Reaching the magnetic anisotropy limit of a 3 d metal atom

A study of the magnetic response of cobalt atoms adsorbed on oxide surfaces may lead to much denser storage of data. In hard drives, data are stored as magnetic bits; the magnetic field pointing up or down corresponds to storing a zero or a one. The smallest bit possible would be a single atom, but...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 344; no. 6187; pp. 988 - 992
Main Authors Rau, Ileana G., Baumann, Susanne, Rusponi, Stefano, Donati, Fabio, Stepanow, Sebastian, Gragnaniello, Luca, Dreiser, Jan, Piamonteze, Cinthia, Nolting, Frithjof, Gangopadhyay, Shruba, Albertini, Oliver R., Macfarlane, Roger M., Lutz, Christopher P., Jones, Barbara A., Gambardella, Pietro, Heinrich, Andreas J., Brune, Harald
Format Journal Article
LanguageEnglish
Published 30.05.2014
Online AccessGet full text

Cover

Loading…
Abstract A study of the magnetic response of cobalt atoms adsorbed on oxide surfaces may lead to much denser storage of data. In hard drives, data are stored as magnetic bits; the magnetic field pointing up or down corresponds to storing a zero or a one. The smallest bit possible would be a single atom, but the magnetism of a single atom —its spin—has to be stabilized by interactions with heavy elements or surfaces through an effect called spin-orbit coupling. Rau et al. (see the Perspective by Khajetoorians and Wiebe) built a model system in pursuit of single-atom bits—cobalt atoms adsorbed on magnesium oxide. At temperatures approaching absolute zero, the stabilization of the spin's magnetic direction reached the maximum that is theoretically possible. Science , this issue p. 988 ; see also p. 976 A cobalt atom bound to a single oxygen site on magnesia has the maximum magnetic anisotropy allowed for a transition metal [Also see Perspective by Khajetoorians and Wiebe ] Designing systems with large magnetic anisotropy is critical to realize nanoscopic magnets. Thus far, the magnetic anisotropy energy per atom in single-molecule magnets and ferromagnetic films remains typically one to two orders of magnitude below the theoretical limit imposed by the atomic spin-orbit interaction. We realized the maximum magnetic anisotropy for a 3 d transition metal atom by coordinating a single Co atom to the O site of an MgO(100) surface. Scanning tunneling spectroscopy reveals a record-high zero-field splitting of 58 millielectron volts as well as slow relaxation of the Co atom’s magnetization. This striking behavior originates from the dominating axial ligand field at the O adsorption site, which leads to out-of-plane uniaxial anisotropy while preserving the gas-phase orbital moment of Co, as observed with x-ray magnetic circular dichroism.
AbstractList A study of the magnetic response of cobalt atoms adsorbed on oxide surfaces may lead to much denser storage of data. In hard drives, data are stored as magnetic bits; the magnetic field pointing up or down corresponds to storing a zero or a one. The smallest bit possible would be a single atom, but the magnetism of a single atom —its spin—has to be stabilized by interactions with heavy elements or surfaces through an effect called spin-orbit coupling. Rau et al. (see the Perspective by Khajetoorians and Wiebe) built a model system in pursuit of single-atom bits—cobalt atoms adsorbed on magnesium oxide. At temperatures approaching absolute zero, the stabilization of the spin's magnetic direction reached the maximum that is theoretically possible. Science , this issue p. 988 ; see also p. 976 A cobalt atom bound to a single oxygen site on magnesia has the maximum magnetic anisotropy allowed for a transition metal [Also see Perspective by Khajetoorians and Wiebe ] Designing systems with large magnetic anisotropy is critical to realize nanoscopic magnets. Thus far, the magnetic anisotropy energy per atom in single-molecule magnets and ferromagnetic films remains typically one to two orders of magnitude below the theoretical limit imposed by the atomic spin-orbit interaction. We realized the maximum magnetic anisotropy for a 3 d transition metal atom by coordinating a single Co atom to the O site of an MgO(100) surface. Scanning tunneling spectroscopy reveals a record-high zero-field splitting of 58 millielectron volts as well as slow relaxation of the Co atom’s magnetization. This striking behavior originates from the dominating axial ligand field at the O adsorption site, which leads to out-of-plane uniaxial anisotropy while preserving the gas-phase orbital moment of Co, as observed with x-ray magnetic circular dichroism.
Author Gangopadhyay, Shruba
Gambardella, Pietro
Albertini, Oliver R.
Piamonteze, Cinthia
Donati, Fabio
Dreiser, Jan
Gragnaniello, Luca
Baumann, Susanne
Heinrich, Andreas J.
Brune, Harald
Macfarlane, Roger M.
Jones, Barbara A.
Rau, Ileana G.
Nolting, Frithjof
Lutz, Christopher P.
Stepanow, Sebastian
Rusponi, Stefano
Author_xml – sequence: 1
  givenname: Ileana G.
  surname: Rau
  fullname: Rau, Ileana G.
  organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
– sequence: 2
  givenname: Susanne
  surname: Baumann
  fullname: Baumann, Susanne
  organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA., Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
– sequence: 3
  givenname: Stefano
  surname: Rusponi
  fullname: Rusponi, Stefano
  organization: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
– sequence: 4
  givenname: Fabio
  surname: Donati
  fullname: Donati, Fabio
  organization: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
– sequence: 5
  givenname: Sebastian
  surname: Stepanow
  fullname: Stepanow, Sebastian
  organization: Department of Materials, Eidgenössische Technische Hochschule (ETH) Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
– sequence: 6
  givenname: Luca
  surname: Gragnaniello
  fullname: Gragnaniello, Luca
  organization: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
– sequence: 7
  givenname: Jan
  surname: Dreiser
  fullname: Dreiser, Jan
  organization: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland., Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
– sequence: 8
  givenname: Cinthia
  surname: Piamonteze
  fullname: Piamonteze, Cinthia
  organization: Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
– sequence: 9
  givenname: Frithjof
  surname: Nolting
  fullname: Nolting, Frithjof
  organization: Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
– sequence: 10
  givenname: Shruba
  surname: Gangopadhyay
  fullname: Gangopadhyay, Shruba
  organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
– sequence: 11
  givenname: Oliver R.
  surname: Albertini
  fullname: Albertini, Oliver R.
  organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA., Department of Physics, Georgetown University, 3700 O Street NW, Washington, DC 20057, USA
– sequence: 12
  givenname: Roger M.
  surname: Macfarlane
  fullname: Macfarlane, Roger M.
  organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
– sequence: 13
  givenname: Christopher P.
  surname: Lutz
  fullname: Lutz, Christopher P.
  organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
– sequence: 14
  givenname: Barbara A.
  surname: Jones
  fullname: Jones, Barbara A.
  organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
– sequence: 15
  givenname: Pietro
  surname: Gambardella
  fullname: Gambardella, Pietro
  organization: Department of Materials, Eidgenössische Technische Hochschule (ETH) Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
– sequence: 16
  givenname: Andreas J.
  surname: Heinrich
  fullname: Heinrich, Andreas J.
  organization: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
– sequence: 17
  givenname: Harald
  surname: Brune
  fullname: Brune, Harald
  organization: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
BookMark eNotz8FLwzAYBfAgE9ymZ6_5B7rlS5o08SZDnTAQRM_lS5pskTYdTS77753Y0zs8eLzfiizSmDwhj8A2AFxts4s-Ob8BLrmu4YYsgRlZGc7EgiwZE6rSrJF3ZJXzD2PXzoglefr06E4xHWk5eTrgMfkSHcUU81im8XyhfRxioWOgSAXt6OAL9hTLONyT24B99g9zrsn368vXbl8dPt7ed8-HygFvoLLSoLHG1Va7GmRQYL2pg-q62mgNAF0A8DagwM5o1XgprTGK28ZKxOvJNdn-77ppzHnyoT1PccDp0gJr_-jtTG9nuvgF68NPGQ
CitedBy_id crossref_primary_10_1021_acs_jpclett_2c03168
crossref_primary_10_1038_srep31841
crossref_primary_10_1103_PhysRevMaterials_1_074408
crossref_primary_10_1103_PhysRevB_103_224429
crossref_primary_10_1103_PhysRevB_108_245407
crossref_primary_10_1103_PhysRevMaterials_5_054001
crossref_primary_10_1039_C6DT01963C
crossref_primary_10_1088_1367_2630_ac2d71
crossref_primary_10_1021_acs_inorgchem_6b01353
crossref_primary_10_1039_C5CP04663G
crossref_primary_10_1039_D2DT02468C
crossref_primary_10_1039_C8NR03442G
crossref_primary_10_1021_acs_nanolett_3c02532
crossref_primary_10_1039_D2CP01224C
crossref_primary_10_1002_adma_201506305
crossref_primary_10_1103_PhysRevLett_114_106807
crossref_primary_10_1103_PhysRevB_93_214435
crossref_primary_10_1002_smll_202104779
crossref_primary_10_21468_SciPostPhys_2_3_020
crossref_primary_10_1103_PhysRevB_92_184406
crossref_primary_10_1103_RevModPhys_91_041001
crossref_primary_10_1088_1367_2630_17_6_063016
crossref_primary_10_1016_j_jmmm_2019_165269
crossref_primary_10_1002_ange_201808951
crossref_primary_10_1002_aelm_202200650
crossref_primary_10_1038_s41467_019_10516_2
crossref_primary_10_1038_s41535_020_00262_w
crossref_primary_10_1016_j_apsusc_2020_147427
crossref_primary_10_1063_5_0152175
crossref_primary_10_1021_acs_jpcc_9b03126
crossref_primary_10_1038_s41467_017_00506_7
crossref_primary_10_1016_j_progsurf_2016_12_001
crossref_primary_10_1039_D0CP00742K
crossref_primary_10_1103_PhysRevB_97_041114
crossref_primary_10_1126_sciadv_1603137
crossref_primary_10_1038_s41467_018_02918_5
crossref_primary_10_1103_PhysRevB_99_054418
crossref_primary_10_1016_j_apsusc_2023_158739
crossref_primary_10_1016_j_commatsci_2017_04_001
crossref_primary_10_1002_adfm_201600240
crossref_primary_10_1088_1361_665X_aba53d
crossref_primary_10_1103_PhysRevB_91_214423
crossref_primary_10_1016_j_jmmm_2019_03_007
crossref_primary_10_1038_s41524_021_00556_y
crossref_primary_10_1126_science_aac8703
crossref_primary_10_1103_PhysRevB_96_144410
crossref_primary_10_1088_1361_648X_aad43d
crossref_primary_10_1021_acs_jpcc_1c07370
crossref_primary_10_1103_PhysRevB_93_035451
crossref_primary_10_1021_acs_jpca_9b10749
crossref_primary_10_1038_ncomms10620
crossref_primary_10_1021_acs_inorgchem_8b03064
crossref_primary_10_1039_C6CS00891G
crossref_primary_10_1038_s41586_023_06011_w
crossref_primary_10_1039_C7SC04460G
crossref_primary_10_1103_PhysRevLett_121_257202
crossref_primary_10_1021_jacs_5b08962
crossref_primary_10_1088_1361_6463_accd03
crossref_primary_10_1088_2053_1583_aa75ed
crossref_primary_10_1088_1674_1056_27_10_106701
crossref_primary_10_1039_C9RA10337F
crossref_primary_10_1063_1_4975767
crossref_primary_10_1021_acs_jpcc_7b06912
crossref_primary_10_1103_PhysRevB_95_094417
crossref_primary_10_1126_science_aat7319
crossref_primary_10_1039_C8NJ02532K
crossref_primary_10_1103_PhysRevLett_115_206803
crossref_primary_10_1103_PhysRevLett_122_227203
crossref_primary_10_1126_science_aaf2481
crossref_primary_10_1103_PhysRevB_103_224432
crossref_primary_10_1103_PhysRevLett_113_237201
crossref_primary_10_1002_cctc_202201176
crossref_primary_10_1039_C6CP04583A
crossref_primary_10_1021_acs_cgd_2c01076
crossref_primary_10_1021_acs_nanolett_6b01344
crossref_primary_10_1016_j_apsusc_2020_148421
crossref_primary_10_1126_sciadv_1602060
crossref_primary_10_1021_acs_nanolett_5b02200
crossref_primary_10_1039_C9NR10252C
crossref_primary_10_1039_D3NR01943H
crossref_primary_10_1126_science_aax8222
crossref_primary_10_1039_C4CP02608J
crossref_primary_10_1039_C4CP03470H
crossref_primary_10_1088_1361_648X_ac93db
crossref_primary_10_1103_PhysRevB_102_155403
crossref_primary_10_1021_acs_nanolett_7b02785
crossref_primary_10_1016_j_cplett_2019_05_015
crossref_primary_10_1088_1361_648X_ac8135
crossref_primary_10_1039_C9CP04413B
crossref_primary_10_1103_PhysRevB_93_174409
crossref_primary_10_1016_j_tsf_2020_137935
crossref_primary_10_1039_C6SC05080H
crossref_primary_10_1002_ejic_201800792
crossref_primary_10_1039_C5SC02854J
crossref_primary_10_1007_s00214_016_1948_z
crossref_primary_10_1016_j_physe_2023_115795
crossref_primary_10_1016_j_omx_2024_100332
crossref_primary_10_1103_PhysRevB_90_064423
crossref_primary_10_1070_RCR4989
crossref_primary_10_1016_j_jmmm_2021_168915
crossref_primary_10_1088_2516_1075_abbb25
crossref_primary_10_1103_PhysRevB_92_064421
crossref_primary_10_1103_PhysRevB_91_104420
crossref_primary_10_3390_inorganics8060039
crossref_primary_10_1021_acs_jpcc_5b10211
crossref_primary_10_1038_s41467_024_46854_z
crossref_primary_10_1103_PhysRevB_107_045427
crossref_primary_10_1103_PhysRevB_104_134415
crossref_primary_10_1021_acs_nanolett_6b03543
crossref_primary_10_1039_C5CP01525A
crossref_primary_10_1088_1361_648X_abe513
crossref_primary_10_1103_PhysRevB_98_024412
crossref_primary_10_1109_LMAG_2019_2914007
crossref_primary_10_1080_23746149_2018_1432415
crossref_primary_10_1021_acsnano_2c04048
crossref_primary_10_1016_j_apsusc_2021_152311
crossref_primary_10_1021_acs_nanolett_1c00545
crossref_primary_10_1103_PhysRevApplied_10_024031
crossref_primary_10_1039_C7CP01641G
crossref_primary_10_1038_s41565_017_0001_2
crossref_primary_10_1021_acsnano_1c07902
crossref_primary_10_1021_jp510240b
crossref_primary_10_1021_acsomega_8b01204
crossref_primary_10_1103_PhysRevB_95_174424
crossref_primary_10_1039_D2CP03760B
crossref_primary_10_1039_C5RA19582A
crossref_primary_10_1021_acs_inorgchem_6b02348
crossref_primary_10_1016_j_ccr_2021_213984
crossref_primary_10_1103_PhysRevLett_119_017203
crossref_primary_10_1039_C5CP03599F
crossref_primary_10_1103_PhysRevB_96_045419
crossref_primary_10_1039_D2CP01864K
crossref_primary_10_1103_PhysRevB_107_144417
crossref_primary_10_1021_acsnano_3c01595
crossref_primary_10_1038_s42005_018_0078_4
crossref_primary_10_1103_PhysRevMaterials_5_014406
crossref_primary_10_1088_1361_6463_aabc48
crossref_primary_10_1088_1367_2630_ab116b
crossref_primary_10_1039_D1QI00912E
crossref_primary_10_1103_PhysRevB_107_214444
crossref_primary_10_1126_sciadv_aar7814
crossref_primary_10_1039_C9CP05844C
crossref_primary_10_1063_1_4947283
crossref_primary_10_1103_PhysRevB_92_125405
crossref_primary_10_1103_PhysRevApplied_7_014004
crossref_primary_10_1016_j_jssc_2016_03_004
crossref_primary_10_3390_inorganics10120227
crossref_primary_10_1021_acs_nanolett_5b00987
crossref_primary_10_1088_1361_648X_aab113
crossref_primary_10_1103_PhysRevB_105_054434
crossref_primary_10_1088_1361_648X_aab111
crossref_primary_10_1039_C8DT02008F
crossref_primary_10_1103_PhysRevB_93_115123
crossref_primary_10_1088_1367_2630_17_3_033020
crossref_primary_10_1126_science_1254402
crossref_primary_10_1016_j_jmmm_2018_09_050
crossref_primary_10_1063_9_0000727
crossref_primary_10_1103_PhysRevB_93_134414
crossref_primary_10_1002_chem_201903618
crossref_primary_10_1103_PhysRevResearch_2_013032
crossref_primary_10_1063_1_4955446
crossref_primary_10_1039_C7NR08372F
crossref_primary_10_1016_j_physb_2017_02_019
crossref_primary_10_1103_PhysRevB_100_035424
crossref_primary_10_1103_PhysRevResearch_3_L042042
crossref_primary_10_1039_D2CP01668K
crossref_primary_10_1002_chem_201905290
crossref_primary_10_1103_PhysRevB_96_205159
crossref_primary_10_1088_1367_2630_aa83e6
crossref_primary_10_1002_advs_201700019
crossref_primary_10_1021_acs_inorgchem_3c03388
crossref_primary_10_1126_science_aad9898
crossref_primary_10_1002_wcms_1269
crossref_primary_10_1103_PhysRevLett_115_257201
crossref_primary_10_1002_chem_202400977
crossref_primary_10_1016_j_jmmm_2020_166892
crossref_primary_10_1088_1361_648X_aaf212
crossref_primary_10_1021_acsami_8b14736
crossref_primary_10_1103_PhysRevLett_113_177201
crossref_primary_10_1103_PhysRevB_93_125424
crossref_primary_10_1039_C6CP07811G
crossref_primary_10_1088_1361_648X_ab7e59
crossref_primary_10_1021_jacs_2c05894
crossref_primary_10_1021_nl504779p
crossref_primary_10_1103_PhysRevB_90_155134
crossref_primary_10_1103_PhysRevB_92_014423
crossref_primary_10_1016_j_mex_2019_05_026
crossref_primary_10_1038_nphys3965
crossref_primary_10_1103_PhysRevB_98_174438
crossref_primary_10_1002_adfm_201804594
crossref_primary_10_1103_PhysRevB_104_224431
crossref_primary_10_1021_acsnano_7b06029
crossref_primary_10_1103_PhysRevB_95_075413
crossref_primary_10_1063_5_0070483
crossref_primary_10_1063_5_0150706
crossref_primary_10_1016_j_apsusc_2022_154478
crossref_primary_10_1039_D3SC00813D
crossref_primary_10_1103_PhysRevB_99_235302
crossref_primary_10_1038_srep25584
crossref_primary_10_1103_Physics_14_165
crossref_primary_10_1039_C9ME00017H
crossref_primary_10_3762_bjnano_11_113
crossref_primary_10_1126_sciadv_aaq1543
crossref_primary_10_3390_nano12030518
crossref_primary_10_1039_D0RA09742J
crossref_primary_10_1103_PhysRevMaterials_5_024408
crossref_primary_10_1039_D0CP05915C
crossref_primary_10_1021_acs_jpcc_9b10156
crossref_primary_10_1016_j_jlumin_2023_120152
crossref_primary_10_1103_PhysRevB_100_094412
crossref_primary_10_1016_j_dyepig_2020_108986
crossref_primary_10_1103_PhysRevB_95_104405
crossref_primary_10_1002_smll_202304369
crossref_primary_10_1103_PhysRevB_93_144405
crossref_primary_10_1002_ejic_201901017
crossref_primary_10_1063_1_5020045
crossref_primary_10_1103_PhysRevB_93_144421
crossref_primary_10_1021_acsnano_7b02449
crossref_primary_10_1103_PhysRevB_94_060403
crossref_primary_10_1021_acs_jpclett_8b03036
crossref_primary_10_1088_1361_648X_aa8755
crossref_primary_10_1103_PhysRevB_108_035426
crossref_primary_10_1038_srep13665
crossref_primary_10_1088_1361_6528_ac13e9
crossref_primary_10_1088_1367_2630_ace8b5
crossref_primary_10_1103_PhysRevB_95_125433
crossref_primary_10_1002_anie_201808951
crossref_primary_10_1103_PhysRevB_102_054406
crossref_primary_10_1103_PhysRevB_94_014437
crossref_primary_10_1039_C5TC04402B
crossref_primary_10_1016_j_apsusc_2023_156476
crossref_primary_10_1103_PhysRevB_91_180403
crossref_primary_10_1039_C7CP04445C
crossref_primary_10_1088_1367_2630_aabb88
crossref_primary_10_1038_nnano_2017_18
crossref_primary_10_1039_C7CC02453C
crossref_primary_10_1103_PhysRevB_92_174407
crossref_primary_10_1002_ange_202309073
crossref_primary_10_1016_j_jmmm_2022_169690
crossref_primary_10_1063_1674_0068_30_cjcp1609178
crossref_primary_10_1063_5_0040011
crossref_primary_10_1103_PhysRevB_93_224428
crossref_primary_10_1039_C4NR07003H
crossref_primary_10_1038_s41534_023_00753_1
crossref_primary_10_1016_j_progsurf_2017_01_001
crossref_primary_10_1038_s42254_019_0108_5
crossref_primary_10_5564_jasea_v2i1_3492
crossref_primary_10_1038_srep46614
crossref_primary_10_1007_s11051_018_4164_z
crossref_primary_10_1088_1361_6528_ac50f0
crossref_primary_10_1103_PhysRevB_93_140101
crossref_primary_10_1126_sciadv_abi7291
crossref_primary_10_1021_acs_jpcc_1c09427
crossref_primary_10_1103_PhysRevB_92_125109
crossref_primary_10_1103_PhysRevB_94_125402
crossref_primary_10_1021_acs_inorgchem_2c03643
crossref_primary_10_1063_1_4917267
crossref_primary_10_1088_1361_648X_aa7b5b
crossref_primary_10_1016_j_ssc_2018_12_016
crossref_primary_10_1021_acs_nanolett_1c02681
crossref_primary_10_1002_adma_202102844
crossref_primary_10_1038_s41467_021_26650_9
crossref_primary_10_1103_PhysRevB_96_214401
crossref_primary_10_1016_j_apsusc_2021_151068
crossref_primary_10_1021_acs_nanolett_6b05204
crossref_primary_10_3762_bjnano_11_91
crossref_primary_10_1103_PhysRevB_109_014423
crossref_primary_10_1103_PhysRevB_91_235426
crossref_primary_10_1103_PhysRevB_102_140407
crossref_primary_10_1016_j_jmmm_2021_168068
crossref_primary_10_1103_PhysRevLett_116_037203
crossref_primary_10_1103_PhysRevLett_124_077204
crossref_primary_10_1088_1367_2630_ab3077
crossref_primary_10_1103_PhysRevB_96_224413
crossref_primary_10_1088_0953_8984_27_18_183203
crossref_primary_10_1039_C6NR06469H
crossref_primary_10_1002_anie_202309073
crossref_primary_10_1063_1_4898670
crossref_primary_10_1063_1_4955039
crossref_primary_10_1103_PhysRevB_98_094428
crossref_primary_10_1103_PhysRevB_104_195122
crossref_primary_10_1016_j_jmmm_2018_05_009
crossref_primary_10_1021_acs_nanolett_0c01466
crossref_primary_10_1021_jacs_0c01664
crossref_primary_10_1038_ncomms9536
crossref_primary_10_1103_PhysRevLett_126_176801
crossref_primary_10_1103_PhysRevB_96_224418
crossref_primary_10_1103_PhysRevLett_114_126601
crossref_primary_10_1103_PhysRevLett_115_237202
crossref_primary_10_1021_acs_nanolett_9b01504
crossref_primary_10_1103_PhysRevLett_121_027201
crossref_primary_10_1002_asia_201701032
crossref_primary_10_1021_acs_jpcc_2c05940
crossref_primary_10_1088_0953_8984_28_50_503002
crossref_primary_10_1088_1361_648X_aa8c87
Cites_doi 10.1093/acprof:oso/9780198567530.001.0001
10.1063/1.2969711
10.1109/PROC.1986.13669
10.1063/1.3694270
10.1142/S2010324712400036
10.1103/PhysRevB.81.104430
10.1103/PhysRevLett.103.176601
10.1103/PhysRevB.43.13401
10.1038/416301a
10.1103/PhysRevLett.88.047202
10.1016/j.progsurf.2012.05.003
10.1039/c1sc00513h
10.1021/cr9900681
10.1103/PhysRevLett.111.236801
10.1063/1.4863407
10.1126/science.1082857
10.1103/PhysRevB.42.2707
10.1103/PhysRev.114.1245
10.1103/PhysRevLett.87.057203
10.1126/science.1191688
10.1103/PhysRevLett.88.207202
10.1103/PhysRevB.62.570
10.1063/1.1483122
10.1107/S0909049512027847
10.1126/science.280.5370.1732
10.1088/0953-8984/5/14/023
10.1088/0953-8984/21/39/395502
10.1016/S0040-6090(01)01450-X
10.1038/nchem.1630
10.1103/PhysRevB.39.865
10.1126/science.1101077
10.1103/PhysRevLett.87.276801
10.1126/science.1146110
10.1103/PhysRevLett.75.3752
10.1038/nmat2804
10.1038/383145a0
10.1103/PhysRevLett.68.1943
10.1103/RevModPhys.81.1495
10.1103/PhysRevLett.70.694
10.1063/1.1880449
10.1103/PhysRevB.84.054401
10.1098/rspa.1962.0207
10.1103/PhysRevLett.17.1139
10.1103/PhysRev.97.1474
10.1063/1.340404
10.1021/ic2012414
10.1103/PhysRevLett.106.037205
10.1103/PhysRevB.28.4315
10.1007/s00339-003-2437-5
10.1038/nature12759
10.1038/ncomms4333
10.1021/nn4061034
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1126/science.1252841
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 992
ExternalDocumentID 10_1126_science_1252841
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
AAYXX
ABBHK
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ADACV
ADDRP
ADMHC
ADUKH
ADULT
AEGBM
AENEX
AEUPB
AEXZC
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASPBG
AVWKF
B-7
BKF
BLC
C45
C51
CITATION
CS3
DB2
DCCCD
DOOOF
DU5
EBS
EJD
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
QS-
RHF
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UIG
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
ID FETCH-LOGICAL-c1271-b59a9b9c4b8c415f61be94f6dd4988111df11ebfa3ad9867e55b9962b7b5aa593
ISSN 0036-8075
IngestDate Fri Dec 06 05:41:11 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6187
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1271-b59a9b9c4b8c415f61be94f6dd4988111df11ebfa3ad9867e55b9962b7b5aa593
OpenAccessLink https://www.science.org/cms/asset/c33a5499-fc5d-43dc-8144-83757b55a3f5/pap.pdf
PageCount 5
ParticipantIDs crossref_primary_10_1126_science_1252841
PublicationCentury 2000
PublicationDate 2014-05-30
PublicationDateYYYYMMDD 2014-05-30
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-30
  day: 30
PublicationDecade 2010
PublicationTitle Science (American Association for the Advancement of Science)
PublicationYear 2014
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_46_2
  doi: 10.1093/acprof:oso/9780198567530.001.0001
– ident: e_1_3_2_7_2
  doi: 10.1063/1.2969711
– ident: e_1_3_2_2_2
  doi: 10.1109/PROC.1986.13669
– ident: e_1_3_2_11_2
  doi: 10.1063/1.3694270
– ident: e_1_3_2_10_2
  doi: 10.1142/S2010324712400036
– ident: e_1_3_2_40_2
  doi: 10.1103/PhysRevB.81.104430
– ident: e_1_3_2_42_2
– ident: e_1_3_2_59_2
  doi: 10.1103/PhysRevLett.103.176601
– ident: e_1_3_2_57_2
  doi: 10.1103/PhysRevB.43.13401
– ident: e_1_3_2_18_2
  doi: 10.1038/416301a
– ident: e_1_3_2_36_2
  doi: 10.1103/PhysRevLett.88.047202
– ident: e_1_3_2_44_2
  doi: 10.1016/j.progsurf.2012.05.003
– ident: e_1_3_2_23_2
  doi: 10.1039/c1sc00513h
– ident: e_1_3_2_35_2
  doi: 10.1021/cr9900681
– ident: e_1_3_2_33_2
  doi: 10.1103/PhysRevLett.111.236801
– ident: e_1_3_2_9_2
  doi: 10.1063/1.4863407
– ident: e_1_3_2_19_2
  doi: 10.1126/science.1082857
– ident: e_1_3_2_52_2
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevB.42.2707
– ident: e_1_3_2_50_2
  doi: 10.1103/PhysRev.114.1245
– ident: e_1_3_2_49_2
  doi: 10.1103/PhysRevLett.87.057203
– ident: e_1_3_2_34_2
  doi: 10.1126/science.1191688
– ident: e_1_3_2_24_2
  doi: 10.1103/PhysRevLett.88.207202
– ident: e_1_3_2_12_2
  doi: 10.1103/PhysRevB.62.570
– ident: e_1_3_2_15_2
– ident: e_1_3_2_5_2
  doi: 10.1063/1.1483122
– ident: e_1_3_2_56_2
  doi: 10.1107/S0909049512027847
– ident: e_1_3_2_54_2
  doi: 10.1126/science.280.5370.1732
– ident: e_1_3_2_37_2
  doi: 10.1088/0953-8984/5/14/023
– ident: e_1_3_2_51_2
  doi: 10.1088/0953-8984/21/39/395502
– ident: e_1_3_2_53_2
  doi: 10.1016/S0040-6090(01)01450-X
– ident: e_1_3_2_22_2
  doi: 10.1038/nchem.1630
– ident: e_1_3_2_43_2
  doi: 10.1103/PhysRevB.39.865
– ident: e_1_3_2_30_2
  doi: 10.1126/science.1101077
– ident: e_1_3_2_28_2
  doi: 10.1103/PhysRevLett.87.276801
– ident: e_1_3_2_31_2
  doi: 10.1126/science.1146110
– ident: e_1_3_2_17_2
  doi: 10.1103/PhysRevLett.75.3752
– ident: e_1_3_2_6_2
  doi: 10.1038/nmat2804
– ident: e_1_3_2_45_2
  doi: 10.1038/383145a0
– ident: e_1_3_2_38_2
  doi: 10.1103/PhysRevLett.68.1943
– ident: e_1_3_2_47_2
  doi: 10.1103/RevModPhys.81.1495
– ident: e_1_3_2_39_2
  doi: 10.1103/PhysRevLett.70.694
– ident: e_1_3_2_4_2
  doi: 10.1063/1.1880449
– ident: e_1_3_2_8_2
  doi: 10.1103/PhysRevB.84.054401
– ident: e_1_3_2_14_2
  doi: 10.1098/rspa.1962.0207
– ident: e_1_3_2_55_2
  doi: 10.1103/PhysRevLett.17.1139
– ident: e_1_3_2_41_2
  doi: 10.1103/PhysRev.97.1474
– ident: e_1_3_2_3_2
  doi: 10.1063/1.340404
– ident: e_1_3_2_21_2
  doi: 10.1021/ic2012414
– ident: e_1_3_2_32_2
  doi: 10.1103/PhysRevLett.106.037205
– ident: e_1_3_2_58_2
  doi: 10.1103/PhysRevB.28.4315
– ident: e_1_3_2_26_2
  doi: 10.1007/s00339-003-2437-5
– ident: e_1_3_2_20_2
  doi: 10.1038/nature12759
– ident: e_1_3_2_25_2
  doi: 10.1038/ncomms4333
– ident: e_1_3_2_29_2
  doi: 10.1021/nn4061034
SSID ssj0009593
Score 2.1607683
Snippet A study of the magnetic response of cobalt atoms adsorbed on oxide surfaces may lead to much denser storage of data. In hard drives, data are stored as...
SourceID crossref
SourceType Aggregation Database
StartPage 988
Title Reaching the magnetic anisotropy limit of a 3 d metal atom
Volume 344
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLZKp0lc0IBN29iQDxxAVas4cZyaWzUNEBIcKpB6q-zYnpBYgiA9wD_h3_Ic24k1hgRcoiptrcjv5b3P9ve-h9DeVJeUlQoWOSaxotppPpZ5xsZCZopkitGC2trhs3N2cklPF_liMHiMWEurRk7Kh__WlbzHqnAP7GqrZN9g2W5QuAGfwb5wBQvD9VU2ngcqpEWPf8WfSjv51au7urmtb-5H17Z8yZVAZiNl20VbaYDGPUrApOH1BqzZnd9EVuuIiDNHFwjsAf-3aCthLlZtyLnWohKj40m_S2pPCqqOBNSf5M9XlqF75elmRlR1B6ztrn77xZGQjisWNicIbc_Vkzjger1jl25cjE1se8g0yeIgnDkVSO9tjPgs7KIqd53_fILmrnne89gfdavUEwBukHlJn-bC0f4_2a_jJLaroZQt_QBLP8Aa-mA1Fm1bhuMFeVHP2atGRfVY4QkiwBMhl4tPaMMvOfDM-c8mGuhqC310TUjvt9CmN-Qd3vca5Afb6DC4FgbL4-BauHct3LoWrg0WOMMKt66FrWt9RpdHvy9-nYx9m41xSdKCwLvJBZe8pHJaApwzjEjNqWFKUZh4yIXKEKKlEZlQfMoKnecSVsmpLGQuBMzDFzSs6kp_RZgDXjUlISaRwpZAA7zXrEgoFUUxFbz4hvbDXCxvnJrK8oV5__76n-6g9d73fqBhc7vSPwEqNnK3NdoTcolnpw
link.rule.ids 314,780,784,27924,27925
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaching+the+magnetic+anisotropy+limit+of+a+3+d+metal+atom&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Rau%2C+Ileana+G.&rft.au=Baumann%2C+Susanne&rft.au=Rusponi%2C+Stefano&rft.au=Donati%2C+Fabio&rft.date=2014-05-30&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=344&rft.issue=6187&rft.spage=988&rft.epage=992&rft_id=info:doi/10.1126%2Fscience.1252841&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_1252841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon