02_iaA7HJ8XJcEpf2F2y0uP6-q_7Sv4HVaxDXP0u2X9AdtMoVuBvxBdLRBjLe2E8X0bJWG9aK0E0qcRm073_ddYsWhX3n99Wbf6dMtPp-iV7aGGYI0xO_BimDM6yH-pUh3UAE3Oq2sQwVf7gn4tg-96qy8T0UykT6meYn1-k0w0MNktTMVqEYYnJAjKMfJCOoZDcKpCMh1GK6fYwjSTJy762zdj3MM6jjnkC2HkbEONI_3G8KIdYtVlB2Jsekkf4zUUyT-NjMEPeKso8bsj03X1IOtsmj_vL_2Qjd6QYgWrMnpIn6xyBTiLgO-SB7Z6RLx5sunB0AJumYOMfGsH-TCd0gJpGqJ-T-eHB7OtRtj78IquRgkGGD4kzXg6SgZZI68E5XqLFGaWFMVKYj7bw7NrmucFC4keB5U4WrBaa8xdkq1t09hWhTBgAVzqmP9VgJNfcOivBloWsoQAYkf3eCdV51DipMDf0bqvapvJuq9BtI_KudxBWL_2LJdXZxdWy8lls7oUtxYi8jJ7bNNR7evdOy2uyPdxob8jW6vLKvkWmt9J7AdQbpeVQPQ |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uses+of+artificial+intelligence+in+glioma%3A+A+systematic+review&rft.jtitle=Medicine+international+%28London%29&rft.au=Al-Rahbi%2C+Adham&rft.au=Al-Mahrouqi%2C+Omar&rft.au=Al-Saadi%2C+Tariq&rft.date=2024-07-01&rft.eissn=2754-1304&rft.volume=4&rft.issue=4&rft.spage=40&rft_id=info:doi/10.3892%2Fmi.2024.164&rft_id=info%3Apmid%2F38827949&rft.externalDocID=38827949 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2754-3242&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2754-3242&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2754-3242&client=summon |