Application of 2D MoS 2 Nanoflower for the Removal of Emerging Pollutants from Water

Two-dimensional (2D) nanomaterial-MoS (molybdenum disulfide) has gained interest among researchers, owing to its exceptional mechanical, biological, and physiochemical properties. This paper reports on the removal of organic dyes and an emerging contaminant, Ciprofloxacin, by a 2D MoS nanoflower as...

Full description

Saved in:
Bibliographic Details
Published inACS Engineering Au Vol. 3; no. 6; pp. 461 - 476
Main Authors Joshi, Bhavya, Khalil, Ahmed M.E., Zhang, Shaowei, Memon, Fayyaz A., Yang, Zhuxian
Format Journal Article
LanguageEnglish
Published United States 20.12.2023
Online AccessGet full text
ISSN2694-2488
2694-2488
DOI10.1021/acsengineeringau.3c00032

Cover

Loading…
Abstract Two-dimensional (2D) nanomaterial-MoS (molybdenum disulfide) has gained interest among researchers, owing to its exceptional mechanical, biological, and physiochemical properties. This paper reports on the removal of organic dyes and an emerging contaminant, Ciprofloxacin, by a 2D MoS nanoflower as an adsorbent. The material was prepared by a green hydrothermal technique, and its high Brunauer-Emmett-Teller-specific area of 185.541m /g contributed to the removal of 96% rhodamine-B dye and 85% Ciprofloxacin. Various characterizations, such as X-ray diffraction, scanning electron microscopy linked with energy-dispersive spectroscopy, and transmission electron microscopy, revealed the nanoflower structure with good crystallinity. The feasibility and efficacy of 2D MoS nanoflower as a promising adsorbent candidate for the removal of emerging pollutants was confirmed in-depth in batch investigations, such as the effects of adsorption time, MoS dosages, solution pH, and temperature. The adsorption mechanism was further investigated based on thermodynamic calculations, adsorption kinetics, and isotherm modeling. The results confirmed the exothermic nature of the enthalpy-driven adsorption as well as the fast kinetics and physisorption-controlled adsorption process. The recyclability potential of 2D MoS exceeds four regeneration recycles. MoS nanoflower has been shown to be an effective organic pollutant removal adsorbent in water treatment.
AbstractList Two-dimensional (2D) nanomaterial-MoS (molybdenum disulfide) has gained interest among researchers, owing to its exceptional mechanical, biological, and physiochemical properties. This paper reports on the removal of organic dyes and an emerging contaminant, Ciprofloxacin, by a 2D MoS nanoflower as an adsorbent. The material was prepared by a green hydrothermal technique, and its high Brunauer-Emmett-Teller-specific area of 185.541m /g contributed to the removal of 96% rhodamine-B dye and 85% Ciprofloxacin. Various characterizations, such as X-ray diffraction, scanning electron microscopy linked with energy-dispersive spectroscopy, and transmission electron microscopy, revealed the nanoflower structure with good crystallinity. The feasibility and efficacy of 2D MoS nanoflower as a promising adsorbent candidate for the removal of emerging pollutants was confirmed in-depth in batch investigations, such as the effects of adsorption time, MoS dosages, solution pH, and temperature. The adsorption mechanism was further investigated based on thermodynamic calculations, adsorption kinetics, and isotherm modeling. The results confirmed the exothermic nature of the enthalpy-driven adsorption as well as the fast kinetics and physisorption-controlled adsorption process. The recyclability potential of 2D MoS exceeds four regeneration recycles. MoS nanoflower has been shown to be an effective organic pollutant removal adsorbent in water treatment.
Author Yang, Zhuxian
Khalil, Ahmed M.E.
Joshi, Bhavya
Memon, Fayyaz A.
Zhang, Shaowei
Author_xml – sequence: 1
  givenname: Bhavya
  orcidid: 0000-0003-4823-1839
  surname: Joshi
  fullname: Joshi, Bhavya
  organization: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, U.K
– sequence: 2
  givenname: Ahmed M.E.
  surname: Khalil
  fullname: Khalil, Ahmed M.E.
  organization: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, U.K
– sequence: 3
  givenname: Shaowei
  surname: Zhang
  fullname: Zhang, Shaowei
  organization: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, U.K
– sequence: 4
  givenname: Fayyaz A.
  surname: Memon
  fullname: Memon, Fayyaz A.
  organization: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, U.K
– sequence: 5
  givenname: Zhuxian
  surname: Yang
  fullname: Yang, Zhuxian
  organization: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38144680$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOwzAQRS1UREvpLyD_QIpfddwNUlXKQyoPQRHLyHHGJSixIycB8fektCDUDauZxblXM-cY9Zx3gBCmZEwJo2fa1ODWuQMIuVvrdswNIYSzAzRgcioiJpTq_dn7aFTXbx3CJpQzSY5QnysqhFRkgFazqipyo5vcO-wtZhf41j9hhu-087bwHxCw9QE3r4AfofTvuthgixJCd8IaP_iiaBvtmhrb4Ev8ohsIJ-jQ6qKG0W4O0fPlYjW_jpb3Vzfz2TIylMUkyjLQlsVcpVkqlc04iFTzKZlYKYECl5rHKiUqI0JMhWIxo9oIIBysYSqTfIhOt71Vm5aQJVXISx0-k5_3OkBtARN8XQewvwglyUZmsi8z2cnsoud7UZM335qaoPPi_4IvJmWCOw
CitedBy_id crossref_primary_10_1002_cbdv_202400634
crossref_primary_10_1016_j_molstruc_2024_139149
crossref_primary_10_3390_pr12112349
crossref_primary_10_1016_j_inoche_2025_114311
crossref_primary_10_1016_j_actbio_2024_03_019
crossref_primary_10_1039_D4CE00896K
crossref_primary_10_1002_smll_202410608
crossref_primary_10_1016_j_jece_2024_112268
crossref_primary_10_1021_acsestwater_4c00501
crossref_primary_10_1016_j_jclepro_2024_143752
Cites_doi 10.1038/360444a0
10.1039/b417488g
10.3390/w13121662
10.1016/j.matpr.2021.03.406
10.1002/crat.201100030
10.1016/j.cej.2011.03.031
10.1021/cm0501766
10.1016/j.watres.2009.09.059
10.9790/5736-0313845
10.1016/j.matchemphys.2017.03.048
10.1016/j.molliq.2022.119216
10.1021/es050991m
10.1016/j.apsusc.2016.12.014
10.1039/C8NJ01731J
10.1039/D1RA02095A
10.1016/j.electacta.2018.06.135
10.1080/00032719.2022.2055562
10.1016/j.wear.2013.03.033
10.5004/dwt.2020.26312
10.1039/C6TA09409K
10.1038/35025020
10.3762/bjoc.8.243
10.1039/C6OB00539J
10.1016/j.chemphys.2012.02.014
10.3390/catal11101229
10.1021/acs.langmuir.5b02057
10.3390/nano11010079
10.1002/etc.350
10.1016/j.biortech.2007.11.064
10.1126/science.267.5195.222
10.1016/j.scitotenv.2018.02.006
10.1016/j.scitotenv.2010.04.047
10.1016/j.jhazmat.2009.10.058
10.1021/cr300133d
10.1016/j.cej.2021.130082
10.1016/j.jece.2020.103929
10.1016/j.seppur.2015.07.009
10.1136/bmj.317.7165.1029
10.1016/j.scitotenv.2008.02.031
10.1016/j.petrol.2021.109466
10.1016/j.optmat.2022.111974
10.1038/s41427-020-0203-1
10.1016/j.watres.2009.06.059
10.1016/j.chemosphere.2009.03.022
10.1016/j.cej.2020.125440
10.1016/j.jcis.2014.03.038
10.1016/j.cej.2013.12.048
10.1016/0043-1354(96)00153-4
10.1039/C5RA20538G
10.1109/TIT.1974.1055174
10.1016/j.jenvman.2021.113274
10.1016/j.eti.2022.102495
10.1021/la502033t
10.5109/1808449
10.1186/s12302-014-0022-5
10.1038/nprot.2006.370
10.1039/c3dt52008k
10.1016/j.ijbiomac.2016.07.075
10.1039/C6TA08388A
10.1016/S0043-1354(98)00099-2
10.1016/j.electacta.2014.06.067
10.1039/C9CC07362K
10.1016/j.jhazmat.2011.11.073
10.1016/j.chemosphere.2009.12.026
10.1016/j.jiec.2020.09.023
10.1002/chem.200204635
10.1021/es5034684
10.1016/j.carbon.2020.05.083
10.1038/s41598-018-19978-8
10.1016/B978-0-12-822850-0.00013-2
10.1016/j.seppur.2021.119605
10.1038/365113a0
10.1016/j.watres.2005.04.003
10.1016/j.jece.2016.06.004
10.1016/j.fuproc.2020.106660
10.1038/s41598-021-90235-1
10.1016/j.watres.2008.05.020
10.1016/j.molliq.2021.115402
10.52155/ijpsat.v17.2.1421
10.1016/j.cej.2010.12.010
10.1016/j.apsusc.2014.04.034
10.1007/s11671-007-9087-z
10.1039/C6RA22414H
10.1021/es903455p
10.3844/ajessp.2014.157.163
10.1016/j.ceramint.2018.07.124
10.1016/j.seppur.2011.12.021
10.1007/s11249-006-9124-6
10.1021/acsomega.3c03812
10.1016/j.triboint.2006.02.067
10.1039/c2ra20340e
10.1016/j.arabjc.2013.11.013
10.1016/j.jhazmat.2007.07.079
10.1016/j.chroma.2006.11.068
10.1039/D0RA00121J
10.1016/j.nanoen.2022.107280
10.1039/c3ra43914c
10.1016/j.scitotenv.2006.03.021
10.1038/srep39599
10.1016/C2013-0-13999-2
10.1016/j.watres.2006.06.039
10.1016/j.crgsc.2021.100179
10.1088/1755-1315/300/5/052021
10.1007/s10854-021-05611-4
10.5004/dwt.2021.27334
10.1006/jssc.2001.9146
10.1021/es101331j
10.1039/D3NJ01913F
10.1155/2015/710462
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society.
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society.
DBID AAYXX
CITATION
NPM
DOI 10.1021/acsengineeringau.3c00032
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2694-2488
EndPage 476
ExternalDocumentID 38144680
10_1021_acsengineeringau_3c00032
Genre Journal Article
GroupedDBID AAYXX
ABBLG
ACS
ADUCK
AELXD
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
N~.
OK1
NPM
ID FETCH-LOGICAL-c1270-ddeaf2738bdb68fd3e4ba3905f66e1e36a378b08d0449482721ac4e03efc28d63
IEDL.DBID ACS
ISSN 2694-2488
IngestDate Wed Feb 19 02:05:53 EST 2025
Tue Jul 01 00:23:10 EDT 2025
Thu Apr 24 22:52:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
2023 The Authors. Published by American Chemical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1270-ddeaf2738bdb68fd3e4ba3905f66e1e36a378b08d0449482721ac4e03efc28d63
ORCID 0000-0003-4823-1839
PMID 38144680
PageCount 16
ParticipantIDs pubmed_primary_38144680
crossref_primary_10_1021_acsengineeringau_3c00032
crossref_citationtrail_10_1021_acsengineeringau_3c00032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-20
2023-Dec-20
PublicationDateYYYYMMDD 2023-12-20
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS Engineering Au
PublicationTitleAlternate ACS Eng Au
PublicationYear 2023
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref109/cit109
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
Perwitasari D. S. (ref78/cit78) 2021
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref36/cit36
  doi: 10.1038/360444a0
– ident: ref45/cit45
  doi: 10.1039/b417488g
– ident: ref76/cit76
  doi: 10.3390/w13121662
– ident: ref101/cit101
  doi: 10.1016/j.matpr.2021.03.406
– ident: ref44/cit44
  doi: 10.1002/crat.201100030
– ident: ref106/cit106
  doi: 10.1016/j.cej.2011.03.031
– ident: ref46/cit46
  doi: 10.1021/cm0501766
– ident: ref14/cit14
  doi: 10.1016/j.watres.2009.09.059
– ident: ref79/cit79
  doi: 10.9790/5736-0313845
– ident: ref102/cit102
  doi: 10.1016/j.matchemphys.2017.03.048
– ident: ref112/cit112
  doi: 10.1016/j.molliq.2022.119216
– ident: ref16/cit16
  doi: 10.1021/es050991m
– ident: ref61/cit61
  doi: 10.1016/j.apsusc.2016.12.014
– ident: ref50/cit50
  doi: 10.1039/C8NJ01731J
– ident: ref53/cit53
  doi: 10.1039/D1RA02095A
– ident: ref51/cit51
  doi: 10.1016/j.electacta.2018.06.135
– ident: ref100/cit100
  doi: 10.1080/00032719.2022.2055562
– ident: ref37/cit37
  doi: 10.1016/j.wear.2013.03.033
– ident: ref99/cit99
  doi: 10.5004/dwt.2020.26312
– ident: ref58/cit58
  doi: 10.1039/C6TA09409K
– ident: ref42/cit42
  doi: 10.1038/35025020
– ident: ref70/cit70
  doi: 10.3762/bjoc.8.243
– ident: ref71/cit71
  doi: 10.1039/C6OB00539J
– ident: ref64/cit64
  doi: 10.1016/j.chemphys.2012.02.014
– start-page: 106
  year: 2021
  ident: ref78/cit78
  publication-title: Nusantara Science and Technology Proceedings
– ident: ref83/cit83
  doi: 10.3390/catal11101229
– ident: ref69/cit69
  doi: 10.1021/acs.langmuir.5b02057
– ident: ref28/cit28
  doi: 10.3390/nano11010079
– ident: ref88/cit88
  doi: 10.1002/etc.350
– ident: ref110/cit110
  doi: 10.5004/dwt.2020.26312
– ident: ref34/cit34
  doi: 10.1016/j.biortech.2007.11.064
– ident: ref38/cit38
  doi: 10.1126/science.267.5195.222
– ident: ref111/cit111
  doi: 10.1016/j.scitotenv.2018.02.006
– ident: ref2/cit2
  doi: 10.1016/j.scitotenv.2010.04.047
– ident: ref25/cit25
  doi: 10.1016/j.jhazmat.2009.10.058
– ident: ref30/cit30
  doi: 10.1021/cr300133d
– ident: ref49/cit49
  doi: 10.1016/j.cej.2021.130082
– ident: ref89/cit89
  doi: 10.1016/j.jece.2020.103929
– ident: ref109/cit109
  doi: 10.1016/j.seppur.2015.07.009
– ident: ref8/cit8
  doi: 10.1136/bmj.317.7165.1029
– ident: ref3/cit3
  doi: 10.1016/j.scitotenv.2008.02.031
– ident: ref82/cit82
  doi: 10.1016/j.petrol.2021.109466
– ident: ref84/cit84
  doi: 10.1016/j.optmat.2022.111974
– ident: ref68/cit68
  doi: 10.1038/s41427-020-0203-1
– ident: ref13/cit13
  doi: 10.1016/j.watres.2009.06.059
– ident: ref12/cit12
  doi: 10.1016/j.chemosphere.2009.03.022
– ident: ref27/cit27
  doi: 10.1016/j.cej.2020.125440
– ident: ref67/cit67
  doi: 10.1016/j.jcis.2014.03.038
– ident: ref75/cit75
  doi: 10.1016/j.cej.2013.12.048
– ident: ref24/cit24
  doi: 10.1016/0043-1354(96)00153-4
– ident: ref87/cit87
  doi: 10.1039/C5RA20538G
– ident: ref77/cit77
  doi: 10.1109/TIT.1974.1055174
– ident: ref80/cit80
  doi: 10.1016/j.jenvman.2021.113274
– ident: ref20/cit20
  doi: 10.1016/j.eti.2022.102495
– ident: ref55/cit55
  doi: 10.1021/la502033t
– ident: ref103/cit103
  doi: 10.5109/1808449
– ident: ref22/cit22
  doi: 10.1186/s12302-014-0022-5
– ident: ref23/cit23
  doi: 10.1038/nprot.2006.370
– ident: ref62/cit62
  doi: 10.1039/c3dt52008k
– ident: ref86/cit86
  doi: 10.1016/j.ijbiomac.2016.07.075
– ident: ref18/cit18
  doi: 10.1039/C6TA08388A
– ident: ref6/cit6
  doi: 10.1016/S0043-1354(98)00099-2
– ident: ref97/cit97
  doi: 10.1016/j.electacta.2014.06.067
– ident: ref59/cit59
  doi: 10.1039/C9CC07362K
– ident: ref32/cit32
  doi: 10.1016/j.jhazmat.2011.11.073
– ident: ref11/cit11
  doi: 10.1016/j.chemosphere.2009.12.026
– ident: ref107/cit107
  doi: 10.1016/j.jiec.2020.09.023
– ident: ref43/cit43
  doi: 10.1002/chem.200204635
– ident: ref90/cit90
  doi: 10.1021/es5034684
– ident: ref92/cit92
  doi: 10.1016/j.carbon.2020.05.083
– ident: ref19/cit19
  doi: 10.1038/s41598-018-19978-8
– ident: ref21/cit21
  doi: 10.1016/B978-0-12-822850-0.00013-2
– ident: ref29/cit29
  doi: 10.1016/j.seppur.2021.119605
– ident: ref39/cit39
  doi: 10.1038/365113a0
– ident: ref1/cit1
  doi: 10.1016/j.watres.2005.04.003
– ident: ref93/cit93
  doi: 10.1016/j.jece.2016.06.004
– ident: ref81/cit81
  doi: 10.1016/j.fuproc.2020.106660
– ident: ref65/cit65
  doi: 10.1038/s41598-021-90235-1
– ident: ref26/cit26
  doi: 10.1016/j.watres.2008.05.020
– ident: ref66/cit66
  doi: 10.1016/j.molliq.2021.115402
– ident: ref72/cit72
  doi: 10.52155/ijpsat.v17.2.1421
– ident: ref85/cit85
  doi: 10.1016/j.cej.2010.12.010
– ident: ref47/cit47
  doi: 10.1016/j.apsusc.2014.04.034
– ident: ref57/cit57
  doi: 10.1007/s11671-007-9087-z
– ident: ref56/cit56
  doi: 10.1039/C6RA22414H
– ident: ref15/cit15
  doi: 10.1021/es903455p
– ident: ref104/cit104
  doi: 10.3844/ajessp.2014.157.163
– ident: ref91/cit91
  doi: 10.1016/j.ceramint.2018.07.124
– ident: ref7/cit7
  doi: 10.1016/j.seppur.2011.12.021
– ident: ref41/cit41
  doi: 10.1007/s11249-006-9124-6
– ident: ref105/cit105
  doi: 10.1021/acsomega.3c03812
– ident: ref40/cit40
  doi: 10.1016/j.triboint.2006.02.067
– ident: ref35/cit35
  doi: 10.1039/c2ra20340e
– ident: ref108/cit108
  doi: 10.1016/j.jcis.2014.03.038
– ident: ref95/cit95
  doi: 10.1016/j.arabjc.2013.11.013
– ident: ref33/cit33
  doi: 10.1016/j.jhazmat.2007.07.079
– ident: ref94/cit94
  doi: 10.1021/es5034684
– ident: ref9/cit9
  doi: 10.1016/j.chroma.2006.11.068
– ident: ref52/cit52
  doi: 10.1039/D0RA00121J
– ident: ref113/cit113
  doi: 10.1016/j.nanoen.2022.107280
– ident: ref96/cit96
  doi: 10.1039/c3ra43914c
– ident: ref5/cit5
  doi: 10.1016/j.scitotenv.2006.03.021
– ident: ref31/cit31
  doi: 10.1038/srep39599
– ident: ref73/cit73
  doi: 10.1016/C2013-0-13999-2
– ident: ref4/cit4
  doi: 10.1016/j.watres.2006.06.039
– ident: ref17/cit17
  doi: 10.1016/j.crgsc.2021.100179
– ident: ref60/cit60
  doi: 10.1088/1755-1315/300/5/052021
– ident: ref74/cit74
  doi: 10.1007/s10854-021-05611-4
– ident: ref98/cit98
  doi: 10.5004/dwt.2021.27334
– ident: ref54/cit54
  doi: 10.1006/jssc.2001.9146
– ident: ref10/cit10
  doi: 10.1021/es101331j
– ident: ref63/cit63
  doi: 10.1039/D3NJ01913F
– ident: ref48/cit48
  doi: 10.1155/2015/710462
SSID ssj0002513260
Score 2.2418602
Snippet Two-dimensional (2D) nanomaterial-MoS (molybdenum disulfide) has gained interest among researchers, owing to its exceptional mechanical, biological, and...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 461
Title Application of 2D MoS 2 Nanoflower for the Removal of Emerging Pollutants from Water
URI https://www.ncbi.nlm.nih.gov/pubmed/38144680
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYqJhi4j3JUHlhdEjux07EqrSqkIkRb0S2ynZeF0qAeCwO_Hb8ktBQEApZMsaW8PNnfu76PkEupfSUgBGaVVixQwrAosIbJAJDgSSWgMTXQu5XdYXAzCkcVwr-p4HP_StsZrKj59KIuLAL5_NhVAdLlN1v9ZVrFXdcOkGBmBUc0GXf-Wfbv_LTX2qW0Bi_za6azU4z-zXJ2Quwueawv5qZuX75yN_7hC3bJdok6abNwkz1Sgck-2frARXhABs1VKZtmKeXXtJf1Kafu_M3SMYqpUQdwqQOM9B6eMueh-BomtVDniN6hZjJKEs8ojqzQBwdip4dk2GkPWl1WSi4wiyVo5g47neK0jkmMjNJEQGC0aHhhKiX4IKQWKjJelHgB8spwFz9qG4AnILU8SqQ4IhuTbAInhCaelRpUw7daI2qIGiDDULv40EEwnoRVot5tHtuSjxxlMcZxXhfnfvzZbnFptyrxlyufC06OX6w5Ln7rcoWDKi4UjrzTf-x2RjZRdh7bWrh3Tjbm0wVcOHAyN7XcHWt5aO-evdf2G1c55Yk
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+2D+MoS+2+Nanoflower+for+the+Removal+of+Emerging+Pollutants+from+Water&rft.jtitle=ACS+Engineering+Au&rft.au=Joshi%2C+Bhavya&rft.au=Khalil%2C+Ahmed+M+E&rft.au=Zhang%2C+Shaowei&rft.au=Memon%2C+Fayyaz+A&rft.date=2023-12-20&rft.eissn=2694-2488&rft.volume=3&rft.issue=6&rft.spage=461&rft_id=info:doi/10.1021%2Facsengineeringau.3c00032&rft_id=info%3Apmid%2F38144680&rft.externalDocID=38144680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon