Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIA Glc
Carbohydrate uptake in many bacteria is regulated by the phosphotransferase protein IIA Glc , enabling cells to use glucose preferentially over other sugars. Lactose permease (LacY) is one of many sugar permeases regulated by IIA Glc , but the mechanism of inducer exclusion is unclear. We now show b...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 8; pp. 2407 - 2412 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
24.02.2015
|
Online Access | Get full text |
Cover
Loading…
Abstract | Carbohydrate uptake in many bacteria is regulated by the phosphotransferase protein IIA
Glc
, enabling cells to use glucose preferentially over other sugars. Lactose permease (LacY) is one of many sugar permeases regulated by IIA
Glc
, but the mechanism of inducer exclusion is unclear. We now show by isothermal titration calorimetry that IIA
Glc
binds to purified LacY with a stoichiometry of one, and that the interaction is driven by favorable solvation entropy. IIA
Glc
binding inhibits conformational dynamics of LacY and decreases binding affinity for sugar in a manner similar to that observed for melibiose permease (MelB). However, the thermodynamic mechanism by which the inhibitory effect is expressed differs for the two permeases.
In a variety of bacteria, the phosphotransferase protein IIA
Glc
plays a key regulatory role in catabolite repression in addition to its role in the vectorial phosphorylation of glucose catalyzed by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The lactose permease (LacY) of
Escherichia coli
catalyzes stoichiometric symport of a galactoside with an H
+
, using a mechanism in which sugar- and H
+
-binding sites become alternatively accessible to either side of the membrane. Both the expression (via regulation of cAMP levels) and the activity of LacY are subject to regulation by IIA
Glc
(inducer exclusion). Here we report the thermodynamic features of the IIA
Glc
–LacY interaction as measured by isothermal titration calorimetry (ITC). The studies show that IIA
Glc
binds to LacY with a
K
d
of about 5 μM and a stoichiometry of unity and that binding is driven by solvation entropy and opposed by enthalpy. Upon IIA
Glc
binding, the conformational entropy of LacY is restrained, which leads to a significant decrease in sugar affinity. By suppressing conformational dynamics, IIA
Glc
blocks inducer entry into cells and favors constitutive glucose uptake and utilization. Furthermore, the studies support the notion that sugar binding involves an induced-fit mechanism that is inhibited by IIA
Glc
binding. The precise mechanism of the inhibition of LacY by IIA
Glc
elucidated by ITC differs from the inhibition of melibiose permease (MelB), supporting the idea that permeases can differ in their thermodynamic response to binding IIA
Glc
. |
---|---|
AbstractList | Carbohydrate uptake in many bacteria is regulated by the phosphotransferase protein IIA
Glc
, enabling cells to use glucose preferentially over other sugars. Lactose permease (LacY) is one of many sugar permeases regulated by IIA
Glc
, but the mechanism of inducer exclusion is unclear. We now show by isothermal titration calorimetry that IIA
Glc
binds to purified LacY with a stoichiometry of one, and that the interaction is driven by favorable solvation entropy. IIA
Glc
binding inhibits conformational dynamics of LacY and decreases binding affinity for sugar in a manner similar to that observed for melibiose permease (MelB). However, the thermodynamic mechanism by which the inhibitory effect is expressed differs for the two permeases.
In a variety of bacteria, the phosphotransferase protein IIA
Glc
plays a key regulatory role in catabolite repression in addition to its role in the vectorial phosphorylation of glucose catalyzed by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The lactose permease (LacY) of
Escherichia coli
catalyzes stoichiometric symport of a galactoside with an H
+
, using a mechanism in which sugar- and H
+
-binding sites become alternatively accessible to either side of the membrane. Both the expression (via regulation of cAMP levels) and the activity of LacY are subject to regulation by IIA
Glc
(inducer exclusion). Here we report the thermodynamic features of the IIA
Glc
–LacY interaction as measured by isothermal titration calorimetry (ITC). The studies show that IIA
Glc
binds to LacY with a
K
d
of about 5 μM and a stoichiometry of unity and that binding is driven by solvation entropy and opposed by enthalpy. Upon IIA
Glc
binding, the conformational entropy of LacY is restrained, which leads to a significant decrease in sugar affinity. By suppressing conformational dynamics, IIA
Glc
blocks inducer entry into cells and favors constitutive glucose uptake and utilization. Furthermore, the studies support the notion that sugar binding involves an induced-fit mechanism that is inhibited by IIA
Glc
binding. The precise mechanism of the inhibition of LacY by IIA
Glc
elucidated by ITC differs from the inhibition of melibiose permease (MelB), supporting the idea that permeases can differ in their thermodynamic response to binding IIA
Glc
. |
Author | Balasubramaniam, Dhandayuthapani Kaback, H. Ronald Hariharan, Parameswaran Guan, Lan Peterkofsky, Alan |
Author_xml | – sequence: 1 givenname: Parameswaran surname: Hariharan fullname: Hariharan, Parameswaran organization: Department of Cell Physiology & Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 – sequence: 2 givenname: Dhandayuthapani surname: Balasubramaniam fullname: Balasubramaniam, Dhandayuthapani organization: Departments of bPhysiology and – sequence: 3 givenname: Alan surname: Peterkofsky fullname: Peterkofsky, Alan organization: Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 – sequence: 4 givenname: H. Ronald surname: Kaback fullname: Kaback, H. Ronald organization: Departments of bPhysiology and, Microbiology, Immunology & Molecular Genetics and, Molecular Biology Institute, University of California, Los Angeles, CA 90095; and – sequence: 5 givenname: Lan orcidid: 0000-0002-2274-361X surname: Guan fullname: Guan, Lan organization: Department of Cell Physiology & Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 |
BookMark | eNp1kMtqwzAQRUVJoU7adbf6AScjxQ9pGUKbGgLdpGsj64FVbMlI3vjvK9NCodDFMDPMnAv3btHGeacReiawJ1AfD5MTcU9KAMYJIfQOZQQ4yauCwwZlALTOWUGLB7SN8RMAeMkgQ-rW6zB6tTgxWolHLXvhbByx8QFb19vOztY77A0ehJx91HhKgBZp6BY892nvfUw1B-Gi0WG9TMHP2jrcNCd8GeQjujdiiPrpp-_Qx-vL7fyWX98vzfl0zSWhNc0rqhRQZYB3ojQVZYLVjFS8K0xZUNCaVRSgAC0VZxQYVaCYrDSRJj1Ic9yhw7euDD7GoE07BTuKsLQE2jWkdg2p_Q0pEeUfQtpZrI6THTv8y30BaI1wAA |
CitedBy_id | crossref_primary_10_1099_mic_0_001412 crossref_primary_10_1021_jacs_3c03005 crossref_primary_10_3389_fmicb_2018_01802 crossref_primary_10_7554_eLife_92462 crossref_primary_10_1016_j_bpj_2022_01_016 crossref_primary_10_1038_s41598_017_18704_0 crossref_primary_10_1021_acsomega_2c04419 crossref_primary_10_1016_j_jbc_2023_104967 crossref_primary_10_1021_acs_biochem_6b00826 crossref_primary_10_1021_acs_chemrev_0c00983 crossref_primary_10_1021_acs_biochem_5b00660 crossref_primary_10_1021_acs_biochem_6b00721 crossref_primary_10_1002_advs_202414777 crossref_primary_10_1074_jbc_RA118_006876 crossref_primary_10_7554_eLife_92462_3 crossref_primary_10_1085_jgp_201711788 crossref_primary_10_1085_jgp_201912377 crossref_primary_10_1085_jgp_202012710 crossref_primary_10_1099_mic_0_001253 crossref_primary_10_1080_17445760_2021_1879072 crossref_primary_10_1039_D4SC04529G crossref_primary_10_1007_s00285_016_1030_4 |
Cites_doi | 10.1128/mr.53.1.109-120.1989 10.1016/S0021-9258(18)45463-4 10.1128/MMBR.00001-14 10.1046/j.1365-2958.2003.t01-1-03434.x 10.1126/science.8430315 10.1073/pnas.79.5.1457 10.1074/jbc.M607232200 10.1515/9783110879476 10.1016/j.bpc.2004.12.015 10.1006/jmbi.1997.0977 10.1007/BF00272347 10.1073/pnas.0905516106 10.1021/bi2014294 10.1146/annurev.biophys.35.040405.102005 10.1126/science.1088196 10.1021/bi048301z 10.1073/pnas.1306849110 10.1038/ncomms4009 10.1016/j.bbamem.2011.07.017 10.1007/s00232-010-9327-5 10.1073/pnas.1324141111 10.1073/pnas.0707688104 10.1038/sj.emboj.7601028 10.1128/JB.188.9.3199-3207.2006 10.1021/bi027329c 10.1021/bi00629a013 10.1073/pnas.94.25.13515 10.1016/0005-2736(87)90368-3 10.1021/bi034406a 10.1128/mr.57.3.543-594.1993 10.1074/jbc.M512672200 10.1074/jbc.M110.206227 10.1073/pnas.96.7.3525 10.1074/jbc.M601259200 10.1016/0006-291X(77)91663-1 10.1016/S0021-9258(17)43480-6 10.1073/pnas.1105687108 10.1021/bi300230h 10.1248/cpb.40.1637 10.1021/bi0203076 10.1021/bi061632m 10.1074/jbc.M114.609255 10.1016/j.tca.2007.07.021 10.1021/ac00217a002 10.1016/S0021-9258(19)34196-1 10.1073/pnas.1419325112 10.1016/B978-0-12-378630-2.00580-6 10.1021/bi011990j 10.1046/j.1365-2958.1999.01319.x 10.1038/nature12232 10.1021/bi9919596 10.1093/emboj/19.21.5635 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1073/pnas.1500891112 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 2412 |
ExternalDocumentID | 10_1073_pnas_1500891112 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CITATION CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM |
ID | FETCH-LOGICAL-c1272-62dd02df09ba5f628a878169b4f5420ee8620040ecd982082d0d8c6e1cff54cf3 |
ISSN | 0027-8424 |
IngestDate | Tue Jul 01 01:53:21 EDT 2025 Thu Apr 24 23:07:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1272-62dd02df09ba5f628a878169b4f5420ee8620040ecd982082d0d8c6e1cff54cf3 |
ORCID | 0000-0002-2274-361X |
OpenAccessLink | https://www.pnas.org/content/pnas/112/8/2407.full.pdf |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1500891112 crossref_citationtrail_10_1073_pnas_1500891112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-24 |
PublicationDateYYYYMMDD | 2015-02-24 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-24 day: 24 |
PublicationDecade | 2010 |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationYear | 2015 |
References | e_1_3_3_50_2 Kuroda M (e_1_3_3_13_2) 2001; 3 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 Kaback HR (e_1_3_3_15_2) 2005 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_21_2 e_1_3_3_42_2 Lengeler JW (e_1_3_3_3_2) 1996 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_36_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_54_2 doi: 10.1128/mr.53.1.109-120.1989 – ident: e_1_3_3_19_2 doi: 10.1016/S0021-9258(18)45463-4 – ident: e_1_3_3_5_2 doi: 10.1128/MMBR.00001-14 – ident: e_1_3_3_23_2 doi: 10.1046/j.1365-2958.2003.t01-1-03434.x – ident: e_1_3_3_30_2 doi: 10.1126/science.8430315 – ident: e_1_3_3_9_2 doi: 10.1073/pnas.79.5.1457 – ident: e_1_3_3_51_2 doi: 10.1074/jbc.M607232200 – ident: e_1_3_3_6_2 doi: 10.1515/9783110879476 – ident: e_1_3_3_53_2 doi: 10.1016/j.bpc.2004.12.015 – ident: e_1_3_3_48_2 doi: 10.1006/jmbi.1997.0977 – ident: e_1_3_3_8_2 doi: 10.1007/BF00272347 – ident: e_1_3_3_42_2 doi: 10.1073/pnas.0905516106 – ident: e_1_3_3_39_2 doi: 10.1021/bi2014294 – ident: e_1_3_3_14_2 doi: 10.1146/annurev.biophys.35.040405.102005 – ident: e_1_3_3_33_2 doi: 10.1126/science.1088196 – ident: e_1_3_3_43_2 doi: 10.1021/bi048301z – ident: e_1_3_3_47_2 doi: 10.1073/pnas.1306849110 – ident: e_1_3_3_37_2 doi: 10.1038/ncomms4009 – ident: e_1_3_3_44_2 doi: 10.1016/j.bbamem.2011.07.017 – ident: e_1_3_3_40_2 doi: 10.1007/s00232-010-9327-5 – ident: e_1_3_3_38_2 doi: 10.1073/pnas.1324141111 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.0707688104 – ident: e_1_3_3_35_2 doi: 10.1038/sj.emboj.7601028 – ident: e_1_3_3_22_2 doi: 10.1128/JB.188.9.3199-3207.2006 – ident: e_1_3_3_46_2 doi: 10.1021/bi027329c – ident: e_1_3_3_17_2 doi: 10.1021/bi00629a013 – ident: e_1_3_3_45_2 doi: 10.1073/pnas.94.25.13515 – ident: e_1_3_3_16_2 doi: 10.1016/0005-2736(87)90368-3 – ident: e_1_3_3_27_2 doi: 10.1021/bi034406a – ident: e_1_3_3_2_2 doi: 10.1128/mr.57.3.543-594.1993 – ident: e_1_3_3_24_2 doi: 10.1074/jbc.M512672200 – ident: e_1_3_3_20_2 doi: 10.1074/jbc.M110.206227 – ident: e_1_3_3_28_2 doi: 10.1073/pnas.96.7.3525 – ident: e_1_3_3_41_2 doi: 10.1074/jbc.M601259200 – ident: e_1_3_3_18_2 doi: 10.1016/0006-291X(77)91663-1 – ident: e_1_3_3_7_2 doi: 10.1016/S0021-9258(17)43480-6 – ident: e_1_3_3_34_2 doi: 10.1073/pnas.1105687108 – ident: e_1_3_3_21_2 doi: 10.1021/bi300230h – ident: e_1_3_3_12_2 doi: 10.1248/cpb.40.1637 – ident: e_1_3_3_50_2 doi: 10.1021/bi0203076 – start-page: 359 volume-title: Biophysical and Structural Aspects of Bioenergetics year: 2005 ident: e_1_3_3_15_2 – ident: e_1_3_3_52_2 doi: 10.1021/bi061632m – ident: e_1_3_3_26_2 doi: 10.1074/jbc.M114.609255 – volume: 3 start-page: 381 year: 2001 ident: e_1_3_3_13_2 article-title: Regulation of galactoside transport by the PTS publication-title: J Mol Microbiol Biotechnol – ident: e_1_3_3_49_2 doi: 10.1016/j.tca.2007.07.021 – ident: e_1_3_3_55_2 doi: 10.1021/ac00217a002 – ident: e_1_3_3_1_2 doi: 10.1016/S0021-9258(19)34196-1 – ident: e_1_3_3_36_2 doi: 10.1073/pnas.1419325112 – ident: e_1_3_3_4_2 doi: 10.1016/B978-0-12-378630-2.00580-6 – ident: e_1_3_3_10_2 doi: 10.1021/bi011990j – ident: e_1_3_3_11_2 doi: 10.1046/j.1365-2958.1999.01319.x – ident: e_1_3_3_25_2 doi: 10.1038/nature12232 – ident: e_1_3_3_29_2 doi: 10.1021/bi9919596 – ident: e_1_3_3_31_2 doi: 10.1093/emboj/19.21.5635 – start-page: 1149 volume-title: Postma PW year: 1996 ident: e_1_3_3_3_2 |
SSID | ssj0009580 |
Score | 2.13809 |
Snippet | Carbohydrate uptake in many bacteria is regulated by the phosphotransferase protein IIA
Glc
, enabling cells to use glucose preferentially over other sugars.... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 2407 |
Title | Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIA Glc |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMS5isCE_8DAUpSRO4jiP1QZkIKoJbdLeKjt21GptippU0_if_J8dX3JhbNLgoVHqOlbb8-mcz8fngtD7jBYs4ZT6jKbKj7Mo8TMl4Q5mpzJhgpgMue9Tmp_HXy-Si9Ho9yBqaduIcfHrzryS_5EqjIFcdZbsP0i2WxQG4B7kC1eQMFwfKuPNai1tU3lvpXQWr256UZog8_lCLFo-uNRtdWqlqxSv9IGMYZ06SWq-ruHVGPqqNvoTU7lhUXknJxPvy7IYstfTztrVbWzBtHUmTvrUFKcvas_3Tqd9o-MctuW6PHRlmauOCquv9PvemwpUfgvbd12TwwL1WDv2-fW2mYNRrxa9Igc4XIL9tp7fybJf5BsX3Kr4fOz9MJ7voWcjtJni8VBbE7CgsRtSVkEDv_FpbFuMdho8JAOosqE-jm1PXWfbga6QO-0GKDrd7Lji9RgYcsC0CSC9iWzDAm5Zzi6e0Zzkp9FMLzDrF3iEHhPYvZh403xYC5rZzCj389qKU2n08dY3GJClAes5e4aeuu0Knljs7aKRqp6j3VbA-NBVLf_wAsk_wIg7MGIAI-7BiNcldmDELRixuMaAJfw3GLEDIwYwYgDjS3T--dPZUe67Fh5-EZKU-JRIGRBZBpngSUkJ4yxlIc1EXCYxCZSCDbW2I6qQGXBRRmQgWUFVWJQwoSijV2inWlfqNcIg-JQDGxVlmcbwCDNH7IoLoSSPkmgPjdv_ala4-va6zcpydo909tBh98BPW9rlvqlvHj71LXrSY3kf7TSbrToA3tqIdwYFNzgPm5U |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+mechanism+for+inhibition+of+lactose+permease+by+the+phosphotransferase+protein+IIA+Glc&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hariharan%2C+Parameswaran&rft.au=Balasubramaniam%2C+Dhandayuthapani&rft.au=Peterkofsky%2C+Alan&rft.au=Kaback%2C+H.+Ronald&rft.date=2015-02-24&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=8&rft.spage=2407&rft.epage=2412&rft_id=info:doi/10.1073%2Fpnas.1500891112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1500891112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |