Application of 2D MoS 2 Nanoflower for the Removal of Emerging Pollutants from Water
Two-dimensional (2D) nanomaterial-MoS (molybdenum disulfide) has gained interest among researchers, owing to its exceptional mechanical, biological, and physiochemical properties. This paper reports on the removal of organic dyes and an emerging contaminant, Ciprofloxacin, by a 2D MoS nanoflower as...
Saved in:
Published in | ACS Engineering Au Vol. 3; no. 6; pp. 461 - 476 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
20.12.2023
|
Online Access | Get full text |
ISSN | 2694-2488 2694-2488 |
DOI | 10.1021/acsengineeringau.3c00032 |
Cover
Loading…
Abstract | Two-dimensional (2D) nanomaterial-MoS
(molybdenum disulfide) has gained interest among researchers, owing to its exceptional mechanical, biological, and physiochemical properties. This paper reports on the removal of organic dyes and an emerging contaminant, Ciprofloxacin, by a 2D MoS
nanoflower as an adsorbent. The material was prepared by a green hydrothermal technique, and its high Brunauer-Emmett-Teller-specific area of 185.541m
/g contributed to the removal of 96% rhodamine-B dye and 85% Ciprofloxacin. Various characterizations, such as X-ray diffraction, scanning electron microscopy linked with energy-dispersive spectroscopy, and transmission electron microscopy, revealed the nanoflower structure with good crystallinity. The feasibility and efficacy of 2D MoS
nanoflower as a promising adsorbent candidate for the removal of emerging pollutants was confirmed in-depth in batch investigations, such as the effects of adsorption time, MoS
dosages, solution pH, and temperature. The adsorption mechanism was further investigated based on thermodynamic calculations, adsorption kinetics, and isotherm modeling. The results confirmed the exothermic nature of the enthalpy-driven adsorption as well as the fast kinetics and physisorption-controlled adsorption process. The recyclability potential of 2D MoS
exceeds four regeneration recycles. MoS
nanoflower has been shown to be an effective organic pollutant removal adsorbent in water treatment. |
---|---|
AbstractList | Two-dimensional (2D) nanomaterial-MoS
(molybdenum disulfide) has gained interest among researchers, owing to its exceptional mechanical, biological, and physiochemical properties. This paper reports on the removal of organic dyes and an emerging contaminant, Ciprofloxacin, by a 2D MoS
nanoflower as an adsorbent. The material was prepared by a green hydrothermal technique, and its high Brunauer-Emmett-Teller-specific area of 185.541m
/g contributed to the removal of 96% rhodamine-B dye and 85% Ciprofloxacin. Various characterizations, such as X-ray diffraction, scanning electron microscopy linked with energy-dispersive spectroscopy, and transmission electron microscopy, revealed the nanoflower structure with good crystallinity. The feasibility and efficacy of 2D MoS
nanoflower as a promising adsorbent candidate for the removal of emerging pollutants was confirmed in-depth in batch investigations, such as the effects of adsorption time, MoS
dosages, solution pH, and temperature. The adsorption mechanism was further investigated based on thermodynamic calculations, adsorption kinetics, and isotherm modeling. The results confirmed the exothermic nature of the enthalpy-driven adsorption as well as the fast kinetics and physisorption-controlled adsorption process. The recyclability potential of 2D MoS
exceeds four regeneration recycles. MoS
nanoflower has been shown to be an effective organic pollutant removal adsorbent in water treatment. |
Author | Yang, Zhuxian Khalil, Ahmed M.E. Joshi, Bhavya Memon, Fayyaz A. Zhang, Shaowei |
Author_xml | – sequence: 1 givenname: Bhavya orcidid: 0000-0003-4823-1839 surname: Joshi fullname: Joshi, Bhavya organization: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, U.K – sequence: 2 givenname: Ahmed M.E. surname: Khalil fullname: Khalil, Ahmed M.E. organization: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, U.K – sequence: 3 givenname: Shaowei surname: Zhang fullname: Zhang, Shaowei organization: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, U.K – sequence: 4 givenname: Fayyaz A. surname: Memon fullname: Memon, Fayyaz A. organization: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, U.K – sequence: 5 givenname: Zhuxian surname: Yang fullname: Yang, Zhuxian organization: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38144680$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtOwzAQRS1UREvpLyD_QIpfddwNUlXKQyoPQRHLyHHGJSixIycB8fektCDUDauZxblXM-cY9Zx3gBCmZEwJo2fa1ODWuQMIuVvrdswNIYSzAzRgcioiJpTq_dn7aFTXbx3CJpQzSY5QnysqhFRkgFazqipyo5vcO-wtZhf41j9hhu-087bwHxCw9QE3r4AfofTvuthgixJCd8IaP_iiaBvtmhrb4Ev8ohsIJ-jQ6qKG0W4O0fPlYjW_jpb3Vzfz2TIylMUkyjLQlsVcpVkqlc04iFTzKZlYKYECl5rHKiUqI0JMhWIxo9oIIBysYSqTfIhOt71Vm5aQJVXISx0-k5_3OkBtARN8XQewvwglyUZmsi8z2cnsoud7UZM335qaoPPi_4IvJmWCOw |
CitedBy_id | crossref_primary_10_1002_cbdv_202400634 crossref_primary_10_1016_j_molstruc_2024_139149 crossref_primary_10_3390_pr12112349 crossref_primary_10_1016_j_inoche_2025_114311 crossref_primary_10_1016_j_actbio_2024_03_019 crossref_primary_10_1039_D4CE00896K crossref_primary_10_1002_smll_202410608 crossref_primary_10_1016_j_jece_2024_112268 crossref_primary_10_1021_acsestwater_4c00501 crossref_primary_10_1016_j_jclepro_2024_143752 |
Cites_doi | 10.1038/360444a0 10.1039/b417488g 10.3390/w13121662 10.1016/j.matpr.2021.03.406 10.1002/crat.201100030 10.1016/j.cej.2011.03.031 10.1021/cm0501766 10.1016/j.watres.2009.09.059 10.9790/5736-0313845 10.1016/j.matchemphys.2017.03.048 10.1016/j.molliq.2022.119216 10.1021/es050991m 10.1016/j.apsusc.2016.12.014 10.1039/C8NJ01731J 10.1039/D1RA02095A 10.1016/j.electacta.2018.06.135 10.1080/00032719.2022.2055562 10.1016/j.wear.2013.03.033 10.5004/dwt.2020.26312 10.1039/C6TA09409K 10.1038/35025020 10.3762/bjoc.8.243 10.1039/C6OB00539J 10.1016/j.chemphys.2012.02.014 10.3390/catal11101229 10.1021/acs.langmuir.5b02057 10.3390/nano11010079 10.1002/etc.350 10.1016/j.biortech.2007.11.064 10.1126/science.267.5195.222 10.1016/j.scitotenv.2018.02.006 10.1016/j.scitotenv.2010.04.047 10.1016/j.jhazmat.2009.10.058 10.1021/cr300133d 10.1016/j.cej.2021.130082 10.1016/j.jece.2020.103929 10.1016/j.seppur.2015.07.009 10.1136/bmj.317.7165.1029 10.1016/j.scitotenv.2008.02.031 10.1016/j.petrol.2021.109466 10.1016/j.optmat.2022.111974 10.1038/s41427-020-0203-1 10.1016/j.watres.2009.06.059 10.1016/j.chemosphere.2009.03.022 10.1016/j.cej.2020.125440 10.1016/j.jcis.2014.03.038 10.1016/j.cej.2013.12.048 10.1016/0043-1354(96)00153-4 10.1039/C5RA20538G 10.1109/TIT.1974.1055174 10.1016/j.jenvman.2021.113274 10.1016/j.eti.2022.102495 10.1021/la502033t 10.5109/1808449 10.1186/s12302-014-0022-5 10.1038/nprot.2006.370 10.1039/c3dt52008k 10.1016/j.ijbiomac.2016.07.075 10.1039/C6TA08388A 10.1016/S0043-1354(98)00099-2 10.1016/j.electacta.2014.06.067 10.1039/C9CC07362K 10.1016/j.jhazmat.2011.11.073 10.1016/j.chemosphere.2009.12.026 10.1016/j.jiec.2020.09.023 10.1002/chem.200204635 10.1021/es5034684 10.1016/j.carbon.2020.05.083 10.1038/s41598-018-19978-8 10.1016/B978-0-12-822850-0.00013-2 10.1016/j.seppur.2021.119605 10.1038/365113a0 10.1016/j.watres.2005.04.003 10.1016/j.jece.2016.06.004 10.1016/j.fuproc.2020.106660 10.1038/s41598-021-90235-1 10.1016/j.watres.2008.05.020 10.1016/j.molliq.2021.115402 10.52155/ijpsat.v17.2.1421 10.1016/j.cej.2010.12.010 10.1016/j.apsusc.2014.04.034 10.1007/s11671-007-9087-z 10.1039/C6RA22414H 10.1021/es903455p 10.3844/ajessp.2014.157.163 10.1016/j.ceramint.2018.07.124 10.1016/j.seppur.2011.12.021 10.1007/s11249-006-9124-6 10.1021/acsomega.3c03812 10.1016/j.triboint.2006.02.067 10.1039/c2ra20340e 10.1016/j.arabjc.2013.11.013 10.1016/j.jhazmat.2007.07.079 10.1016/j.chroma.2006.11.068 10.1039/D0RA00121J 10.1016/j.nanoen.2022.107280 10.1039/c3ra43914c 10.1016/j.scitotenv.2006.03.021 10.1038/srep39599 10.1016/C2013-0-13999-2 10.1016/j.watres.2006.06.039 10.1016/j.crgsc.2021.100179 10.1088/1755-1315/300/5/052021 10.1007/s10854-021-05611-4 10.5004/dwt.2021.27334 10.1006/jssc.2001.9146 10.1021/es101331j 10.1039/D3NJ01913F 10.1155/2015/710462 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society. |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society. |
DBID | AAYXX CITATION NPM |
DOI | 10.1021/acsengineeringau.3c00032 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2694-2488 |
EndPage | 476 |
ExternalDocumentID | 38144680 10_1021_acsengineeringau_3c00032 |
Genre | Journal Article |
GroupedDBID | AAYXX ABBLG ACS ADUCK AELXD ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E N~. OK1 NPM |
ID | FETCH-LOGICAL-c1270-ddeaf2738bdb68fd3e4ba3905f66e1e36a378b08d0449482721ac4e03efc28d63 |
IEDL.DBID | ACS |
ISSN | 2694-2488 |
IngestDate | Wed Feb 19 02:05:53 EST 2025 Tue Jul 01 00:23:10 EDT 2025 Thu Apr 24 22:52:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2023 The Authors. Published by American Chemical Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1270-ddeaf2738bdb68fd3e4ba3905f66e1e36a378b08d0449482721ac4e03efc28d63 |
ORCID | 0000-0003-4823-1839 |
PMID | 38144680 |
PageCount | 16 |
ParticipantIDs | pubmed_primary_38144680 crossref_primary_10_1021_acsengineeringau_3c00032 crossref_citationtrail_10_1021_acsengineeringau_3c00032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-20 2023-Dec-20 |
PublicationDateYYYYMMDD | 2023-12-20 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS Engineering Au |
PublicationTitleAlternate | ACS Eng Au |
PublicationYear | 2023 |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref109/cit109 ref13/cit13 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 Perwitasari D. S. (ref78/cit78) 2021 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref36/cit36 doi: 10.1038/360444a0 – ident: ref45/cit45 doi: 10.1039/b417488g – ident: ref76/cit76 doi: 10.3390/w13121662 – ident: ref101/cit101 doi: 10.1016/j.matpr.2021.03.406 – ident: ref44/cit44 doi: 10.1002/crat.201100030 – ident: ref106/cit106 doi: 10.1016/j.cej.2011.03.031 – ident: ref46/cit46 doi: 10.1021/cm0501766 – ident: ref14/cit14 doi: 10.1016/j.watres.2009.09.059 – ident: ref79/cit79 doi: 10.9790/5736-0313845 – ident: ref102/cit102 doi: 10.1016/j.matchemphys.2017.03.048 – ident: ref112/cit112 doi: 10.1016/j.molliq.2022.119216 – ident: ref16/cit16 doi: 10.1021/es050991m – ident: ref61/cit61 doi: 10.1016/j.apsusc.2016.12.014 – ident: ref50/cit50 doi: 10.1039/C8NJ01731J – ident: ref53/cit53 doi: 10.1039/D1RA02095A – ident: ref51/cit51 doi: 10.1016/j.electacta.2018.06.135 – ident: ref100/cit100 doi: 10.1080/00032719.2022.2055562 – ident: ref37/cit37 doi: 10.1016/j.wear.2013.03.033 – ident: ref99/cit99 doi: 10.5004/dwt.2020.26312 – ident: ref58/cit58 doi: 10.1039/C6TA09409K – ident: ref42/cit42 doi: 10.1038/35025020 – ident: ref70/cit70 doi: 10.3762/bjoc.8.243 – ident: ref71/cit71 doi: 10.1039/C6OB00539J – ident: ref64/cit64 doi: 10.1016/j.chemphys.2012.02.014 – start-page: 106 year: 2021 ident: ref78/cit78 publication-title: Nusantara Science and Technology Proceedings – ident: ref83/cit83 doi: 10.3390/catal11101229 – ident: ref69/cit69 doi: 10.1021/acs.langmuir.5b02057 – ident: ref28/cit28 doi: 10.3390/nano11010079 – ident: ref88/cit88 doi: 10.1002/etc.350 – ident: ref110/cit110 doi: 10.5004/dwt.2020.26312 – ident: ref34/cit34 doi: 10.1016/j.biortech.2007.11.064 – ident: ref38/cit38 doi: 10.1126/science.267.5195.222 – ident: ref111/cit111 doi: 10.1016/j.scitotenv.2018.02.006 – ident: ref2/cit2 doi: 10.1016/j.scitotenv.2010.04.047 – ident: ref25/cit25 doi: 10.1016/j.jhazmat.2009.10.058 – ident: ref30/cit30 doi: 10.1021/cr300133d – ident: ref49/cit49 doi: 10.1016/j.cej.2021.130082 – ident: ref89/cit89 doi: 10.1016/j.jece.2020.103929 – ident: ref109/cit109 doi: 10.1016/j.seppur.2015.07.009 – ident: ref8/cit8 doi: 10.1136/bmj.317.7165.1029 – ident: ref3/cit3 doi: 10.1016/j.scitotenv.2008.02.031 – ident: ref82/cit82 doi: 10.1016/j.petrol.2021.109466 – ident: ref84/cit84 doi: 10.1016/j.optmat.2022.111974 – ident: ref68/cit68 doi: 10.1038/s41427-020-0203-1 – ident: ref13/cit13 doi: 10.1016/j.watres.2009.06.059 – ident: ref12/cit12 doi: 10.1016/j.chemosphere.2009.03.022 – ident: ref27/cit27 doi: 10.1016/j.cej.2020.125440 – ident: ref67/cit67 doi: 10.1016/j.jcis.2014.03.038 – ident: ref75/cit75 doi: 10.1016/j.cej.2013.12.048 – ident: ref24/cit24 doi: 10.1016/0043-1354(96)00153-4 – ident: ref87/cit87 doi: 10.1039/C5RA20538G – ident: ref77/cit77 doi: 10.1109/TIT.1974.1055174 – ident: ref80/cit80 doi: 10.1016/j.jenvman.2021.113274 – ident: ref20/cit20 doi: 10.1016/j.eti.2022.102495 – ident: ref55/cit55 doi: 10.1021/la502033t – ident: ref103/cit103 doi: 10.5109/1808449 – ident: ref22/cit22 doi: 10.1186/s12302-014-0022-5 – ident: ref23/cit23 doi: 10.1038/nprot.2006.370 – ident: ref62/cit62 doi: 10.1039/c3dt52008k – ident: ref86/cit86 doi: 10.1016/j.ijbiomac.2016.07.075 – ident: ref18/cit18 doi: 10.1039/C6TA08388A – ident: ref6/cit6 doi: 10.1016/S0043-1354(98)00099-2 – ident: ref97/cit97 doi: 10.1016/j.electacta.2014.06.067 – ident: ref59/cit59 doi: 10.1039/C9CC07362K – ident: ref32/cit32 doi: 10.1016/j.jhazmat.2011.11.073 – ident: ref11/cit11 doi: 10.1016/j.chemosphere.2009.12.026 – ident: ref107/cit107 doi: 10.1016/j.jiec.2020.09.023 – ident: ref43/cit43 doi: 10.1002/chem.200204635 – ident: ref90/cit90 doi: 10.1021/es5034684 – ident: ref92/cit92 doi: 10.1016/j.carbon.2020.05.083 – ident: ref19/cit19 doi: 10.1038/s41598-018-19978-8 – ident: ref21/cit21 doi: 10.1016/B978-0-12-822850-0.00013-2 – ident: ref29/cit29 doi: 10.1016/j.seppur.2021.119605 – ident: ref39/cit39 doi: 10.1038/365113a0 – ident: ref1/cit1 doi: 10.1016/j.watres.2005.04.003 – ident: ref93/cit93 doi: 10.1016/j.jece.2016.06.004 – ident: ref81/cit81 doi: 10.1016/j.fuproc.2020.106660 – ident: ref65/cit65 doi: 10.1038/s41598-021-90235-1 – ident: ref26/cit26 doi: 10.1016/j.watres.2008.05.020 – ident: ref66/cit66 doi: 10.1016/j.molliq.2021.115402 – ident: ref72/cit72 doi: 10.52155/ijpsat.v17.2.1421 – ident: ref85/cit85 doi: 10.1016/j.cej.2010.12.010 – ident: ref47/cit47 doi: 10.1016/j.apsusc.2014.04.034 – ident: ref57/cit57 doi: 10.1007/s11671-007-9087-z – ident: ref56/cit56 doi: 10.1039/C6RA22414H – ident: ref15/cit15 doi: 10.1021/es903455p – ident: ref104/cit104 doi: 10.3844/ajessp.2014.157.163 – ident: ref91/cit91 doi: 10.1016/j.ceramint.2018.07.124 – ident: ref7/cit7 doi: 10.1016/j.seppur.2011.12.021 – ident: ref41/cit41 doi: 10.1007/s11249-006-9124-6 – ident: ref105/cit105 doi: 10.1021/acsomega.3c03812 – ident: ref40/cit40 doi: 10.1016/j.triboint.2006.02.067 – ident: ref35/cit35 doi: 10.1039/c2ra20340e – ident: ref108/cit108 doi: 10.1016/j.jcis.2014.03.038 – ident: ref95/cit95 doi: 10.1016/j.arabjc.2013.11.013 – ident: ref33/cit33 doi: 10.1016/j.jhazmat.2007.07.079 – ident: ref94/cit94 doi: 10.1021/es5034684 – ident: ref9/cit9 doi: 10.1016/j.chroma.2006.11.068 – ident: ref52/cit52 doi: 10.1039/D0RA00121J – ident: ref113/cit113 doi: 10.1016/j.nanoen.2022.107280 – ident: ref96/cit96 doi: 10.1039/c3ra43914c – ident: ref5/cit5 doi: 10.1016/j.scitotenv.2006.03.021 – ident: ref31/cit31 doi: 10.1038/srep39599 – ident: ref73/cit73 doi: 10.1016/C2013-0-13999-2 – ident: ref4/cit4 doi: 10.1016/j.watres.2006.06.039 – ident: ref17/cit17 doi: 10.1016/j.crgsc.2021.100179 – ident: ref60/cit60 doi: 10.1088/1755-1315/300/5/052021 – ident: ref74/cit74 doi: 10.1007/s10854-021-05611-4 – ident: ref98/cit98 doi: 10.5004/dwt.2021.27334 – ident: ref54/cit54 doi: 10.1006/jssc.2001.9146 – ident: ref10/cit10 doi: 10.1021/es101331j – ident: ref63/cit63 doi: 10.1039/D3NJ01913F – ident: ref48/cit48 doi: 10.1155/2015/710462 |
SSID | ssj0002513260 |
Score | 2.2418602 |
Snippet | Two-dimensional (2D) nanomaterial-MoS
(molybdenum disulfide) has gained interest among researchers, owing to its exceptional mechanical, biological, and... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 461 |
Title | Application of 2D MoS 2 Nanoflower for the Removal of Emerging Pollutants from Water |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38144680 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYqJhi4j3JUHlhdEjux07EqrSqkIkRb0S2ynZeF0qAeCwO_Hb8ktBQEApZMsaW8PNnfu76PkEupfSUgBGaVVixQwrAosIbJAJDgSSWgMTXQu5XdYXAzCkcVwr-p4HP_StsZrKj59KIuLAL5_NhVAdLlN1v9ZVrFXdcOkGBmBUc0GXf-Wfbv_LTX2qW0Bi_za6azU4z-zXJ2Quwueawv5qZuX75yN_7hC3bJdok6abNwkz1Sgck-2frARXhABs1VKZtmKeXXtJf1Kafu_M3SMYqpUQdwqQOM9B6eMueh-BomtVDniN6hZjJKEs8ojqzQBwdip4dk2GkPWl1WSi4wiyVo5g47neK0jkmMjNJEQGC0aHhhKiX4IKQWKjJelHgB8spwFz9qG4AnILU8SqQ4IhuTbAInhCaelRpUw7daI2qIGiDDULv40EEwnoRVot5tHtuSjxxlMcZxXhfnfvzZbnFptyrxlyufC06OX6w5Ln7rcoWDKi4UjrzTf-x2RjZRdh7bWrh3Tjbm0wVcOHAyN7XcHWt5aO-evdf2G1c55Yk |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+2D+MoS+2+Nanoflower+for+the+Removal+of+Emerging+Pollutants+from+Water&rft.jtitle=ACS+Engineering+Au&rft.au=Joshi%2C+Bhavya&rft.au=Khalil%2C+Ahmed+M+E&rft.au=Zhang%2C+Shaowei&rft.au=Memon%2C+Fayyaz+A&rft.date=2023-12-20&rft.eissn=2694-2488&rft.volume=3&rft.issue=6&rft.spage=461&rft_id=info:doi/10.1021%2Facsengineeringau.3c00032&rft_id=info%3Apmid%2F38144680&rft.externalDocID=38144680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon |