Reaching the magnetic anisotropy limit of a 3 d metal atom
A study of the magnetic response of cobalt atoms adsorbed on oxide surfaces may lead to much denser storage of data. In hard drives, data are stored as magnetic bits; the magnetic field pointing up or down corresponds to storing a zero or a one. The smallest bit possible would be a single atom, but...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 344; no. 6187; pp. 988 - 992 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
30.05.2014
|
Online Access | Get full text |
Cover
Loading…
Abstract | A study of the magnetic response of cobalt atoms adsorbed on oxide surfaces may lead to much denser storage of data. In hard drives, data are stored as magnetic bits; the magnetic field pointing up or down corresponds to storing a zero or a one. The smallest bit possible would be a single atom, but the magnetism of a single atom —its spin—has to be stabilized by interactions with heavy elements or surfaces through an effect called spin-orbit coupling. Rau
et al.
(see the Perspective by Khajetoorians and Wiebe) built a model system in pursuit of single-atom bits—cobalt atoms adsorbed on magnesium oxide. At temperatures approaching absolute zero, the stabilization of the spin's magnetic direction reached the maximum that is theoretically possible.
Science
, this issue p.
988
; see also p.
976
A cobalt atom bound to a single oxygen site on magnesia has the maximum magnetic anisotropy allowed for a transition metal
[Also see Perspective by
Khajetoorians and Wiebe
]
Designing systems with large magnetic anisotropy is critical to realize nanoscopic magnets. Thus far, the magnetic anisotropy energy per atom in single-molecule magnets and ferromagnetic films remains typically one to two orders of magnitude below the theoretical limit imposed by the atomic spin-orbit interaction. We realized the maximum magnetic anisotropy for a 3
d
transition metal atom by coordinating a single Co atom to the O site of an MgO(100) surface. Scanning tunneling spectroscopy reveals a record-high zero-field splitting of 58 millielectron volts as well as slow relaxation of the Co atom’s magnetization. This striking behavior originates from the dominating axial ligand field at the O adsorption site, which leads to out-of-plane uniaxial anisotropy while preserving the gas-phase orbital moment of Co, as observed with x-ray magnetic circular dichroism. |
---|---|
AbstractList | A study of the magnetic response of cobalt atoms adsorbed on oxide surfaces may lead to much denser storage of data. In hard drives, data are stored as magnetic bits; the magnetic field pointing up or down corresponds to storing a zero or a one. The smallest bit possible would be a single atom, but the magnetism of a single atom —its spin—has to be stabilized by interactions with heavy elements or surfaces through an effect called spin-orbit coupling. Rau
et al.
(see the Perspective by Khajetoorians and Wiebe) built a model system in pursuit of single-atom bits—cobalt atoms adsorbed on magnesium oxide. At temperatures approaching absolute zero, the stabilization of the spin's magnetic direction reached the maximum that is theoretically possible.
Science
, this issue p.
988
; see also p.
976
A cobalt atom bound to a single oxygen site on magnesia has the maximum magnetic anisotropy allowed for a transition metal
[Also see Perspective by
Khajetoorians and Wiebe
]
Designing systems with large magnetic anisotropy is critical to realize nanoscopic magnets. Thus far, the magnetic anisotropy energy per atom in single-molecule magnets and ferromagnetic films remains typically one to two orders of magnitude below the theoretical limit imposed by the atomic spin-orbit interaction. We realized the maximum magnetic anisotropy for a 3
d
transition metal atom by coordinating a single Co atom to the O site of an MgO(100) surface. Scanning tunneling spectroscopy reveals a record-high zero-field splitting of 58 millielectron volts as well as slow relaxation of the Co atom’s magnetization. This striking behavior originates from the dominating axial ligand field at the O adsorption site, which leads to out-of-plane uniaxial anisotropy while preserving the gas-phase orbital moment of Co, as observed with x-ray magnetic circular dichroism. |
Author | Gangopadhyay, Shruba Gambardella, Pietro Albertini, Oliver R. Piamonteze, Cinthia Donati, Fabio Dreiser, Jan Gragnaniello, Luca Baumann, Susanne Heinrich, Andreas J. Brune, Harald Macfarlane, Roger M. Jones, Barbara A. Rau, Ileana G. Nolting, Frithjof Lutz, Christopher P. Stepanow, Sebastian Rusponi, Stefano |
Author_xml | – sequence: 1 givenname: Ileana G. surname: Rau fullname: Rau, Ileana G. organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA – sequence: 2 givenname: Susanne surname: Baumann fullname: Baumann, Susanne organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA., Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland – sequence: 3 givenname: Stefano surname: Rusponi fullname: Rusponi, Stefano organization: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland – sequence: 4 givenname: Fabio surname: Donati fullname: Donati, Fabio organization: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland – sequence: 5 givenname: Sebastian surname: Stepanow fullname: Stepanow, Sebastian organization: Department of Materials, Eidgenössische Technische Hochschule (ETH) Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland – sequence: 6 givenname: Luca surname: Gragnaniello fullname: Gragnaniello, Luca organization: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland – sequence: 7 givenname: Jan surname: Dreiser fullname: Dreiser, Jan organization: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland., Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland – sequence: 8 givenname: Cinthia surname: Piamonteze fullname: Piamonteze, Cinthia organization: Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland – sequence: 9 givenname: Frithjof surname: Nolting fullname: Nolting, Frithjof organization: Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland – sequence: 10 givenname: Shruba surname: Gangopadhyay fullname: Gangopadhyay, Shruba organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA – sequence: 11 givenname: Oliver R. surname: Albertini fullname: Albertini, Oliver R. organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA., Department of Physics, Georgetown University, 3700 O Street NW, Washington, DC 20057, USA – sequence: 12 givenname: Roger M. surname: Macfarlane fullname: Macfarlane, Roger M. organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA – sequence: 13 givenname: Christopher P. surname: Lutz fullname: Lutz, Christopher P. organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA – sequence: 14 givenname: Barbara A. surname: Jones fullname: Jones, Barbara A. organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA – sequence: 15 givenname: Pietro surname: Gambardella fullname: Gambardella, Pietro organization: Department of Materials, Eidgenössische Technische Hochschule (ETH) Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland – sequence: 16 givenname: Andreas J. surname: Heinrich fullname: Heinrich, Andreas J. organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA – sequence: 17 givenname: Harald surname: Brune fullname: Brune, Harald organization: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland |
BookMark | eNotz8FLwzAYBfAgE9ymZ6_5B7rlS5o08SZDnTAQRM_lS5pskTYdTS77753Y0zs8eLzfiizSmDwhj8A2AFxts4s-Ob8BLrmu4YYsgRlZGc7EgiwZE6rSrJF3ZJXzD2PXzoglefr06E4xHWk5eTrgMfkSHcUU81im8XyhfRxioWOgSAXt6OAL9hTLONyT24B99g9zrsn368vXbl8dPt7ed8-HygFvoLLSoLHG1Va7GmRQYL2pg-q62mgNAF0A8DagwM5o1XgprTGK28ZKxOvJNdn-77ppzHnyoT1PccDp0gJr_-jtTG9nuvgF68NPGQ |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_2c03168 crossref_primary_10_1038_srep31841 crossref_primary_10_1103_PhysRevMaterials_1_074408 crossref_primary_10_1103_PhysRevB_103_224429 crossref_primary_10_1103_PhysRevB_108_245407 crossref_primary_10_1103_PhysRevMaterials_5_054001 crossref_primary_10_1039_C6DT01963C crossref_primary_10_1088_1367_2630_ac2d71 crossref_primary_10_1021_acs_inorgchem_6b01353 crossref_primary_10_1039_C5CP04663G crossref_primary_10_1039_D2DT02468C crossref_primary_10_1039_C8NR03442G crossref_primary_10_1021_acs_nanolett_3c02532 crossref_primary_10_1039_D2CP01224C crossref_primary_10_1002_adma_201506305 crossref_primary_10_1103_PhysRevLett_114_106807 crossref_primary_10_1103_PhysRevB_93_214435 crossref_primary_10_1002_smll_202104779 crossref_primary_10_21468_SciPostPhys_2_3_020 crossref_primary_10_1103_PhysRevB_92_184406 crossref_primary_10_1103_RevModPhys_91_041001 crossref_primary_10_1088_1367_2630_17_6_063016 crossref_primary_10_1016_j_jmmm_2019_165269 crossref_primary_10_1002_ange_201808951 crossref_primary_10_1002_aelm_202200650 crossref_primary_10_1038_s41467_019_10516_2 crossref_primary_10_1038_s41535_020_00262_w crossref_primary_10_1016_j_apsusc_2020_147427 crossref_primary_10_1063_5_0152175 crossref_primary_10_1021_acs_jpcc_9b03126 crossref_primary_10_1038_s41467_017_00506_7 crossref_primary_10_1016_j_progsurf_2016_12_001 crossref_primary_10_1039_D0CP00742K crossref_primary_10_1103_PhysRevB_97_041114 crossref_primary_10_1126_sciadv_1603137 crossref_primary_10_1038_s41467_018_02918_5 crossref_primary_10_1103_PhysRevB_99_054418 crossref_primary_10_1016_j_apsusc_2023_158739 crossref_primary_10_1016_j_commatsci_2017_04_001 crossref_primary_10_1002_adfm_201600240 crossref_primary_10_1088_1361_665X_aba53d crossref_primary_10_1103_PhysRevB_91_214423 crossref_primary_10_1016_j_jmmm_2019_03_007 crossref_primary_10_1038_s41524_021_00556_y crossref_primary_10_1126_science_aac8703 crossref_primary_10_1103_PhysRevB_96_144410 crossref_primary_10_1088_1361_648X_aad43d crossref_primary_10_1021_acs_jpcc_1c07370 crossref_primary_10_1103_PhysRevB_93_035451 crossref_primary_10_1021_acs_jpca_9b10749 crossref_primary_10_1038_ncomms10620 crossref_primary_10_1021_acs_inorgchem_8b03064 crossref_primary_10_1039_C6CS00891G crossref_primary_10_1038_s41586_023_06011_w crossref_primary_10_1039_C7SC04460G crossref_primary_10_1103_PhysRevLett_121_257202 crossref_primary_10_1021_jacs_5b08962 crossref_primary_10_1088_1361_6463_accd03 crossref_primary_10_1088_2053_1583_aa75ed crossref_primary_10_1088_1674_1056_27_10_106701 crossref_primary_10_1039_C9RA10337F crossref_primary_10_1063_1_4975767 crossref_primary_10_1021_acs_jpcc_7b06912 crossref_primary_10_1103_PhysRevB_95_094417 crossref_primary_10_1126_science_aat7319 crossref_primary_10_1039_C8NJ02532K crossref_primary_10_1103_PhysRevLett_115_206803 crossref_primary_10_1103_PhysRevLett_122_227203 crossref_primary_10_1126_science_aaf2481 crossref_primary_10_1103_PhysRevB_103_224432 crossref_primary_10_1103_PhysRevLett_113_237201 crossref_primary_10_1002_cctc_202201176 crossref_primary_10_1039_C6CP04583A crossref_primary_10_1021_acs_cgd_2c01076 crossref_primary_10_1021_acs_nanolett_6b01344 crossref_primary_10_1016_j_apsusc_2020_148421 crossref_primary_10_1126_sciadv_1602060 crossref_primary_10_1021_acs_nanolett_5b02200 crossref_primary_10_1039_C9NR10252C crossref_primary_10_1039_D3NR01943H crossref_primary_10_1126_science_aax8222 crossref_primary_10_1039_C4CP02608J crossref_primary_10_1039_C4CP03470H crossref_primary_10_1088_1361_648X_ac93db crossref_primary_10_1103_PhysRevB_102_155403 crossref_primary_10_1021_acs_nanolett_7b02785 crossref_primary_10_1016_j_cplett_2019_05_015 crossref_primary_10_1088_1361_648X_ac8135 crossref_primary_10_1039_C9CP04413B crossref_primary_10_1103_PhysRevB_93_174409 crossref_primary_10_1016_j_tsf_2020_137935 crossref_primary_10_1039_C6SC05080H crossref_primary_10_1002_ejic_201800792 crossref_primary_10_1039_C5SC02854J crossref_primary_10_1007_s00214_016_1948_z crossref_primary_10_1016_j_physe_2023_115795 crossref_primary_10_1016_j_omx_2024_100332 crossref_primary_10_1103_PhysRevB_90_064423 crossref_primary_10_1070_RCR4989 crossref_primary_10_1016_j_jmmm_2021_168915 crossref_primary_10_1088_2516_1075_abbb25 crossref_primary_10_1103_PhysRevB_92_064421 crossref_primary_10_1103_PhysRevB_91_104420 crossref_primary_10_3390_inorganics8060039 crossref_primary_10_1021_acs_jpcc_5b10211 crossref_primary_10_1038_s41467_024_46854_z crossref_primary_10_1103_PhysRevB_107_045427 crossref_primary_10_1103_PhysRevB_104_134415 crossref_primary_10_1021_acs_nanolett_6b03543 crossref_primary_10_1039_C5CP01525A crossref_primary_10_1088_1361_648X_abe513 crossref_primary_10_1103_PhysRevB_98_024412 crossref_primary_10_1109_LMAG_2019_2914007 crossref_primary_10_1080_23746149_2018_1432415 crossref_primary_10_1021_acsnano_2c04048 crossref_primary_10_1016_j_apsusc_2021_152311 crossref_primary_10_1021_acs_nanolett_1c00545 crossref_primary_10_1103_PhysRevApplied_10_024031 crossref_primary_10_1039_C7CP01641G crossref_primary_10_1038_s41565_017_0001_2 crossref_primary_10_1021_acsnano_1c07902 crossref_primary_10_1021_jp510240b crossref_primary_10_1021_acsomega_8b01204 crossref_primary_10_1103_PhysRevB_95_174424 crossref_primary_10_1039_D2CP03760B crossref_primary_10_1039_C5RA19582A crossref_primary_10_1021_acs_inorgchem_6b02348 crossref_primary_10_1016_j_ccr_2021_213984 crossref_primary_10_1103_PhysRevLett_119_017203 crossref_primary_10_1039_C5CP03599F crossref_primary_10_1103_PhysRevB_96_045419 crossref_primary_10_1039_D2CP01864K crossref_primary_10_1103_PhysRevB_107_144417 crossref_primary_10_1021_acsnano_3c01595 crossref_primary_10_1038_s42005_018_0078_4 crossref_primary_10_1103_PhysRevMaterials_5_014406 crossref_primary_10_1088_1361_6463_aabc48 crossref_primary_10_1088_1367_2630_ab116b crossref_primary_10_1039_D1QI00912E crossref_primary_10_1103_PhysRevB_107_214444 crossref_primary_10_1126_sciadv_aar7814 crossref_primary_10_1039_C9CP05844C crossref_primary_10_1063_1_4947283 crossref_primary_10_1103_PhysRevB_92_125405 crossref_primary_10_1103_PhysRevApplied_7_014004 crossref_primary_10_1016_j_jssc_2016_03_004 crossref_primary_10_3390_inorganics10120227 crossref_primary_10_1021_acs_nanolett_5b00987 crossref_primary_10_1088_1361_648X_aab113 crossref_primary_10_1103_PhysRevB_105_054434 crossref_primary_10_1088_1361_648X_aab111 crossref_primary_10_1039_C8DT02008F crossref_primary_10_1103_PhysRevB_93_115123 crossref_primary_10_1088_1367_2630_17_3_033020 crossref_primary_10_1126_science_1254402 crossref_primary_10_1016_j_jmmm_2018_09_050 crossref_primary_10_1063_9_0000727 crossref_primary_10_1103_PhysRevB_93_134414 crossref_primary_10_1002_chem_201903618 crossref_primary_10_1103_PhysRevResearch_2_013032 crossref_primary_10_1063_1_4955446 crossref_primary_10_1039_C7NR08372F crossref_primary_10_1016_j_physb_2017_02_019 crossref_primary_10_1103_PhysRevB_100_035424 crossref_primary_10_1103_PhysRevResearch_3_L042042 crossref_primary_10_1039_D2CP01668K crossref_primary_10_1002_chem_201905290 crossref_primary_10_1103_PhysRevB_96_205159 crossref_primary_10_1088_1367_2630_aa83e6 crossref_primary_10_1002_advs_201700019 crossref_primary_10_1021_acs_inorgchem_3c03388 crossref_primary_10_1126_science_aad9898 crossref_primary_10_1002_wcms_1269 crossref_primary_10_1103_PhysRevLett_115_257201 crossref_primary_10_1002_chem_202400977 crossref_primary_10_1016_j_jmmm_2020_166892 crossref_primary_10_1088_1361_648X_aaf212 crossref_primary_10_1021_acsami_8b14736 crossref_primary_10_1103_PhysRevLett_113_177201 crossref_primary_10_1103_PhysRevB_93_125424 crossref_primary_10_1039_C6CP07811G crossref_primary_10_1088_1361_648X_ab7e59 crossref_primary_10_1021_jacs_2c05894 crossref_primary_10_1021_nl504779p crossref_primary_10_1103_PhysRevB_90_155134 crossref_primary_10_1103_PhysRevB_92_014423 crossref_primary_10_1016_j_mex_2019_05_026 crossref_primary_10_1038_nphys3965 crossref_primary_10_1103_PhysRevB_98_174438 crossref_primary_10_1002_adfm_201804594 crossref_primary_10_1103_PhysRevB_104_224431 crossref_primary_10_1021_acsnano_7b06029 crossref_primary_10_1103_PhysRevB_95_075413 crossref_primary_10_1063_5_0070483 crossref_primary_10_1063_5_0150706 crossref_primary_10_1016_j_apsusc_2022_154478 crossref_primary_10_1039_D3SC00813D crossref_primary_10_1103_PhysRevB_99_235302 crossref_primary_10_1038_srep25584 crossref_primary_10_1103_Physics_14_165 crossref_primary_10_1039_C9ME00017H crossref_primary_10_3762_bjnano_11_113 crossref_primary_10_1126_sciadv_aaq1543 crossref_primary_10_3390_nano12030518 crossref_primary_10_1039_D0RA09742J crossref_primary_10_1103_PhysRevMaterials_5_024408 crossref_primary_10_1039_D0CP05915C crossref_primary_10_1021_acs_jpcc_9b10156 crossref_primary_10_1016_j_jlumin_2023_120152 crossref_primary_10_1103_PhysRevB_100_094412 crossref_primary_10_1016_j_dyepig_2020_108986 crossref_primary_10_1103_PhysRevB_95_104405 crossref_primary_10_1002_smll_202304369 crossref_primary_10_1103_PhysRevB_93_144405 crossref_primary_10_1002_ejic_201901017 crossref_primary_10_1063_1_5020045 crossref_primary_10_1103_PhysRevB_93_144421 crossref_primary_10_1021_acsnano_7b02449 crossref_primary_10_1103_PhysRevB_94_060403 crossref_primary_10_1021_acs_jpclett_8b03036 crossref_primary_10_1088_1361_648X_aa8755 crossref_primary_10_1103_PhysRevB_108_035426 crossref_primary_10_1038_srep13665 crossref_primary_10_1088_1361_6528_ac13e9 crossref_primary_10_1088_1367_2630_ace8b5 crossref_primary_10_1103_PhysRevB_95_125433 crossref_primary_10_1002_anie_201808951 crossref_primary_10_1103_PhysRevB_102_054406 crossref_primary_10_1103_PhysRevB_94_014437 crossref_primary_10_1039_C5TC04402B crossref_primary_10_1016_j_apsusc_2023_156476 crossref_primary_10_1103_PhysRevB_91_180403 crossref_primary_10_1039_C7CP04445C crossref_primary_10_1088_1367_2630_aabb88 crossref_primary_10_1038_nnano_2017_18 crossref_primary_10_1039_C7CC02453C crossref_primary_10_1103_PhysRevB_92_174407 crossref_primary_10_1002_ange_202309073 crossref_primary_10_1016_j_jmmm_2022_169690 crossref_primary_10_1063_1674_0068_30_cjcp1609178 crossref_primary_10_1063_5_0040011 crossref_primary_10_1103_PhysRevB_93_224428 crossref_primary_10_1039_C4NR07003H crossref_primary_10_1038_s41534_023_00753_1 crossref_primary_10_1016_j_progsurf_2017_01_001 crossref_primary_10_1038_s42254_019_0108_5 crossref_primary_10_5564_jasea_v2i1_3492 crossref_primary_10_1038_srep46614 crossref_primary_10_1007_s11051_018_4164_z crossref_primary_10_1088_1361_6528_ac50f0 crossref_primary_10_1103_PhysRevB_93_140101 crossref_primary_10_1126_sciadv_abi7291 crossref_primary_10_1021_acs_jpcc_1c09427 crossref_primary_10_1103_PhysRevB_92_125109 crossref_primary_10_1103_PhysRevB_94_125402 crossref_primary_10_1021_acs_inorgchem_2c03643 crossref_primary_10_1063_1_4917267 crossref_primary_10_1088_1361_648X_aa7b5b crossref_primary_10_1016_j_ssc_2018_12_016 crossref_primary_10_1021_acs_nanolett_1c02681 crossref_primary_10_1002_adma_202102844 crossref_primary_10_1038_s41467_021_26650_9 crossref_primary_10_1103_PhysRevB_96_214401 crossref_primary_10_1016_j_apsusc_2021_151068 crossref_primary_10_1021_acs_nanolett_6b05204 crossref_primary_10_3762_bjnano_11_91 crossref_primary_10_1103_PhysRevB_109_014423 crossref_primary_10_1103_PhysRevB_91_235426 crossref_primary_10_1103_PhysRevB_102_140407 crossref_primary_10_1016_j_jmmm_2021_168068 crossref_primary_10_1103_PhysRevLett_116_037203 crossref_primary_10_1103_PhysRevLett_124_077204 crossref_primary_10_1088_1367_2630_ab3077 crossref_primary_10_1103_PhysRevB_96_224413 crossref_primary_10_1088_0953_8984_27_18_183203 crossref_primary_10_1039_C6NR06469H crossref_primary_10_1002_anie_202309073 crossref_primary_10_1063_1_4898670 crossref_primary_10_1063_1_4955039 crossref_primary_10_1103_PhysRevB_98_094428 crossref_primary_10_1103_PhysRevB_104_195122 crossref_primary_10_1016_j_jmmm_2018_05_009 crossref_primary_10_1021_acs_nanolett_0c01466 crossref_primary_10_1021_jacs_0c01664 crossref_primary_10_1038_ncomms9536 crossref_primary_10_1103_PhysRevLett_126_176801 crossref_primary_10_1103_PhysRevB_96_224418 crossref_primary_10_1103_PhysRevLett_114_126601 crossref_primary_10_1103_PhysRevLett_115_237202 crossref_primary_10_1021_acs_nanolett_9b01504 crossref_primary_10_1103_PhysRevLett_121_027201 crossref_primary_10_1002_asia_201701032 crossref_primary_10_1021_acs_jpcc_2c05940 crossref_primary_10_1088_0953_8984_28_50_503002 crossref_primary_10_1088_1361_648X_aa8c87 |
Cites_doi | 10.1093/acprof:oso/9780198567530.001.0001 10.1063/1.2969711 10.1109/PROC.1986.13669 10.1063/1.3694270 10.1142/S2010324712400036 10.1103/PhysRevB.81.104430 10.1103/PhysRevLett.103.176601 10.1103/PhysRevB.43.13401 10.1038/416301a 10.1103/PhysRevLett.88.047202 10.1016/j.progsurf.2012.05.003 10.1039/c1sc00513h 10.1021/cr9900681 10.1103/PhysRevLett.111.236801 10.1063/1.4863407 10.1126/science.1082857 10.1103/PhysRevB.42.2707 10.1103/PhysRev.114.1245 10.1103/PhysRevLett.87.057203 10.1126/science.1191688 10.1103/PhysRevLett.88.207202 10.1103/PhysRevB.62.570 10.1063/1.1483122 10.1107/S0909049512027847 10.1126/science.280.5370.1732 10.1088/0953-8984/5/14/023 10.1088/0953-8984/21/39/395502 10.1016/S0040-6090(01)01450-X 10.1038/nchem.1630 10.1103/PhysRevB.39.865 10.1126/science.1101077 10.1103/PhysRevLett.87.276801 10.1126/science.1146110 10.1103/PhysRevLett.75.3752 10.1038/nmat2804 10.1038/383145a0 10.1103/PhysRevLett.68.1943 10.1103/RevModPhys.81.1495 10.1103/PhysRevLett.70.694 10.1063/1.1880449 10.1103/PhysRevB.84.054401 10.1098/rspa.1962.0207 10.1103/PhysRevLett.17.1139 10.1103/PhysRev.97.1474 10.1063/1.340404 10.1021/ic2012414 10.1103/PhysRevLett.106.037205 10.1103/PhysRevB.28.4315 10.1007/s00339-003-2437-5 10.1038/nature12759 10.1038/ncomms4333 10.1021/nn4061034 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1126/science.1252841 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 992 |
ExternalDocumentID | 10_1126_science_1252841 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0B8 0R~ 0WA 123 18M 2FS 2KS 2WC 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ AAYXX ABBHK ABCQX ABDBF ABDEX ABEFU ABIVO ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ADACV ADDRP ADMHC ADUKH ADULT AEGBM AENEX AEUPB AEXZC AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS AQVQM ASPBG AVWKF B-7 BKF BLC C45 C51 CITATION CS3 DB2 DCCCD DOOOF DU5 EBS EJD EMOBN ESX F5P FA8 FEDTE GX1 HZ~ I.T IAO IEA IGG IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OK1 OMK OVD P-O P2P PQQKQ PZZ QJJ QS- RHF RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UIG UKR UMD UNMZH UQL USG VQA VVN WH7 WI4 X7M XJF XZL Y6R YCJ YK4 YKV YNT YOJ YR2 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ |
ID | FETCH-LOGICAL-c1271-b59a9b9c4b8c415f61be94f6dd4988111df11ebfa3ad9867e55b9962b7b5aa593 |
ISSN | 0036-8075 |
IngestDate | Fri Dec 06 05:41:11 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6187 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1271-b59a9b9c4b8c415f61be94f6dd4988111df11ebfa3ad9867e55b9962b7b5aa593 |
OpenAccessLink | https://www.science.org/cms/asset/c33a5499-fc5d-43dc-8144-83757b55a3f5/pap.pdf |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1126_science_1252841 |
PublicationCentury | 2000 |
PublicationDate | 2014-05-30 |
PublicationDateYYYYMMDD | 2014-05-30 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-30 day: 30 |
PublicationDecade | 2010 |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationYear | 2014 |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_46_2 doi: 10.1093/acprof:oso/9780198567530.001.0001 – ident: e_1_3_2_7_2 doi: 10.1063/1.2969711 – ident: e_1_3_2_2_2 doi: 10.1109/PROC.1986.13669 – ident: e_1_3_2_11_2 doi: 10.1063/1.3694270 – ident: e_1_3_2_10_2 doi: 10.1142/S2010324712400036 – ident: e_1_3_2_40_2 doi: 10.1103/PhysRevB.81.104430 – ident: e_1_3_2_42_2 – ident: e_1_3_2_59_2 doi: 10.1103/PhysRevLett.103.176601 – ident: e_1_3_2_57_2 doi: 10.1103/PhysRevB.43.13401 – ident: e_1_3_2_18_2 doi: 10.1038/416301a – ident: e_1_3_2_36_2 doi: 10.1103/PhysRevLett.88.047202 – ident: e_1_3_2_44_2 doi: 10.1016/j.progsurf.2012.05.003 – ident: e_1_3_2_23_2 doi: 10.1039/c1sc00513h – ident: e_1_3_2_35_2 doi: 10.1021/cr9900681 – ident: e_1_3_2_33_2 doi: 10.1103/PhysRevLett.111.236801 – ident: e_1_3_2_9_2 doi: 10.1063/1.4863407 – ident: e_1_3_2_19_2 doi: 10.1126/science.1082857 – ident: e_1_3_2_52_2 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevB.42.2707 – ident: e_1_3_2_50_2 doi: 10.1103/PhysRev.114.1245 – ident: e_1_3_2_49_2 doi: 10.1103/PhysRevLett.87.057203 – ident: e_1_3_2_34_2 doi: 10.1126/science.1191688 – ident: e_1_3_2_24_2 doi: 10.1103/PhysRevLett.88.207202 – ident: e_1_3_2_12_2 doi: 10.1103/PhysRevB.62.570 – ident: e_1_3_2_15_2 – ident: e_1_3_2_5_2 doi: 10.1063/1.1483122 – ident: e_1_3_2_56_2 doi: 10.1107/S0909049512027847 – ident: e_1_3_2_54_2 doi: 10.1126/science.280.5370.1732 – ident: e_1_3_2_37_2 doi: 10.1088/0953-8984/5/14/023 – ident: e_1_3_2_51_2 doi: 10.1088/0953-8984/21/39/395502 – ident: e_1_3_2_53_2 doi: 10.1016/S0040-6090(01)01450-X – ident: e_1_3_2_22_2 doi: 10.1038/nchem.1630 – ident: e_1_3_2_43_2 doi: 10.1103/PhysRevB.39.865 – ident: e_1_3_2_30_2 doi: 10.1126/science.1101077 – ident: e_1_3_2_28_2 doi: 10.1103/PhysRevLett.87.276801 – ident: e_1_3_2_31_2 doi: 10.1126/science.1146110 – ident: e_1_3_2_17_2 doi: 10.1103/PhysRevLett.75.3752 – ident: e_1_3_2_6_2 doi: 10.1038/nmat2804 – ident: e_1_3_2_45_2 doi: 10.1038/383145a0 – ident: e_1_3_2_38_2 doi: 10.1103/PhysRevLett.68.1943 – ident: e_1_3_2_47_2 doi: 10.1103/RevModPhys.81.1495 – ident: e_1_3_2_39_2 doi: 10.1103/PhysRevLett.70.694 – ident: e_1_3_2_4_2 doi: 10.1063/1.1880449 – ident: e_1_3_2_8_2 doi: 10.1103/PhysRevB.84.054401 – ident: e_1_3_2_14_2 doi: 10.1098/rspa.1962.0207 – ident: e_1_3_2_55_2 doi: 10.1103/PhysRevLett.17.1139 – ident: e_1_3_2_41_2 doi: 10.1103/PhysRev.97.1474 – ident: e_1_3_2_3_2 doi: 10.1063/1.340404 – ident: e_1_3_2_21_2 doi: 10.1021/ic2012414 – ident: e_1_3_2_32_2 doi: 10.1103/PhysRevLett.106.037205 – ident: e_1_3_2_58_2 doi: 10.1103/PhysRevB.28.4315 – ident: e_1_3_2_26_2 doi: 10.1007/s00339-003-2437-5 – ident: e_1_3_2_20_2 doi: 10.1038/nature12759 – ident: e_1_3_2_25_2 doi: 10.1038/ncomms4333 – ident: e_1_3_2_29_2 doi: 10.1021/nn4061034 |
SSID | ssj0009593 |
Score | 2.1607683 |
Snippet | A study of the magnetic response of cobalt atoms adsorbed on oxide surfaces may lead to much denser storage of data. In hard drives, data are stored as... |
SourceID | crossref |
SourceType | Aggregation Database |
StartPage | 988 |
Title | Reaching the magnetic anisotropy limit of a 3 d metal atom |
Volume | 344 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLZKp0lc0IBN29iQDxxAVas4cZyaWzUNEBIcKpB6q-zYnpBYgiA9wD_h3_Ic24k1hgRcoiptrcjv5b3P9ve-h9DeVJeUlQoWOSaxotppPpZ5xsZCZopkitGC2trhs3N2cklPF_liMHiMWEurRk7Kh__WlbzHqnAP7GqrZN9g2W5QuAGfwb5wBQvD9VU2ngcqpEWPf8WfSjv51au7urmtb-5H17Z8yZVAZiNl20VbaYDGPUrApOH1BqzZnd9EVuuIiDNHFwjsAf-3aCthLlZtyLnWohKj40m_S2pPCqqOBNSf5M9XlqF75elmRlR1B6ztrn77xZGQjisWNicIbc_Vkzjger1jl25cjE1se8g0yeIgnDkVSO9tjPgs7KIqd53_fILmrnne89gfdavUEwBukHlJn-bC0f4_2a_jJLaroZQt_QBLP8Aa-mA1Fm1bhuMFeVHP2atGRfVY4QkiwBMhl4tPaMMvOfDM-c8mGuhqC310TUjvt9CmN-Qd3vca5Afb6DC4FgbL4-BauHct3LoWrg0WOMMKt66FrWt9RpdHvy9-nYx9m41xSdKCwLvJBZe8pHJaApwzjEjNqWFKUZh4yIXKEKKlEZlQfMoKnecSVsmpLGQuBMzDFzSs6kp_RZgDXjUlISaRwpZAA7zXrEgoFUUxFbz4hvbDXCxvnJrK8oV5__76n-6g9d73fqBhc7vSPwEqNnK3NdoTcolnpw |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaching+the+magnetic+anisotropy+limit+of+a+3+d+metal+atom&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Rau%2C+Ileana+G.&rft.au=Baumann%2C+Susanne&rft.au=Rusponi%2C+Stefano&rft.au=Donati%2C+Fabio&rft.date=2014-05-30&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=344&rft.issue=6187&rft.spage=988&rft.epage=992&rft_id=info:doi/10.1126%2Fscience.1252841&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_1252841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |