Comparison of field data and numerical simulation of nitrate evolution in groundwater using the model of nitrate evolution
Degradation of TRU waste in a geological disposal facility may cause the formation of a nitrate plume. A Nitrate Evolution model due to mineral reactions, microbial activity, and metal corrosiON (NEON) has therefore been developed to evaluate the chemical behavior of a nitrate plume and assess its...
Saved in:
Published in | Journal of Nuclear Fuel Cycle and Environment Vol. 27; no. 1; pp. 3 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan
15.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1884-7579 1884-7579 |
DOI | 10.3327/jnuce.27.1_3 |
Cover
Abstract | Degradation of TRU waste in a geological disposal facility may cause the formation of a nitrate plume. A Nitrate Evolution model due to mineral reactions, microbial activity, and metal corrosiON (NEON) has therefore been developed to evaluate the chemical behavior of a nitrate plume and assess its potential to impact on radionuclide migration and the safety case for geological disposal of TRU waste. The NEON model includes the redox reactions of nitrogen, as nitrate, nitrite and ammonium ions, and their reaction with groundwater, minerals, microorganisms, including the microbial mediated nitrogen cycle, and metal corrosion products. Small scale laboratory experiments can be reproduced satisfactorily, however, it is necessary to demonstrate the applicability of the NEON model on scales relevant to the geological disposal of TRU waste. In the current study, an industrial analogue of a nitrate plume from the pollution of groundwater from nitrate fertilizers used on Ikuchi Island in Hiroshima Prefecture, Japan was selected to test the applicability of the NEON model. Concentration profiles of nitrate and ammonium ions in the groundwater were successfully reproduced over the hundreds of meters scale demonstrating the applicability of the NEON model in evaluating the chemical behavior of a nitrate plume derived from the geological disposal of TRU waste. |
---|---|
AbstractList | Degradation of TRU waste in a geological disposal facility may cause the formation of a nitrate plume. A Nitrate Evolution model due to mineral reactions, microbial activity, and metal corrosiON (NEON) has therefore been developed to evaluate the chemical behavior of a nitrate plume and assess its potential to impact on radionuclide migration and the safety case for geological disposal of TRU waste. The NEON model includes the redox reactions of nitrogen, as nitrate, nitrite and ammonium ions, and their reaction with groundwater, minerals, microorganisms, including the microbial mediated nitrogen cycle, and metal corrosion products. Small scale laboratory experiments can be reproduced satisfactorily, however, it is necessary to demonstrate the applicability of the NEON model on scales relevant to the geological disposal of TRU waste. In the current study, an industrial analogue of a nitrate plume from the pollution of groundwater from nitrate fertilizers used on Ikuchi Island in Hiroshima Prefecture, Japan was selected to test the applicability of the NEON model. Concentration profiles of nitrate and ammonium ions in the groundwater were successfully reproduced over the hundreds of meters scale demonstrating the applicability of the NEON model in evaluating the chemical behavior of a nitrate plume derived from the geological disposal of TRU waste. |
Author | HIRANO, Fumio HONDA, Akira ABE, Tooru MIHARA, Morihiro |
Author_xml | – sequence: 1 fullname: MIHARA, Morihiro organization: Radioactive Waste Processing and Disposal Research Department Nuclear Fuel Cycle Engineering Laboratories Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development Nuclear Backend Technology Center Japan Atomic Energy Agency – sequence: 1 fullname: HONDA, Akira organization: Radioactive Waste Processing and Disposal Research Department Nuclear Fuel Cycle Engineering Laboratories Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development Nuclear Backend Technology Center Japan Atomic Energy Agency – sequence: 1 fullname: HIRANO, Fumio organization: Radioactive Waste Processing and Disposal Research Department Nuclear Fuel Cycle Engineering Laboratories Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development Nuclear Backend Technology Center Japan Atomic Energy Agency – sequence: 1 fullname: ABE, Tooru organization: Reprocessing Analysis Department Japan Nuclear Fuel Chemical Analysis Corporation |
BookMark | eNptkMtOwzAQRS1UJErpjg_wB5Bgx4mTLFigipdUiQ2so6k9bl0ldmUnIPh6QouqLtjMXB2dmcW9JBPnHRJyzVkqRFbebt2gMM3KlDfijEx5VeVJWZT15CRfkHmMW8aYEEzyvJiS74XvdhBs9I56Q43FVlMNPVBwmrqhw2AVtDTabmihtwfN2T5AjxQ_fDvsoXV0Hfzg9OfIAx2idWvab5B2XmP7780VOTfQRpz_7Rl5f3x4Wzwny9enl8X9MlE8q0WSi6xQFYIodZ0pOSIJJqs0LwojeJVJmbMir7kqV1xyURfcGCmwlkyvNOS5mJGbw18VfIwBTbMLtoPw1XDW_FbX7KtrxjBWN-p3B30be1jjUYbQW9XiqTwOceRqA6FBJ34AIT99NQ |
ContentType | Journal Article |
Copyright | 2020 Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan |
Copyright_xml | – notice: 2020 Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan |
DBID | AAYXX CITATION |
DOI | 10.3327/jnuce.27.1_3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1884-7579 |
EndPage | 11 |
ExternalDocumentID | 10_3327_jnuce_27_1_3 article_jnuce_27_1_27_3_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT AAYXX CITATION |
ID | FETCH-LOGICAL-c1293-4325c8ea37d92c62936af28d155f318266405491c7b1613951ff63e960dbda443 |
ISSN | 1884-7579 |
IngestDate | Tue Jul 01 02:22:33 EDT 2025 Wed Sep 03 06:28:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1293-4325c8ea37d92c62936af28d155f318266405491c7b1613951ff63e960dbda443 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jnuce/27/1/27_3/_article/-char/en |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_3327_jnuce_27_1_3 jstage_primary_article_jnuce_27_1_27_3_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020/06/15 2020-6-15 |
PublicationDateYYYYMMDD | 2020-06-15 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020/06/15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Nuclear Fuel Cycle and Environment |
PublicationTitleAlternate | Journal of Nuclear Fuel Cycle and Environment |
PublicationYear | 2020 |
Publisher | Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan |
Publisher_xml | – name: Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan |
References | [16] Monod, J.: Recherches sur la croissance des cultures bactériennes. Harmann et Cie, Paris (1942). [3] 本田明, 増田薫, 建石剛, 加藤修, 井上博之: 高アルカリ性・高硝酸ナトリウム濃度条件における炭素鋼の腐食に伴う硝酸イオンの化学的変遷挙動とそのモデル化. 材料と環境 60(12), pp.541-552 (2011). [20] Arthur, R. C., Sasamoto, H., Oda, C., Honda, A., Shibata, M., Yoshida, Y., Yui, M.: Development of thermodynamic databases for hyperalkaline, argillaceous systems. JNC TN8400 2005-010 核燃料サイクル開発機構 (2005). [22] 土質工学会編: 風化花崗岩とまさ土の工学的性質とその応用. 土質工学会土質基礎ライブラリー 16 (1979). [21] 楠田啓, 西山孝, 西田一彦: 花崗岩の風化に伴う微小割れ目の形成と間隙率の発達について. 土質工学会論文報告集 32(2), pp.169-175 (1992). [9] 国際水協会・生物学的廃水処理の設計および運転を支援するための数学モデルに関するタスクグループ編, 味埜俊監訳: 活性汚泥モデル: ASM1, ASM2, ASM2d, ASM3. 環境新聞社, 東京 (2005). [23] 前田守弘: 硝酸性窒素による地下水汚染にどう対処するか. 化学と生物, 45(3), pp.219-222 (2007). [4] 日本原子力研究開発機構: 平成29年度高レベル放射性廃棄物等の地層処分に関する技術開発事業 処分システム評価確証技術開発報告書. 経済産業省資源エネルギー庁委託事業報告書 (2018). [10] 長沼毅, 足立奈保美, 藤田夕佳, 谷本大輔, 渡辺史子, 岡本拓士, 村上由記, 天野健治, 岩月輝希, 濱克宏: 東濃地下の窒素固定菌・硝化菌・脱窒菌: 地下微生物が地下窒素サイクルに関与する可能性. 地球惑星科学関連学会2002年合同大会予稿集, 東京, 平成14年5月27〜31日, B006-011 (2002). [13] 日本原子力研究開発機構: 平成22年度地層処分技術調査等委託費TRU廃棄物処分技術 硝酸塩処理・処分技術高度化開発報告書. 経済産業省資源エネルギー庁委託事業報告書 (2011). [2] 日本原子力研究開発機構: 平成24年度地層処分技術調査等事業TRU廃棄物処分技術 硝酸塩処理・処分技術高度化開発-6カ年研究成果のとりまとめ-報告書. 経済産業省資源エネルギー庁委託事業報告書, pp.2-1 - 2-32 (2013). [14] 加藤卓, 中西博, 稲垣学, 本田明, 塚本政樹: TRU廃棄物処分システムに与える微生物影響について. JNC TN8400 2005-022, 核燃料サイクル開発機構 (2005). [7] Miller, B., Chapman, N. A.: Postcards from the past: Archaeological and industrial analogs for deep repository materials, Radwaste Magazine, 2(1), pp.32-42 (1995). [5] Hill, A. R., Devito, K. J., Vidon P. G.: Long-term nitrate removal in a stream riparian zone, Biogeochemistry, 121, pp.425-439 (2014). [15] 市岡高男, 佐来栄治, 加藤進, 澤智代, 木村俊夫, 菅原庸: 微生物の機能を利用した水質浄化(第3報)-担体付着微生物群集による有機物分解および窒素除去-. 三重県環境科学センター研究報告, 第19号 (1999). [12] 日本原子力研究開発機構: 平成21年度地層処分技術調査等委託費TRU廃棄物処分技術 硝酸塩処理・処分技術高度化開発報告書. 経済産業省資源エネルギー庁委託事業報告書 (2010). [6] 梅宮善章: 果樹園の施肥に由来する窒素負荷の現状. 園芸学研究. 3(2). pp.127-132 (2004). [18] 齋藤光代, 小野寺真一: 沿岸農業流域における地下水による硝酸性窒素流出の季節変動特性. 陸水学雑誌 70(2), pp.141-151 (2009). [19] Parkhust, D. L., Kipp, K. L., Charlton, S. R.: PHAST Version 2 - A program for simulating groundwater flow, solute transport, and multicomponent geochemical reactions. Techniques and Methods 6–A35, U.S. Geological Survey (2010). [11] Hill, A. R., Devito, K. J., Campagnolo, S., Sanmugadas, K.: Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon, Biogeochemistry, 51, pp.193-223 (2000). [1] 経済産業省:エネルギー基本計画. 平成30年7月3日 (2018) [17] 齋藤光代, 小野寺真一, 竹井務: 沿岸扇状地小流域における硝酸性窒素流出過程. 陸水学雑誌 66(1), pp.1-10 (2005). [24] 渡辺彰, 浅川大地, 川東正幸, 大手信人, 長尾誠也, 眞家永光, 加藤英孝, 竹中眞: 土壌-河川-海生態系における溶存有機炭素(DOC)の動態と機能. 日本土壌肥料科学雑誌, 80(1), pp.89-94 (2009). [8] 大西晃輝, 小野寺真一, 齋藤光代, 清水裕太, 吉川昌志: 大量施肥農業流域における不圧地下水中での溶存N2Oの空間分布特性.陸水学雑誌 75(1), pp.1-11 (2014). 1 2 3 4 5 |
References_xml | – reference: [20] Arthur, R. C., Sasamoto, H., Oda, C., Honda, A., Shibata, M., Yoshida, Y., Yui, M.: Development of thermodynamic databases for hyperalkaline, argillaceous systems. JNC TN8400 2005-010 核燃料サイクル開発機構 (2005). – reference: [16] Monod, J.: Recherches sur la croissance des cultures bactériennes. Harmann et Cie, Paris (1942). – reference: [15] 市岡高男, 佐来栄治, 加藤進, 澤智代, 木村俊夫, 菅原庸: 微生物の機能を利用した水質浄化(第3報)-担体付着微生物群集による有機物分解および窒素除去-. 三重県環境科学センター研究報告, 第19号 (1999). – reference: [24] 渡辺彰, 浅川大地, 川東正幸, 大手信人, 長尾誠也, 眞家永光, 加藤英孝, 竹中眞: 土壌-河川-海生態系における溶存有機炭素(DOC)の動態と機能. 日本土壌肥料科学雑誌, 80(1), pp.89-94 (2009). – reference: [9] 国際水協会・生物学的廃水処理の設計および運転を支援するための数学モデルに関するタスクグループ編, 味埜俊監訳: 活性汚泥モデル: ASM1, ASM2, ASM2d, ASM3. 環境新聞社, 東京 (2005). – reference: [23] 前田守弘: 硝酸性窒素による地下水汚染にどう対処するか. 化学と生物, 45(3), pp.219-222 (2007). – reference: [1] 経済産業省:エネルギー基本計画. 平成30年7月3日 (2018). – reference: [2] 日本原子力研究開発機構: 平成24年度地層処分技術調査等事業TRU廃棄物処分技術 硝酸塩処理・処分技術高度化開発-6カ年研究成果のとりまとめ-報告書. 経済産業省資源エネルギー庁委託事業報告書, pp.2-1 - 2-32 (2013). – reference: [10] 長沼毅, 足立奈保美, 藤田夕佳, 谷本大輔, 渡辺史子, 岡本拓士, 村上由記, 天野健治, 岩月輝希, 濱克宏: 東濃地下の窒素固定菌・硝化菌・脱窒菌: 地下微生物が地下窒素サイクルに関与する可能性. 地球惑星科学関連学会2002年合同大会予稿集, 東京, 平成14年5月27〜31日, B006-011 (2002). – reference: [5] Hill, A. R., Devito, K. J., Vidon P. G.: Long-term nitrate removal in a stream riparian zone, Biogeochemistry, 121, pp.425-439 (2014). – reference: [14] 加藤卓, 中西博, 稲垣学, 本田明, 塚本政樹: TRU廃棄物処分システムに与える微生物影響について. JNC TN8400 2005-022, 核燃料サイクル開発機構 (2005). – reference: [7] Miller, B., Chapman, N. A.: Postcards from the past: Archaeological and industrial analogs for deep repository materials, Radwaste Magazine, 2(1), pp.32-42 (1995). – reference: [18] 齋藤光代, 小野寺真一: 沿岸農業流域における地下水による硝酸性窒素流出の季節変動特性. 陸水学雑誌 70(2), pp.141-151 (2009). – reference: [11] Hill, A. R., Devito, K. J., Campagnolo, S., Sanmugadas, K.: Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon, Biogeochemistry, 51, pp.193-223 (2000). – reference: [3] 本田明, 増田薫, 建石剛, 加藤修, 井上博之: 高アルカリ性・高硝酸ナトリウム濃度条件における炭素鋼の腐食に伴う硝酸イオンの化学的変遷挙動とそのモデル化. 材料と環境 60(12), pp.541-552 (2011). – reference: [6] 梅宮善章: 果樹園の施肥に由来する窒素負荷の現状. 園芸学研究. 3(2). pp.127-132 (2004). – reference: [21] 楠田啓, 西山孝, 西田一彦: 花崗岩の風化に伴う微小割れ目の形成と間隙率の発達について. 土質工学会論文報告集 32(2), pp.169-175 (1992). – reference: [13] 日本原子力研究開発機構: 平成22年度地層処分技術調査等委託費TRU廃棄物処分技術 硝酸塩処理・処分技術高度化開発報告書. 経済産業省資源エネルギー庁委託事業報告書 (2011). – reference: [17] 齋藤光代, 小野寺真一, 竹井務: 沿岸扇状地小流域における硝酸性窒素流出過程. 陸水学雑誌 66(1), pp.1-10 (2005). – reference: [4] 日本原子力研究開発機構: 平成29年度高レベル放射性廃棄物等の地層処分に関する技術開発事業 処分システム評価確証技術開発報告書. 経済産業省資源エネルギー庁委託事業報告書 (2018). – reference: [8] 大西晃輝, 小野寺真一, 齋藤光代, 清水裕太, 吉川昌志: 大量施肥農業流域における不圧地下水中での溶存N2Oの空間分布特性.陸水学雑誌 75(1), pp.1-11 (2014). – reference: [19] Parkhust, D. L., Kipp, K. L., Charlton, S. R.: PHAST Version 2 - A program for simulating groundwater flow, solute transport, and multicomponent geochemical reactions. Techniques and Methods 6–A35, U.S. Geological Survey (2010). – reference: [12] 日本原子力研究開発機構: 平成21年度地層処分技術調査等委託費TRU廃棄物処分技術 硝酸塩処理・処分技術高度化開発報告書. 経済産業省資源エネルギー庁委託事業報告書 (2010). – reference: [22] 土質工学会編: 風化花崗岩とまさ土の工学的性質とその応用. 土質工学会土質基礎ライブラリー 16 (1979). – ident: 2 – ident: 3 – ident: 5 – ident: 4 – ident: 1 |
SSID | ssj0003306145 ssib008483848 |
Score | 2.1094856 |
Snippet | Degradation of TRU waste in a geological disposal facility may cause the formation of a nitrate plume. A Nitrate Evolution model due to mineral reactions,... |
SourceID | crossref jstage |
SourceType | Index Database Publisher |
StartPage | 3 |
SubjectTerms | geological disposal industrial analog nitrate evolution nitrate ion nitrate plume TRU waste |
Title | Comparison of field data and numerical simulation of nitrate evolution in groundwater using the model of nitrate evolution |
URI | https://www.jstage.jst.go.jp/article/jnuce/27/1/27_3/_article/-char/en |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Nuclear Fuel Cycle and Environment, 2020/06/15, Vol.27(1), pp.3-11 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWwoELAgGiUJAPcIqyNLbjZI9habUFaSuqrdRblDiO2EITlG6K6K_iJzJjZ520ClLhYiWOx3nMF3vGngchb1UuoyDIAr9QgfYF09KPuVB-rvdlIUOFMavQ2mIpF6fi01l4Npn8HlgttZt8qq5H_Ur-h6tQB3xFL9l_4KzrFCrgGPgLJXAYyjvxeD5MIugZYzQPTT7NjkDV2s2Y797l-qJL0mXMNtYmIK2nr7pnwyUPdO6oip8ZhkxsL7cuVCZNzijNX2TaJUZHzhrvsAW6-S84MY9y0HvTOYB9MGaYq7puWgeto5NkeWzE6fbC2ocZLBwtkpPErNzWzfor9OQIjpcfzYXk27rJhgsYDPPc-NaFsxtz41j4UWhzykz1SF03UNsgAjcAaUddPpi-7dB9e2LgnOHW9HkF_8uURdMg5f0EuN30vzUvOmtF0JOQPjXUKRwA9T1yn0WRMQz4_CV2q3qco4aNdrPuDay3BXbwfnj7G3LQg3NQBbZmhEayWT0mjzr20cTi6wmZ6Oopue6xReuSGmxRxBYFhlKHLdpjC5t1OKEOJ3Rd0QG2qMEWBWxRg61Rmmfk9PBgNV_4XZ4OX6G06AvOQhXrjEfFjCkJVTIrWVyAqFpy1F8laAViFqgoB_2Cg0xflpJr0J2LvMiE4M_JTlVX-gWhWbSviljjCrcSYc5iFYMIPlOZYlwUs2iXvNt-tfSHDceSjrFnl0j7SV2r7icdtoKCu3p0coQx5eUdb_CKPOyxvEd2Nk2rX4N4usnfGET8AYpLmOI |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+field+data+and+numerical+simulation+of+nitrate+evolution+in+groundwater+using+the+model+of+nitrate+evolution&rft.jtitle=Journal+of+Nuclear+Fuel+Cycle+and+Environment&rft.au=ABE%2C+Tooru&rft.au=HIRANO%2C+Fumio&rft.au=MIHARA%2C+Morihiro&rft.au=HONDA%2C+Akira&rft.date=2020-06-15&rft.issn=1884-7579&rft.eissn=1884-7579&rft.volume=27&rft.issue=1&rft.spage=3&rft.epage=11&rft_id=info:doi/10.3327%2Fjnuce.27.1_3&rft.externalDBID=n%2Fa&rft.externalDocID=10_3327_jnuce_27_1_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1884-7579&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1884-7579&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1884-7579&client=summon |