Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIA Glc

Carbohydrate uptake in many bacteria is regulated by the phosphotransferase protein IIA Glc , enabling cells to use glucose preferentially over other sugars. Lactose permease (LacY) is one of many sugar permeases regulated by IIA Glc , but the mechanism of inducer exclusion is unclear. We now show b...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 8; pp. 2407 - 2412
Main Authors Hariharan, Parameswaran, Balasubramaniam, Dhandayuthapani, Peterkofsky, Alan, Kaback, H. Ronald, Guan, Lan
Format Journal Article
LanguageEnglish
Published 24.02.2015
Online AccessGet full text

Cover

Loading…
Abstract Carbohydrate uptake in many bacteria is regulated by the phosphotransferase protein IIA Glc , enabling cells to use glucose preferentially over other sugars. Lactose permease (LacY) is one of many sugar permeases regulated by IIA Glc , but the mechanism of inducer exclusion is unclear. We now show by isothermal titration calorimetry that IIA Glc binds to purified LacY with a stoichiometry of one, and that the interaction is driven by favorable solvation entropy. IIA Glc binding inhibits conformational dynamics of LacY and decreases binding affinity for sugar in a manner similar to that observed for melibiose permease (MelB). However, the thermodynamic mechanism by which the inhibitory effect is expressed differs for the two permeases. In a variety of bacteria, the phosphotransferase protein IIA Glc plays a key regulatory role in catabolite repression in addition to its role in the vectorial phosphorylation of glucose catalyzed by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The lactose permease (LacY) of Escherichia coli catalyzes stoichiometric symport of a galactoside with an H + , using a mechanism in which sugar- and H + -binding sites become alternatively accessible to either side of the membrane. Both the expression (via regulation of cAMP levels) and the activity of LacY are subject to regulation by IIA Glc (inducer exclusion). Here we report the thermodynamic features of the IIA Glc –LacY interaction as measured by isothermal titration calorimetry (ITC). The studies show that IIA Glc binds to LacY with a K d of about 5 μM and a stoichiometry of unity and that binding is driven by solvation entropy and opposed by enthalpy. Upon IIA Glc binding, the conformational entropy of LacY is restrained, which leads to a significant decrease in sugar affinity. By suppressing conformational dynamics, IIA Glc blocks inducer entry into cells and favors constitutive glucose uptake and utilization. Furthermore, the studies support the notion that sugar binding involves an induced-fit mechanism that is inhibited by IIA Glc binding. The precise mechanism of the inhibition of LacY by IIA Glc elucidated by ITC differs from the inhibition of melibiose permease (MelB), supporting the idea that permeases can differ in their thermodynamic response to binding IIA Glc .
AbstractList Carbohydrate uptake in many bacteria is regulated by the phosphotransferase protein IIA Glc , enabling cells to use glucose preferentially over other sugars. Lactose permease (LacY) is one of many sugar permeases regulated by IIA Glc , but the mechanism of inducer exclusion is unclear. We now show by isothermal titration calorimetry that IIA Glc binds to purified LacY with a stoichiometry of one, and that the interaction is driven by favorable solvation entropy. IIA Glc binding inhibits conformational dynamics of LacY and decreases binding affinity for sugar in a manner similar to that observed for melibiose permease (MelB). However, the thermodynamic mechanism by which the inhibitory effect is expressed differs for the two permeases. In a variety of bacteria, the phosphotransferase protein IIA Glc plays a key regulatory role in catabolite repression in addition to its role in the vectorial phosphorylation of glucose catalyzed by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The lactose permease (LacY) of Escherichia coli catalyzes stoichiometric symport of a galactoside with an H + , using a mechanism in which sugar- and H + -binding sites become alternatively accessible to either side of the membrane. Both the expression (via regulation of cAMP levels) and the activity of LacY are subject to regulation by IIA Glc (inducer exclusion). Here we report the thermodynamic features of the IIA Glc –LacY interaction as measured by isothermal titration calorimetry (ITC). The studies show that IIA Glc binds to LacY with a K d of about 5 μM and a stoichiometry of unity and that binding is driven by solvation entropy and opposed by enthalpy. Upon IIA Glc binding, the conformational entropy of LacY is restrained, which leads to a significant decrease in sugar affinity. By suppressing conformational dynamics, IIA Glc blocks inducer entry into cells and favors constitutive glucose uptake and utilization. Furthermore, the studies support the notion that sugar binding involves an induced-fit mechanism that is inhibited by IIA Glc binding. The precise mechanism of the inhibition of LacY by IIA Glc elucidated by ITC differs from the inhibition of melibiose permease (MelB), supporting the idea that permeases can differ in their thermodynamic response to binding IIA Glc .
Author Balasubramaniam, Dhandayuthapani
Kaback, H. Ronald
Hariharan, Parameswaran
Guan, Lan
Peterkofsky, Alan
Author_xml – sequence: 1
  givenname: Parameswaran
  surname: Hariharan
  fullname: Hariharan, Parameswaran
  organization: Department of Cell Physiology & Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430
– sequence: 2
  givenname: Dhandayuthapani
  surname: Balasubramaniam
  fullname: Balasubramaniam, Dhandayuthapani
  organization: Departments of bPhysiology and
– sequence: 3
  givenname: Alan
  surname: Peterkofsky
  fullname: Peterkofsky, Alan
  organization: Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
– sequence: 4
  givenname: H. Ronald
  surname: Kaback
  fullname: Kaback, H. Ronald
  organization: Departments of bPhysiology and, Microbiology, Immunology & Molecular Genetics and, Molecular Biology Institute, University of California, Los Angeles, CA 90095; and
– sequence: 5
  givenname: Lan
  orcidid: 0000-0002-2274-361X
  surname: Guan
  fullname: Guan, Lan
  organization: Department of Cell Physiology & Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430
BookMark eNp1kMtqwzAQRUVJoU7adbf6AScjxQ9pGUKbGgLdpGsj64FVbMlI3vjvK9NCodDFMDPMnAv3btHGeacReiawJ1AfD5MTcU9KAMYJIfQOZQQ4yauCwwZlALTOWUGLB7SN8RMAeMkgQ-rW6zB6tTgxWolHLXvhbByx8QFb19vOztY77A0ehJx91HhKgBZp6BY892nvfUw1B-Gi0WG9TMHP2jrcNCd8GeQjujdiiPrpp-_Qx-vL7fyWX98vzfl0zSWhNc0rqhRQZYB3ojQVZYLVjFS8K0xZUNCaVRSgAC0VZxQYVaCYrDSRJj1Ic9yhw7euDD7GoE07BTuKsLQE2jWkdg2p_Q0pEeUfQtpZrI6THTv8y30BaI1wAA
CitedBy_id crossref_primary_10_1099_mic_0_001412
crossref_primary_10_1021_jacs_3c03005
crossref_primary_10_3389_fmicb_2018_01802
crossref_primary_10_7554_eLife_92462
crossref_primary_10_1016_j_bpj_2022_01_016
crossref_primary_10_1038_s41598_017_18704_0
crossref_primary_10_1021_acsomega_2c04419
crossref_primary_10_1016_j_jbc_2023_104967
crossref_primary_10_1021_acs_biochem_6b00826
crossref_primary_10_1021_acs_chemrev_0c00983
crossref_primary_10_1021_acs_biochem_5b00660
crossref_primary_10_1021_acs_biochem_6b00721
crossref_primary_10_1002_advs_202414777
crossref_primary_10_1074_jbc_RA118_006876
crossref_primary_10_7554_eLife_92462_3
crossref_primary_10_1085_jgp_201711788
crossref_primary_10_1085_jgp_201912377
crossref_primary_10_1085_jgp_202012710
crossref_primary_10_1099_mic_0_001253
crossref_primary_10_1080_17445760_2021_1879072
crossref_primary_10_1039_D4SC04529G
crossref_primary_10_1007_s00285_016_1030_4
Cites_doi 10.1128/mr.53.1.109-120.1989
10.1016/S0021-9258(18)45463-4
10.1128/MMBR.00001-14
10.1046/j.1365-2958.2003.t01-1-03434.x
10.1126/science.8430315
10.1073/pnas.79.5.1457
10.1074/jbc.M607232200
10.1515/9783110879476
10.1016/j.bpc.2004.12.015
10.1006/jmbi.1997.0977
10.1007/BF00272347
10.1073/pnas.0905516106
10.1021/bi2014294
10.1146/annurev.biophys.35.040405.102005
10.1126/science.1088196
10.1021/bi048301z
10.1073/pnas.1306849110
10.1038/ncomms4009
10.1016/j.bbamem.2011.07.017
10.1007/s00232-010-9327-5
10.1073/pnas.1324141111
10.1073/pnas.0707688104
10.1038/sj.emboj.7601028
10.1128/JB.188.9.3199-3207.2006
10.1021/bi027329c
10.1021/bi00629a013
10.1073/pnas.94.25.13515
10.1016/0005-2736(87)90368-3
10.1021/bi034406a
10.1128/mr.57.3.543-594.1993
10.1074/jbc.M512672200
10.1074/jbc.M110.206227
10.1073/pnas.96.7.3525
10.1074/jbc.M601259200
10.1016/0006-291X(77)91663-1
10.1016/S0021-9258(17)43480-6
10.1073/pnas.1105687108
10.1021/bi300230h
10.1248/cpb.40.1637
10.1021/bi0203076
10.1021/bi061632m
10.1074/jbc.M114.609255
10.1016/j.tca.2007.07.021
10.1021/ac00217a002
10.1016/S0021-9258(19)34196-1
10.1073/pnas.1419325112
10.1016/B978-0-12-378630-2.00580-6
10.1021/bi011990j
10.1046/j.1365-2958.1999.01319.x
10.1038/nature12232
10.1021/bi9919596
10.1093/emboj/19.21.5635
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1073/pnas.1500891112
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 2412
ExternalDocumentID 10_1073_pnas_1500891112
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CITATION
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
ID FETCH-LOGICAL-c1272-62dd02df09ba5f628a878169b4f5420ee8620040ecd982082d0d8c6e1cff54cf3
ISSN 0027-8424
IngestDate Tue Jul 01 01:53:21 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1272-62dd02df09ba5f628a878169b4f5420ee8620040ecd982082d0d8c6e1cff54cf3
ORCID 0000-0002-2274-361X
OpenAccessLink https://www.pnas.org/content/pnas/112/8/2407.full.pdf
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1500891112
crossref_citationtrail_10_1073_pnas_1500891112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-24
PublicationDateYYYYMMDD 2015-02-24
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-24
  day: 24
PublicationDecade 2010
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationYear 2015
References e_1_3_3_50_2
Kuroda M (e_1_3_3_13_2) 2001; 3
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
Kaback HR (e_1_3_3_15_2) 2005
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_21_2
e_1_3_3_42_2
Lengeler JW (e_1_3_3_3_2) 1996
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_36_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_54_2
  doi: 10.1128/mr.53.1.109-120.1989
– ident: e_1_3_3_19_2
  doi: 10.1016/S0021-9258(18)45463-4
– ident: e_1_3_3_5_2
  doi: 10.1128/MMBR.00001-14
– ident: e_1_3_3_23_2
  doi: 10.1046/j.1365-2958.2003.t01-1-03434.x
– ident: e_1_3_3_30_2
  doi: 10.1126/science.8430315
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.79.5.1457
– ident: e_1_3_3_51_2
  doi: 10.1074/jbc.M607232200
– ident: e_1_3_3_6_2
  doi: 10.1515/9783110879476
– ident: e_1_3_3_53_2
  doi: 10.1016/j.bpc.2004.12.015
– ident: e_1_3_3_48_2
  doi: 10.1006/jmbi.1997.0977
– ident: e_1_3_3_8_2
  doi: 10.1007/BF00272347
– ident: e_1_3_3_42_2
  doi: 10.1073/pnas.0905516106
– ident: e_1_3_3_39_2
  doi: 10.1021/bi2014294
– ident: e_1_3_3_14_2
  doi: 10.1146/annurev.biophys.35.040405.102005
– ident: e_1_3_3_33_2
  doi: 10.1126/science.1088196
– ident: e_1_3_3_43_2
  doi: 10.1021/bi048301z
– ident: e_1_3_3_47_2
  doi: 10.1073/pnas.1306849110
– ident: e_1_3_3_37_2
  doi: 10.1038/ncomms4009
– ident: e_1_3_3_44_2
  doi: 10.1016/j.bbamem.2011.07.017
– ident: e_1_3_3_40_2
  doi: 10.1007/s00232-010-9327-5
– ident: e_1_3_3_38_2
  doi: 10.1073/pnas.1324141111
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.0707688104
– ident: e_1_3_3_35_2
  doi: 10.1038/sj.emboj.7601028
– ident: e_1_3_3_22_2
  doi: 10.1128/JB.188.9.3199-3207.2006
– ident: e_1_3_3_46_2
  doi: 10.1021/bi027329c
– ident: e_1_3_3_17_2
  doi: 10.1021/bi00629a013
– ident: e_1_3_3_45_2
  doi: 10.1073/pnas.94.25.13515
– ident: e_1_3_3_16_2
  doi: 10.1016/0005-2736(87)90368-3
– ident: e_1_3_3_27_2
  doi: 10.1021/bi034406a
– ident: e_1_3_3_2_2
  doi: 10.1128/mr.57.3.543-594.1993
– ident: e_1_3_3_24_2
  doi: 10.1074/jbc.M512672200
– ident: e_1_3_3_20_2
  doi: 10.1074/jbc.M110.206227
– ident: e_1_3_3_28_2
  doi: 10.1073/pnas.96.7.3525
– ident: e_1_3_3_41_2
  doi: 10.1074/jbc.M601259200
– ident: e_1_3_3_18_2
  doi: 10.1016/0006-291X(77)91663-1
– ident: e_1_3_3_7_2
  doi: 10.1016/S0021-9258(17)43480-6
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.1105687108
– ident: e_1_3_3_21_2
  doi: 10.1021/bi300230h
– ident: e_1_3_3_12_2
  doi: 10.1248/cpb.40.1637
– ident: e_1_3_3_50_2
  doi: 10.1021/bi0203076
– start-page: 359
  volume-title: Biophysical and Structural Aspects of Bioenergetics
  year: 2005
  ident: e_1_3_3_15_2
– ident: e_1_3_3_52_2
  doi: 10.1021/bi061632m
– ident: e_1_3_3_26_2
  doi: 10.1074/jbc.M114.609255
– volume: 3
  start-page: 381
  year: 2001
  ident: e_1_3_3_13_2
  article-title: Regulation of galactoside transport by the PTS
  publication-title: J Mol Microbiol Biotechnol
– ident: e_1_3_3_49_2
  doi: 10.1016/j.tca.2007.07.021
– ident: e_1_3_3_55_2
  doi: 10.1021/ac00217a002
– ident: e_1_3_3_1_2
  doi: 10.1016/S0021-9258(19)34196-1
– ident: e_1_3_3_36_2
  doi: 10.1073/pnas.1419325112
– ident: e_1_3_3_4_2
  doi: 10.1016/B978-0-12-378630-2.00580-6
– ident: e_1_3_3_10_2
  doi: 10.1021/bi011990j
– ident: e_1_3_3_11_2
  doi: 10.1046/j.1365-2958.1999.01319.x
– ident: e_1_3_3_25_2
  doi: 10.1038/nature12232
– ident: e_1_3_3_29_2
  doi: 10.1021/bi9919596
– ident: e_1_3_3_31_2
  doi: 10.1093/emboj/19.21.5635
– start-page: 1149
  volume-title: Postma PW
  year: 1996
  ident: e_1_3_3_3_2
SSID ssj0009580
Score 2.13809
Snippet Carbohydrate uptake in many bacteria is regulated by the phosphotransferase protein IIA Glc , enabling cells to use glucose preferentially over other sugars....
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 2407
Title Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIA Glc
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMS5isCE_8DAUpSRO4jiP1QZkIKoJbdLeKjt21GptippU0_if_J8dX3JhbNLgoVHqOlbb8-mcz8fngtD7jBYs4ZT6jKbKj7Mo8TMl4Q5mpzJhgpgMue9Tmp_HXy-Si9Ho9yBqaduIcfHrzryS_5EqjIFcdZbsP0i2WxQG4B7kC1eQMFwfKuPNai1tU3lvpXQWr256UZog8_lCLFo-uNRtdWqlqxSv9IGMYZ06SWq-ruHVGPqqNvoTU7lhUXknJxPvy7IYstfTztrVbWzBtHUmTvrUFKcvas_3Tqd9o-MctuW6PHRlmauOCquv9PvemwpUfgvbd12TwwL1WDv2-fW2mYNRrxa9Igc4XIL9tp7fybJf5BsX3Kr4fOz9MJ7voWcjtJni8VBbE7CgsRtSVkEDv_FpbFuMdho8JAOosqE-jm1PXWfbga6QO-0GKDrd7Lji9RgYcsC0CSC9iWzDAm5Zzi6e0Zzkp9FMLzDrF3iEHhPYvZh403xYC5rZzCj389qKU2n08dY3GJClAes5e4aeuu0Knljs7aKRqp6j3VbA-NBVLf_wAsk_wIg7MGIAI-7BiNcldmDELRixuMaAJfw3GLEDIwYwYgDjS3T--dPZUe67Fh5-EZKU-JRIGRBZBpngSUkJ4yxlIc1EXCYxCZSCDbW2I6qQGXBRRmQgWUFVWJQwoSijV2inWlfqNcIg-JQDGxVlmcbwCDNH7IoLoSSPkmgPjdv_ala4-va6zcpydo909tBh98BPW9rlvqlvHj71LXrSY3kf7TSbrToA3tqIdwYFNzgPm5U
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+mechanism+for+inhibition+of+lactose+permease+by+the+phosphotransferase+protein+IIA+Glc&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hariharan%2C+Parameswaran&rft.au=Balasubramaniam%2C+Dhandayuthapani&rft.au=Peterkofsky%2C+Alan&rft.au=Kaback%2C+H.+Ronald&rft.date=2015-02-24&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=8&rft.spage=2407&rft.epage=2412&rft_id=info:doi/10.1073%2Fpnas.1500891112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1500891112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon