Uses of artificial intelligence in glioma: A systematic review

Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising results. The present study performed a systematic review of the applications of AI in glioma as regards diagnosis, grading, prediction of ge...

Full description

Saved in:
Bibliographic Details
Published inMedicine international (London) Vol. 4; no. 4; p. 40
Main Authors Al-Rahbi, Adham, Al-Mahrouqi, Omar, Al-Saadi, Tariq
Format Journal Article
LanguageEnglish
Published England 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising results. The present study performed a systematic review of the applications of AI in glioma as regards diagnosis, grading, prediction of genotype, progression and treatment response using different databases. The aim of the present study was to demonstrate the trends (main directions) of the recent applications of AI within the field of glioma, and to highlight emerging challenges in integrating AI within clinical practice. A search in four databases (Scopus, PubMed, Wiley and Google Scholar) yielded a total of 42 articles specifically using AI in glioma and glioblastoma. The articles were retrieved and reviewed, and the data were summarized and analyzed. The majority of the articles were from the USA (n=18) followed by China (n=11). The number of articles increased by year reaching the maximum number in 2022. The majority of the articles studied glioma as opposed to glioblastoma. In terms of grading, the majority of the articles were about both low-grade glioma (LGG) and high-grade glioma (HGG) (n=23), followed by HGG/glioblastoma (n=13). Additionally, three articles were about LGG only; two articles did not specify the grade. It was found that one article had the highest sample size among the other studies, reaching 897 samples. Despite the limitations and challenges that face AI, the use of AI in glioma has increased in recent years with promising results, with a variety of applications ranging from diagnosis, grading, prognosis prediction, and reaching to treatment and post-operative care.
AbstractList Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising results. The present study performed a systematic review of the applications of AI in glioma as regards diagnosis, grading, prediction of genotype, progression and treatment response using different databases. The aim of the present study was to demonstrate the trends (main directions) of the recent applications of AI within the field of glioma, and to highlight emerging challenges in integrating AI within clinical practice. A search in four databases (Scopus, PubMed, Wiley and Google Scholar) yielded a total of 42 articles specifically using AI in glioma and glioblastoma. The articles were retrieved and reviewed, and the data were summarized and analyzed. The majority of the articles were from the USA (n=18) followed by China (n=11). The number of articles increased by year reaching the maximum number in 2022. The majority of the articles studied glioma as opposed to glioblastoma. In terms of grading, the majority of the articles were about both low-grade glioma (LGG) and high-grade glioma (HGG) (n=23), followed by HGG/glioblastoma (n=13). Additionally, three articles were about LGG only; two articles did not specify the grade. It was found that one article had the highest sample size among the other studies, reaching 897 samples. Despite the limitations and challenges that face AI, the use of AI in glioma has increased in recent years with promising results, with a variety of applications ranging from diagnosis, grading, prognosis prediction, and reaching to treatment and post-operative care.
ArticleNumber 40
Author Al-Rahbi, Adham
Al-Saadi, Tariq
Al-Mahrouqi, Omar
Author_xml – sequence: 1
  givenname: Adham
  surname: Al-Rahbi
  fullname: Al-Rahbi, Adham
  organization: College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
– sequence: 2
  givenname: Omar
  surname: Al-Mahrouqi
  fullname: Al-Mahrouqi, Omar
  organization: College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
– sequence: 3
  givenname: Tariq
  surname: Al-Saadi
  fullname: Al-Saadi, Tariq
  organization: Department of Neurology and Neurosurgery-Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38827949$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtLAzEQxoNUbK09eZccBdma1-bhQSjFFxS82POSzU5KZB91s1X635vS6hzmwXzzMfwu0ajtWkDompI514bdN2HOCBNzKsUZmjCVi4xyIkannjPBxmgW4ychhBnGpaEXaMy1ZsoIM0GP6wgRdx7bfgg-uGBrHNoB6jpsoHWQBrypQ9fYB7zAcR8HaOwQHO7hO8DPFTr3to4wO9UpWj8_fSxfs9X7y9tyscocZUZkjGlfUa4UE6UimgjvuUkbX9lSVpWSFYE8J1oDpVVKKoUVwL3KmZMl51N0e_Td9t3XDuJQNCG69KVtodvFghMpqODKyCS9O0pd38XYgy-2fWhsvy8oKQ7M0mlxYFYkZkl9czLelQ1U_9o_QvwXOLNm2w
Cites_doi 10.1038/s41598-022-05077-2
10.3389/fonc.2020.00798
10.7717/peerj.5982
10.1007/978-3-030-85292-4_18
10.1002/cnr2.1226
10.1093/neuonc/nov022
10.1093/neuonc/noz106
10.5114/fn.2022.118183
10.1093/neuonc/noz199
10.1148/radiol.2016160845
10.1002/cncr.32790
10.1148/radiol.2018181928
10.1002/jmri.26964
10.1007/978-3-319-46723-8_25
10.1016/j.canlet.2019.02.054
10.3174/ajnr.A5667
10.1007/s10278-017-0009-z
10.1136/bmj.n71
10.1002/ima.22590
10.1111/jcmm.17182
10.1117/1.JMI.6.4.046003
10.1056/NEJMoa043331
10.1002/ima.22536
10.1016/j.acra.2020.06.016
10.1002/jmri.27536
10.1002/jmri.27498
10.1002/jmri.26704
10.1007/s00330-017-5302-1
10.1002/jmri.26643
10.1097/RMR.0000000000000237
10.18632/oncotarget.18001
10.1109/EMBC.2018.8513556
10.3390/jpm11121336
10.1093/neuonc/nox158
10.1002/cnr2.1220
10.1186/s13244-021-01102-6
10.1002/mp.12356
10.1007/978-3-642-04271-3_64
10.1007/s11548-017-1691-5
10.1007/s10278-017-9984-3
10.7759/cureus.19580
10.1007/978-3-319-12048-5_1
10.3390/cancers11060829
10.1002/jmri.25860
10.3171/2014.10.FOCUS12367
10.1002/ima.22331
10.3390/cancers14061369
10.1007/s41095-019-0139-y
10.3389/fncom.2019.00081
10.1093/neuonc/noy021
10.1001/jamaoncol.2018.1789
10.3389/fonc.2021.788819
10.1038/s42003-022-03190-6
10.1007/s11060-018-2953-y
10.1007/s00401-016-1545-1
10.3390/biomedicines9030324
10.1002/cam4.1908
10.1002/mp.14168
10.1002/cam4.3838
10.1002/jmri.26010
10.3348/kjr.2019.0847
10.1038/s41598-022-09985-1
10.1186/s40644-019-0246-0
ContentType Journal Article
Copyright Copyright: © 2024 Al-Rahbi et al.
Copyright_xml – notice: Copyright: © 2024 Al-Rahbi et al.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.3892/mi.2024.164
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2754-1304
EndPage 40
ExternalDocumentID 10_3892_mi_2024_164
38827949
Genre Journal Article
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
EIHBH
NPM
PGMZT
RPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c1294-228fd137724b70804ff39129fdab6dd76d0e55088e11d8e17777a4e3f752c6b33
ISSN 2754-3242
IngestDate Sat Oct 26 05:02:53 EDT 2024
Thu Aug 22 11:31:39 EDT 2024
Sat Nov 02 12:08:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords glioma
glioblastoma
machine learning
artificial intelligence
algorithm
Language English
License Copyright: © 2024 Al-Rahbi et al.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1294-228fd137724b70804ff39129fdab6dd76d0e55088e11d8e17777a4e3f752c6b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.spandidos-publications.com/10.3892/mi.2024.164/download
PMID 38827949
PQID 3064143796
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3064143796
crossref_primary_10_3892_mi_2024_164
pubmed_primary_38827949
PublicationCentury 2000
PublicationDate 2024 Jul-Aug
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024 Jul-Aug
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medicine international (London)
PublicationTitleAlternate Med Int (Lond)
PublicationYear 2024
References Chang (key20240621102659_b14-MI-4-4-00164) 2019; 21
Razek (key20240621102659_b50-MI-4-4-00164) 2021; 12
key20240621102659_b9-MI-4-4-00164
Akkus (key20240621102659_b54-MI-4-4-00164) 2017; 30
Ehret (key20240621102659_b13-MI-4-4-00164) 2022; 134
Peeken (key20240621102659_b60-MI-4-4-00164) 2019; 8
Xiang (key20240621102659_b62-MI-4-4-00164) 2022; 26
Shaver (key20240621102659_b15-MI-4-4-00164) 2019; 11
Alqazzaz (key20240621102659_b17-MI-4-4-00164) 2019; 5
Korfiatis (key20240621102659_b43-MI-4-4-00164) 2017; 30
Louis (key20240621102659_b6-MI-4-4-00164) 2016; 131
Hegi (key20240621102659_b41-MI-4-4-00164) 2005; 352
Xu (key20240621102659_b59-MI-4-4-00164) 2021; 54
Cho (key20240621102659_b5-MI-4-4-00164) 2018; 6
Tian (key20240621102659_b32-MI-4-4-00164) 2018; 48
Hedyehzadeh (key20240621102659_b34-MI-4-4-00164) 2021; 31
Hagiwara (key20240621102659_b37-MI-4-4-00164) 2022; 12
Shofty (key20240621102659_b51-MI-4-4-00164) 2018; 13
Mathiyalagan (key20240621102659_b19-MI-4-4-00164) 2021; 31
Zhang (key20240621102659_b45-MI-4-4-00164) 2021; 54
Ostrom (key20240621102659_b4-MI-4-4-00164) 2018; 4
Sejda (key20240621102659_b11-MI-4-4-00164) 2022; 60
Fekonja (key20240621102659_b22-MI-4-4-00164) 2022; 23
Hsu (key20240621102659_b36-MI-4-4-00164) 2022; 12
Jovčevska (key20240621102659_b46-MI-4-4-00164) 2020; 10
Rathore (key20240621102659_b29-MI-4-4-00164) 2019; 13
Verma (key20240621102659_b27-MI-4-4-00164) 2017; 44
Akbari (key20240621102659_b63-MI-4-4-00164) 2020; 126
Kickingereder (key20240621102659_b61-MI-4-4-00164) 2016; 280
Rajagopal (key20240621102659_b16-MI-4-4-00164) 2019; 29
Fisher (key20240621102659_b8-MI-4-4-00164) 2021; 9
Alhasan (key20240621102659_b65-MI-4-4-00164) 2021; 14
Nie (key20240621102659_b56-MI-4-4-00164) 2016; 9901
Park (key20240621102659_b23-MI-4-4-00164) 2020; 21
Subramanian (key20240621102659_b20-MI-4-4-00164) 2021; 11
Ozturk-Isik (key20240621102659_b38-MI-4-4-00164) 2020; 51
Nalawade (key20240621102659_b40-MI-4-4-00164) 2019; 6
Chen (key20240621102659_b55-MI-4-4-00164) 2021; 10
Chato (key20240621102659_b57-MI-4-4-00164) 2021; 11
Levner (key20240621102659_b42-MI-4-4-00164) 2009; 12(Pt2)
Ostrom (key20240621102659_b2-MI-4-4-00164) 2018; 17
Xi (key20240621102659_b48-MI-4-4-00164) 2021; 47
Artzi (key20240621102659_b24-MI-4-4-00164) 2019; 50
Zhuge (key20240621102659_b31-MI-4-4-00164) 2020; 47
Li (key20240621102659_b47-MI-4-4-00164) 2020; 28
Yogananda (key20240621102659_b39-MI-4-4-00164) 2020; 22
Valdebenito (key20240621102659_b12-MI-4-4-00164) 2019; 2
Gore (key20240621102659_b28-MI-4-4-00164) 2021; 28
Kong (key20240621102659_b49-MI-4-4-00164) 2019; 19
Das (key20240621102659_b58-MI-4-4-00164) 2021; 34
Reddy (key20240621102659_b18-MI-4-4-00164) 2022; 76
Valdebenito (key20240621102659_b64-MI-4-4-00164) 2019; 2
Ge (key20240621102659_b52-MI-4-4-00164) 2018; 2018
Chang (key20240621102659_b44-MI-4-4-00164) 2018; 39
Page (key20240621102659_b67-MI-4-4-00164) 2021; 372
Han (key20240621102659_b53-MI-4-4-00164) 2018; 140
Claus (key20240621102659_b7-MI-4-4-00164) 2015; 38
Qian (key20240621102659_b25-MI-4-4-00164) 2019; 451
Sengupta (key20240621102659_b35-MI-4-4-00164) 2019; 50
Al-Saadi (key20240621102659_b10-MI-4-4-00164)
Rudie (key20240621102659_b66-MI-4-4-00164) 2019; 290
Ostrom (key20240621102659_b1-MI-4-4-00164) 2017; 19 (suppl_5)
Jekel (key20240621102659_b21-MI-4-4-00164) 2022; 14
Zlochower (key20240621102659_b30-MI-4-4-00164) 2020; 29
Ostrom (key20240621102659_b3-MI-4-4-00164) 2015; 163
Kang (key20240621102659_b26-MI-4-4-00164) 2018; 20
Zhang (key20240621102659_b33-MI-4-4-00164) 2017; 8
References_xml – volume: 12
  issue: 1078
  year: 2022
  ident: key20240621102659_b37-MI-4-4-00164
  article-title: Visualization of tumor heterogeneity and prediction of isocitrate dehydrogenase mutation status for human gliomas using multiparametric physiologic and metabolic MRI
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-05077-2
  contributor:
    fullname: Hagiwara
– volume: 10
  issue: 798
  year: 2020
  ident: key20240621102659_b46-MI-4-4-00164
  article-title: Next generation sequencing and machine learning technologies are painting the epigenetic portrait of glioblastoma
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.00798
  contributor:
    fullname: Jovčevska
– volume: 6
  issue: e5982
  year: 2018
  ident: key20240621102659_b5-MI-4-4-00164
  article-title: Classification of the glioma grading using radiomics analysis
  publication-title: PeerJ
  doi: 10.7717/peerj.5982
  contributor:
    fullname: Cho
– volume: 134
  start-page: 139
  year: 2022
  ident: key20240621102659_b13-MI-4-4-00164
  article-title: Machine learning-based radiomics in neuro-oncology
  publication-title: Acta Neurochir Suppl
  doi: 10.1007/978-3-030-85292-4_18
  contributor:
    fullname: Ehret
– volume: 2
  issue: e1226
  year: 2019
  ident: key20240621102659_b12-MI-4-4-00164
  article-title: Machine learning approaches to study glioblastoma: A review of the last decade of applications
  publication-title: Cancer Rep (Hoboken)
  doi: 10.1002/cnr2.1226
  contributor:
    fullname: Valdebenito
– volume: 17
  start-page: 624
  year: 2018
  ident: key20240621102659_b2-MI-4-4-00164
  article-title: Response to ‘the epidemiology of glioma in adults: A ‘state of the science’ review’
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/nov022
  contributor:
    fullname: Ostrom
– volume: 21
  start-page: 1412
  year: 2019
  ident: key20240621102659_b14-MI-4-4-00164
  article-title: Automatic assessment of glioma burden: A deep learning algorithm for fully automated volumetric and bidimensional measurement
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noz106
  contributor:
    fullname: Chang
– volume: 60
  start-page: 137
  year: 2022
  ident: key20240621102659_b11-MI-4-4-00164
  article-title: WHO CNS5 2021 classification of gliomas: A practical review and road signs for diagnosing pathologists and proper patho-clinical and neuro-oncological cooperation
  publication-title: Folia Neuropathol
  doi: 10.5114/fn.2022.118183
  contributor:
    fullname: Sejda
– ident: key20240621102659_b9-MI-4-4-00164
– volume: 22
  start-page: 402
  year: 2020
  ident: key20240621102659_b39-MI-4-4-00164
  article-title: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noz199
  contributor:
    fullname: Yogananda
– volume: 280
  start-page: 880
  year: 2016
  ident: key20240621102659_b61-MI-4-4-00164
  article-title: Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models
  publication-title: Radiology
  doi: 10.1148/radiol.2016160845
  contributor:
    fullname: Kickingereder
– volume: 126
  start-page: 2625
  year: 2020
  ident: key20240621102659_b63-MI-4-4-00164
  article-title: Histopathology-Validated machine learning radiographic Biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma
  publication-title: Cancer
  doi: 10.1002/cncr.32790
  contributor:
    fullname: Akbari
– volume: 290
  start-page: 607
  year: 2019
  ident: key20240621102659_b66-MI-4-4-00164
  article-title: Emerging applications of artificial intelligence in neuro-oncology
  publication-title: Radiology
  doi: 10.1148/radiol.2018181928
  contributor:
    fullname: Rudie
– volume: 51
  start-page: 1799
  year: 2020
  ident: key20240621102659_b38-MI-4-4-00164
  article-title: Identification of IDH and TERTp mutation status using 1 H-MRS in 112 hemispheric diffuse gliomas
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26964
  contributor:
    fullname: Ozturk-Isik
– volume: 9901
  start-page: 212
  year: 2016
  ident: key20240621102659_b56-MI-4-4-00164
  article-title: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients
  publication-title: Med Image Comput Comput Assist Interv
  doi: 10.1007/978-3-319-46723-8_25
  contributor:
    fullname: Nie
– volume: 451
  start-page: 128
  year: 2019
  ident: key20240621102659_b25-MI-4-4-00164
  article-title: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2019.02.054
  contributor:
    fullname: Qian
– volume: 39
  start-page: 1201
  year: 2018
  ident: key20240621102659_b44-MI-4-4-00164
  article-title: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5667
  contributor:
    fullname: Chang
– volume: 30
  start-page: 622
  year: 2017
  ident: key20240621102659_b43-MI-4-4-00164
  article-title: Residual deep convolutional neural network predicts MGMT methylation status
  publication-title: J Dig Imaging
  doi: 10.1007/s10278-017-0009-z
  contributor:
    fullname: Korfiatis
– volume: 372
  issue: n71
  year: 2021
  ident: key20240621102659_b67-MI-4-4-00164
  article-title: The PRISMA 2020 statement: An updated guideline for reporting systematic reviews
  publication-title: BMJ
  doi: 10.1136/bmj.n71
  contributor:
    fullname: Page
– volume: 31
  start-page: 1424
  year: 2021
  ident: key20240621102659_b19-MI-4-4-00164
  article-title: A machine learning classification approach based glioma brain tumor detection
  publication-title: Int J Imag Syst Tech
  doi: 10.1002/ima.22590
  contributor:
    fullname: Mathiyalagan
– volume: 26
  start-page: 1253
  year: 2022
  ident: key20240621102659_b62-MI-4-4-00164
  article-title: Identification of a glioma functional network from Gene Fitness data using machine learning
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.17182
  contributor:
    fullname: Xiang
– volume: 6
  issue: 046003
  year: 2019
  ident: key20240621102659_b40-MI-4-4-00164
  article-title: Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning
  publication-title: J Med Imaging (Bellingham)
  doi: 10.1117/1.JMI.6.4.046003
  contributor:
    fullname: Nalawade
– volume: 352
  start-page: 997
  year: 2005
  ident: key20240621102659_b41-MI-4-4-00164
  article-title: MGMT gene silencing and benefit from temozolomide in glioblastoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa043331
  contributor:
    fullname: Hegi
– volume: 31
  start-page: 1670
  year: 2021
  ident: key20240621102659_b34-MI-4-4-00164
  article-title: Glioma grade detection using grasshopper optimization algorithm-optimized machine learning methods: The cancer imaging archive study
  publication-title: Int J Imaging Syst Tech
  doi: 10.1002/ima.22536
  contributor:
    fullname: Hedyehzadeh
– volume: 28
  start-page: 1599
  year: 2021
  ident: key20240621102659_b28-MI-4-4-00164
  article-title: A review of Radiomics and deep predictive modeling in glioma characterization
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2020.06.016
  contributor:
    fullname: Gore
– volume: 54
  start-page: 571
  year: 2021
  ident: key20240621102659_b59-MI-4-4-00164
  article-title: The nomogram of MRI based radiomics with complementary visual features by machine learning improves stratification of glioblastoma patients: A multicenter study
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27536
  contributor:
    fullname: Xu
– volume: 54
  start-page: 197
  year: 2021
  ident: key20240621102659_b45-MI-4-4-00164
  article-title: Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O6-methylguanine-DNA methyltransferase promoter methylation in patients with gliomas
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27498
  contributor:
    fullname: Zhang
– volume: 50
  start-page: 1295
  year: 2019
  ident: key20240621102659_b35-MI-4-4-00164
  article-title: Glioma grading using a machine-learning framework based on optimized features obtained from T1 perfusion MRI and volumes of tumor components
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26704
  contributor:
    fullname: Sengupta
– volume: 28
  start-page: 3640
  year: 2020
  ident: key20240621102659_b47-MI-4-4-00164
  article-title: Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5302-1
  contributor:
    fullname: Li
– volume: 50
  start-page: 519
  year: 2019
  ident: key20240621102659_b24-MI-4-4-00164
  article-title: Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26643
  contributor:
    fullname: Artzi
– volume: 29
  start-page: 115
  year: 2020
  ident: key20240621102659_b30-MI-4-4-00164
  article-title: Deep learning AI applications in the imaging of Glioma
  publication-title: Top Magn Reson Imaging
  doi: 10.1097/RMR.0000000000000237
  contributor:
    fullname: Zlochower
– volume: 8
  start-page: 47816
  year: 2017
  ident: key20240621102659_b33-MI-4-4-00164
  article-title: Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.18001
  contributor:
    fullname: Zhang
– volume: 2018
  start-page: 5894
  year: 2018
  ident: key20240621102659_b52-MI-4-4-00164
  article-title: Deep learning and multi-sensor fusion for glioma classification using multistream 2d convolutional networks
  publication-title: Ann Int Conf IEEE Eng Med Biol Soc
  doi: 10.1109/EMBC.2018.8513556
  contributor:
    fullname: Ge
– volume: 34
  issue: e6501
  year: 2021
  ident: key20240621102659_b58-MI-4-4-00164
  article-title: Brain tumor segmentation and overall survival period prediction in glioblastoma multiforme using radiomic features
  publication-title: Concurrency Computat Pract Exper
  contributor:
    fullname: Das
– volume: 11
  issue: 1336
  year: 2021
  ident: key20240621102659_b57-MI-4-4-00164
  article-title: Machine learning and radiomic features to predict overall survival time for glioblastoma patients
  publication-title: J Pers Med
  doi: 10.3390/jpm11121336
  contributor:
    fullname: Chato
– volume: 19 (suppl_5)
  start-page: v1
  year: 2017
  ident: key20240621102659_b1-MI-4-4-00164
  article-title: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/nox158
  contributor:
    fullname: Ostrom
– volume: 2
  issue: e1220
  year: 2019
  ident: key20240621102659_b64-MI-4-4-00164
  article-title: Novel approaches for glioblastoma treatment: Focus on tumor heterogeneity, treatment resistance, and computational tools
  publication-title: Cancer Rep (Hoboken)
  doi: 10.1002/cnr2.1220
  contributor:
    fullname: Valdebenito
– volume: 12
  issue: 152
  year: 2021
  ident: key20240621102659_b50-MI-4-4-00164
  article-title: Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging
  publication-title: Insights Imaging
  doi: 10.1186/s13244-021-01102-6
  contributor:
    fullname: Razek
– volume: 44
  start-page: 4000
  year: 2017
  ident: key20240621102659_b27-MI-4-4-00164
  article-title: Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with dynamic texture parameters analysis (DTPA): A feasibility study
  publication-title: Med Phys
  doi: 10.1002/mp.12356
  contributor:
    fullname: Verma
– volume: 12(Pt2)
  start-page: 522
  year: 2009
  ident: key20240621102659_b42-MI-4-4-00164
  article-title: Predicting MGMT methylation status of glioblastomas from MRI texture
  publication-title: Med Image Comput Comput Assist Interv
  doi: 10.1007/978-3-642-04271-3_64
  contributor:
    fullname: Levner
– volume: 13
  start-page: 563
  year: 2018
  ident: key20240621102659_b51-MI-4-4-00164
  article-title: MRI radiomics analysis of molecular alterations in low-grade gliomas
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-017-1691-5
  contributor:
    fullname: Shofty
– volume: 30
  start-page: 469
  year: 2017
  ident: key20240621102659_b54-MI-4-4-00164
  article-title: Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-017-9984-3
  contributor:
    fullname: Akkus
– volume: 14
  issue: e19580
  year: 2021
  ident: key20240621102659_b65-MI-4-4-00164
  article-title: Clinical applications of artificial intelligence, machine learning, and deep learning in the imaging of gliomas: A systematic review
  publication-title: Cureus
  doi: 10.7759/cureus.19580
  contributor:
    fullname: Alhasan
– volume: 163
  start-page: 1
  year: 2015
  ident: key20240621102659_b3-MI-4-4-00164
  article-title: Epidemiology of gliomas
  publication-title: Cancer Treat Res
  doi: 10.1007/978-3-319-12048-5_1
  contributor:
    fullname: Ostrom
– volume: 11
  issue: 829
  year: 2019
  ident: key20240621102659_b15-MI-4-4-00164
  article-title: Optimizing neuro-oncology imaging: A review of deep learning approaches for glioma imaging
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers11060829
  contributor:
    fullname: Shaver
– volume: 47
  start-page: 1380
  year: 2021
  ident: key20240621102659_b48-MI-4-4-00164
  article-title: Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma
  publication-title: J Magn Resonan Imaging
  doi: 10.1002/jmri.25860
  contributor:
    fullname: Xi
– volume: 38
  issue: E6
  year: 2015
  ident: key20240621102659_b7-MI-4-4-00164
  article-title: Survival and low-grade glioma: The emergence of genetic information
  publication-title: Neurosurg Focus
  doi: 10.3171/2014.10.FOCUS12367
  contributor:
    fullname: Claus
– volume: 29
  start-page: 353
  year: 2019
  ident: key20240621102659_b16-MI-4-4-00164
  article-title: Glioma brain tumor detection and segmentation using weighting random forest classifier with optimized ant colony features
  publication-title: Int J Imag Syst Tech
  doi: 10.1002/ima.22331
  contributor:
    fullname: Rajagopal
– volume: 14
  issue: 1369
  year: 2022
  ident: key20240621102659_b21-MI-4-4-00164
  article-title: Machine learning applications for differentiation of glioma from brain metastasis-a systematic review
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14061369
  contributor:
    fullname: Jekel
– volume: 5
  start-page: 209
  year: 2019
  ident: key20240621102659_b17-MI-4-4-00164
  article-title: Automated brain tumor segmentation on multi-modal mr image using segnet
  publication-title: Computational Visual Media
  doi: 10.1007/s41095-019-0139-y
  contributor:
    fullname: Alqazzaz
– volume: 13
  issue: 81
  year: 2019
  ident: key20240621102659_b29-MI-4-4-00164
  article-title: Multivariate analysis of preoperative magnetic resonance imaging reveals transcriptomic classification of de novo glioblastoma patients
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2019.00081
  contributor:
    fullname: Rathore
– volume: 20
  start-page: 1251
  year: 2018
  ident: key20240621102659_b26-MI-4-4-00164
  article-title: Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: Development and multicenter external validation
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noy021
  contributor:
    fullname: Kang
– volume: 4
  start-page: 1254
  year: 2018
  ident: key20240621102659_b4-MI-4-4-00164
  article-title: Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2018.1789
  contributor:
    fullname: Ostrom
– volume: 11
  issue: 788819
  year: 2021
  ident: key20240621102659_b20-MI-4-4-00164
  article-title: Trends in development of novel machine learning methods for the identification of gliomas in datasets that include Non-Glioma images: A systematic review
  publication-title: Front Oncol
  doi: 10.3389/fonc.2021.788819
  contributor:
    fullname: Subramanian
– volume: 23
  issue: 258
  year: 2022
  ident: key20240621102659_b22-MI-4-4-00164
  article-title: Network analysis shows decreased ipsilesional structural connectivity in glioma patients
  publication-title: Commun Biol
  doi: 10.1038/s42003-022-03190-6
  contributor:
    fullname: Fekonja
– volume: 140
  start-page: 297
  year: 2018
  ident: key20240621102659_b53-MI-4-4-00164
  article-title: Non-invasive genotype prediction of chromosome 1p/19Q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas
  publication-title: J Neurooncol
  doi: 10.1007/s11060-018-2953-y
  contributor:
    fullname: Han
– volume: 131
  start-page: 803
  year: 2016
  ident: key20240621102659_b6-MI-4-4-00164
  article-title: The 2016 world health organization classification of tumors of the central nervous system: A summary
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-016-1545-1
  contributor:
    fullname: Louis
– volume: 9
  issue: 324
  year: 2021
  ident: key20240621102659_b8-MI-4-4-00164
  article-title: Current FDA-approved therapies for high-grade malignant gliomas
  publication-title: Biomedicines
  doi: 10.3390/biomedicines9030324
  contributor:
    fullname: Fisher
– volume: 8
  start-page: 128
  year: 2019
  ident: key20240621102659_b60-MI-4-4-00164
  article-title: Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme
  publication-title: Cancer Med
  doi: 10.1002/cam4.1908
  contributor:
    fullname: Peeken
– volume: 47
  start-page: 3044
  year: 2020
  ident: key20240621102659_b31-MI-4-4-00164
  article-title: Automated glioma grading on conventional MRI images using deep convolutional neural networks
  publication-title: Med Phys
  doi: 10.1002/mp.14168
  contributor:
    fullname: Zhuge
– volume: 10
  start-page: 2774
  year: 2021
  ident: key20240621102659_b55-MI-4-4-00164
  article-title: A machine learning-based survival prediction model of high grade glioma by integration of clinical and dose-volume histogram parameters
  publication-title: Cancer Med
  doi: 10.1002/cam4.3838
  contributor:
    fullname: Chen
– volume: 48
  start-page: 1518
  year: 2018
  ident: key20240621102659_b32-MI-4-4-00164
  article-title: Radiomics strategy for glioma grading using texture features from multiparametric MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26010
  contributor:
    fullname: Tian
– volume: 76
  issue: 103704
  year: 2022
  ident: key20240621102659_b18-MI-4-4-00164
  article-title: Segmentation and classification of brain tumors from MRI images based on adaptive mechanisms and ELDP feature descriptor
  publication-title: Biomed Signal Proc Control
  contributor:
    fullname: Reddy
– ident: key20240621102659_b10-MI-4-4-00164
  contributor:
    fullname: Al-Saadi
– volume: 21
  start-page: 1126
  year: 2020
  ident: key20240621102659_b23-MI-4-4-00164
  article-title: Radiomics and deep learning from research to clinical workflow: Neuro-oncologic imaging
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2019.0847
  contributor:
    fullname: Park
– volume: 12
  issue: 6111
  year: 2022
  ident: key20240621102659_b36-MI-4-4-00164
  article-title: A weakly supervised deep learning-based method for glioma subtype classification using WSI and mpMRIs
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-09985-1
  contributor:
    fullname: Hsu
– volume: 19
  issue: 58
  year: 2019
  ident: key20240621102659_b49-MI-4-4-00164
  article-title: 18F-FDG-PET-based Radiomics signature predicts MGMT promoter methylation status in primary diffuse glioma
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-019-0246-0
  contributor:
    fullname: Kong
SSID ssj0002923691
Score 2.3093593
Snippet Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 40
Title Uses of artificial intelligence in glioma: A systematic review
URI https://www.ncbi.nlm.nih.gov/pubmed/38827949
https://www.proquest.com/docview/3064143796
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZbB6MvY2W_0m1Fg74NZ7N0luY9DMJoKYVssCXQNyNZ0mqonbZJGfSv70mKY62s0C0PSqLDEtxn676TpU-E7HPA7MbZHJ9vxzNwkmXIWlWmmSlEXWDEDyJJ02_iaA7HJ8XJcEpf2F2y0uP6-q_7Sv4HVaxDXP0u2X9AdtMoVuBvxBdLRBjLe2E8X0bJWG9aK0E0qcRm073_ddYsWhX3n99Wbf6dMtPp-iV7aGGYI0xO_BimDM6yH-pUh3UAE3Oq2sQwVf7gn4tg-96qy8T0UykT6meYn1-k0w0MNktTMVqEYYnJAjKMfJCOoZDcKpCMh1GK6fYwjSTJy762zdj3MM6jjnkC2HkbEONI_3G8KIdYtVlB2Jsekkf4zUUyT-NjMEPeKso8bsj03X1IOtsmj_vL_2Qjd6QYgWrMnpIn6xyBTiLgO-SB7Z6RLx5sunB0AJumYOMfGsH-TCd0gJpGqJ-T-eHB7OtRtj78IquRgkGGD4kzXg6SgZZI68E5XqLFGaWFMVKYj7bw7NrmucFC4keB5U4WrBaa8xdkq1t09hWhTBgAVzqmP9VgJNfcOivBloWsoQAYkf3eCdV51DipMDf0bqvapvJuq9BtI_KudxBWL_2LJdXZxdWy8lls7oUtxYi8jJ7bNNR7evdOy2uyPdxob8jW6vLKvkWmt9J7AdQbpeVQPQ
link.rule.ids 315,783,787,27936,27937
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uses+of+artificial+intelligence+in+glioma%3A+A+systematic+review&rft.jtitle=Medicine+international+%28London%29&rft.au=Al-Rahbi%2C+Adham&rft.au=Al-Mahrouqi%2C+Omar&rft.au=Al-Saadi%2C+Tariq&rft.date=2024-07-01&rft.eissn=2754-1304&rft.volume=4&rft.issue=4&rft.spage=40&rft_id=info:doi/10.3892%2Fmi.2024.164&rft_id=info%3Apmid%2F38827949&rft.externalDocID=38827949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2754-3242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2754-3242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2754-3242&client=summon